1
|
Rasheed T, Sorour AA. Unveiling the power of MXenes: Solid lubrication perspectives and future directions. Adv Colloid Interface Sci 2024; 329:103186. [PMID: 38763047 DOI: 10.1016/j.cis.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 03/13/2024] [Accepted: 05/11/2024] [Indexed: 05/21/2024]
Abstract
The interaction between two surfaces leads to the generation of friction and wear of material. Friction and wear are some of the major challenges that may readily be overcome by the third part of tribology called lubrication. Utilizing solid lubricants including polymers, carbon-based materials, soft metals, transition metal dichalcogenides, along with their potential benefits and drawbacks in dry environments can reduce friction. Recently, an emerging class of two-dimensional (2D) transition metal nitrides, carbides or carbonitrides commonly known as MXenes have emerged as an attractive alternative for solid lubrication because of their ability to establish wear-resistant tribo layers and well as low friction and shear strength. Furthermore, the inherent hydrophilic nature of these substances has led to limited dispersion stability and phase compatibility when combined with pure base oils. As a result, their potential use as solid lubricants and lubricant additives has been impeded. To address this issue and enhance the applicability of MXenes as solid lubricants, their surface modification can be an attractive tool. Therefore, this review provides a succinct summary of the current state-of-the-art in surface functionalization of MXenes, a subject that has not yet been thoroughly addressed. Further, the mechanical behavior of MXenes and composites has been discussed, followed by the potential of MXenes as a solid lubricant at micro- and macro-scale. Finally, the existing opportunities and challenges of the research area have been discussed with possible future research directions. We believe, this article will be a valuable resource for MXenes and opens the door to improve the chemical, physical and mechanical properties of MXenes in various applications, such as solid lubrication.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - A A Sorour
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Chhattal M, Rosenkranz A, Zaki S, Ren K, Ghaffar A, Gong Z, Grützmacher PG. Unveiling the tribological potential of MXenes-current understanding and future perspectives. Adv Colloid Interface Sci 2023; 321:103021. [PMID: 37866121 DOI: 10.1016/j.cis.2023.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Reducing energy consumption and CO2 emissions by improving the tribological performance of mechanical systems relies on the development of new lubrication concepts. Two-dimensional (2D) materials have been the subject of extensive tribological research due to their unique physical and chemical properties. 2D transition metal carbides, nitrides, and carbonitrides (MXenes), with their tuneable chemistry and structure, are a relatively new addition to the family of 2D materials. MXenes' good strength and stiffness, easy-to-shear ability, capability to form wear-resistant tribofilms, and the possibility to control their surface chemistry make them appealing candidates to be explored for tribological purposes. This review provides a comprehensive overview of MXenes' tribology, covering their structure-property relationship, synthesis approaches, deposition methods to generate MXene coatings for tribological purposes, and their fundamental tribological mechanisms. Furthermore, detailed insights into studies exploring MXenes' tribological performance from the nano- to the macro-scale are presented with special emphasis on their use as self-lubricating solid lubricants, lubricant additives, and reinforcement phases in composites.
Collapse
Affiliation(s)
- Muhammad Chhattal
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology, and Materials, FCFM, Universidad de Chile, Santiago, Chile
| | - Sana Zaki
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical & Materials Engineering, University College Dublin, Dublin 4, Ireland
| | - Kexin Ren
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Abdul Ghaffar
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenbin Gong
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Philipp G Grützmacher
- Department of Engineering Design and Product Development, TU Wien, Vienna 1060, Austria.
| |
Collapse
|
3
|
Zeng W, Huang W, Guo B, Sun Y, Shen H. Preparation and Lubricating Properties of Polystyrene Composite Microspheres. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3071. [PMID: 37109906 PMCID: PMC10145035 DOI: 10.3390/ma16083071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
In order to improve the lubrication performance of polystyrene microspheres (PS) as solid lubricant in drilling fluids, elastic graphite-polystyrene composite microspheres (EGR/PS), montmorillonite-elastic graphite-polystyrene composite microspheres (OMMT/EGR/PS), and polytetrafluoroethylene-polystyrene composite microspheres (PTFE/PS) were prepared by suspension polymerization. OMMT/EGR/PS has a rough surface, while the surfaces of the other three composite microspheres are smooth. Among the four kinds of composite microspheres, the largest particle is OMMT/EGR/PS, and the average size is about 400 μm. The smallest particle is PTFE/PS, and the average size is about 49 μm. Compared with pure water, the friction coefficient of PS, EGR/PS, OMMT/EGR/PS and PTFE/PS reduced by 25%, 28%, 48%, and 62%, respectively. The wear tracks of EGR/PS, OMMT/EGR/PS and PTFE/PS are narrower and smoother than those of pure water. When the content of PTFE is 4.0 wt%, the friction coefficient and wear volume of PTFE/PS are 0.213 and 2.45 × 10-4 mm3-74% and 92.4% lower than that of pure water, respectively.
Collapse
Affiliation(s)
- Wen Zeng
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Weiqing Huang
- Hangzhou Huaguang Advanced Welding Materials Co., Hangzhou 311112, China
| | - Bing Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Yang Sun
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| | - Hangyan Shen
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Rosenkranz A, Righi MC, Sumant AV, Anasori B, Mochalin VN. Perspectives of 2D MXene Tribology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207757. [PMID: 36538726 PMCID: PMC10198439 DOI: 10.1002/adma.202207757] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/06/2022] [Indexed: 05/21/2023]
Abstract
The large and rapidly growing family of 2D early transition metal carbides, nitrides, and carbonitrides (MXenes) raises significant interest in the materials science and chemistry of materials communities. Discovered a little more than a decade ago, MXenes have already demonstrated outstanding potential in various applications ranging from energy storage to biology and medicine. The past two years have witnessed increased experimental and theoretical efforts toward studying MXenes' mechanical and tribological properties when used as lubricant additives, reinforcement phases in composites, or solid lubricant coatings. Although research on the understanding of the friction and wear performance of MXenes under dry and lubricated conditions is still in its early stages, it has experienced rapid growth due to the excellent mechanical properties and chemical reactivities offered by MXenes that make them adaptable to being combined with other materials, thus boosting their tribological performance. In this perspective, the most promising results in the area of MXene tribology are summarized, future important problems to be pursued further are outlined, and methodological recommendations that could be useful for experts as well as newcomers to MXenes research, in particular, to the emerging area of MXene tribology, are provided.
Collapse
Affiliation(s)
- Andreas Rosenkranz
- Department of Chemical Engineering, Biotechnology and Materials, FCFM, University of Chile, Santiago, Chile
| | | | - Anirudha V. Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Babak Anasori
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology and Integrated Nanosystems Development Institute, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Vadym N. Mochalin
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
5
|
Wang R, Sun C, Yan X, Guo T, Xiang W, Yang Z, Yu Q, Yu B, Cai M, Zhou F. Influence of the molecular structure on the tribological properties of choline-based ionic liquids as water-based additives under current-carrying lubrication. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Kozak A, Hofbauerová M, Halahovets Y, Pribusová-Slušná L, Precner M, Mičušík M, Orovčík L, Hulman M, Stepura A, Omastová M, Šiffalovič P, Ťapajna M. Nanofriction Properties of Mono- and Double-Layer Ti 3C 2T x MXenes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36815-36824. [PMID: 35921624 DOI: 10.1021/acsami.2c08963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Unique structure and ability to control the surface termination groups of MXenes make these materials extremely promising for solid lubrication applications. Due to the challenging delamination process, the tribological properties of two-dimensional MXenes particles have been mostly investigated as additive components in the solvents working in the macrosystem, while the understanding of the nanotribological properties of mono- and few-layer MXenes is still limited. Here, we investigate the nanotribological properties of mono- and double-layer Ti3C2Tx MXenes deposited by the Langmuir-Schaefer technique on SiO2/Si substrates. The friction of all of the samples demonstrated superior lubrication properties with respect to SiO2 substrate, while the friction force of the monolayers was found to be slightly higher compared to double- and three-layer flakes, which demonstrated similar friction. The coefficient of friction was estimated to be 0.087 ± 0.002 and 0.082 ± 0.003 for mono- and double-layer flakes, respectively. The viscous regime was suggested as the dominant friction mechanism at high scanning velocities, while the meniscus forces affected by contamination of the MXenes surface were proposed to control the friction at low sliding velocities.
Collapse
Affiliation(s)
- Andrii Kozak
- Centre for Advanced Materials Application SAS, Dúbravská cesta 9, Bratislava 845 11, Slovakia
| | - Monika Hofbauerová
- Centre for Advanced Materials Application SAS, Dúbravská cesta 9, Bratislava 845 11, Slovakia
- Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Yuriy Halahovets
- Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Lenka Pribusová-Slušná
- Centre for Advanced Materials Application SAS, Dúbravská cesta 9, Bratislava 845 11, Slovakia
- Institute of Electrical Engineering SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Marián Precner
- Institute of Electrical Engineering SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Matej Mičušík
- Polymer Institute SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - L'ubomír Orovčík
- Institute of Materials and Machine Mechanics SAS, Dúbravská cesta 9, 845 13 Bratislava, Slovakia
| | - Martin Hulman
- Institute of Electrical Engineering SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | | | - Mária Omastová
- Polymer Institute SAS, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Peter Šiffalovič
- Centre for Advanced Materials Application SAS, Dúbravská cesta 9, Bratislava 845 11, Slovakia
- Institute of Physics SAS, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| | - Milan Ťapajna
- Centre for Advanced Materials Application SAS, Dúbravská cesta 9, Bratislava 845 11, Slovakia
- Institute of Electrical Engineering SAS, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
7
|
Liu T, Lu H, Li C, Chen L, Feng Z. Excellent effect of lubrication performance of chitosan/polyethylene glycol/palygorskite as water‐based lubricating additive on 304 stainless steel and polymer pairs. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Liu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
- Taizhou Medical New & Hi‐tech industrial Development Zone Taizhou China
| | - Chengzhi Li
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| | - Lu Chen
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| | - Ziqin Feng
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| |
Collapse
|
8
|
Abstract
Applying nanomaterials and nanotechnology in lubrication has become increasingly popular and important to further reduce the friction and wear in engineering applications. To achieve green manufacturing and its sustainable development, water-based nanolubricants are emerging as promising alternatives to the traditional oil-containing lubricants that inevitably pose environmental issues when burnt and discharged. This review presents an overview of recent advances in water-based nanolubricants, starting from the preparation of the lubricants using different types of nanoadditives, followed by the techniques to evaluate and enhance their dispersion stability, and the commonly used tribo-testing methods. The lubrication mechanisms and models are discussed with special attention given to the roles of the nanoadditives. Finally, the applications of water-based nanolubricants in metal rolling are summarised, and the outlook for future research directions is proposed.
Collapse
|
9
|
Abstract
Water-based lubricants (WBLs) have been at the forefront of recent research, due to the abundant availability of water at a low cost. However, in metallic tribo-systems, WBLs often exhibit poor performance compared to petroleum-based lubricants. Research and development indicate that nano-additives improve the lubrication performance of water. Some of these additives could be categorized as solid nanoparticles, ionic liquids, and bio-based oils. These additives improve the tribological properties and help to reduce friction, wear, and corrosion. This review explored different water-based lubricant additives and summarized their properties and performances. Viscosity, density, wettability, and solubility are discussed to determine the viability of using water-based nano-lubricants compared to petroleum-based lubricants for reducing friction and wear in machining. Water-based liquid lubricants also have environmental benefits over petroleum-based lubricants. Further research is needed to understand and optimize water-based lubrication for tribological systems completely.
Collapse
|