1
|
Dong J, Ding H, Wang Q, Wang L. A 3D-Printed Scaffold for Repairing Bone Defects. Polymers (Basel) 2024; 16:706. [PMID: 38475389 DOI: 10.3390/polym16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/04/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
The treatment of bone defects has always posed challenges in the field of orthopedics. Scaffolds, as a vital component of bone tissue engineering, offer significant advantages in the research and treatment of clinical bone defects. This study aims to provide an overview of how 3D printing technology is applied in the production of bone repair scaffolds. Depending on the materials used, the 3D-printed scaffolds can be classified into two types: single-component scaffolds and composite scaffolds. We have conducted a comprehensive analysis of material composition, the characteristics of 3D printing, performance, advantages, disadvantages, and applications for each scaffold type. Furthermore, based on the current research status and progress, we offer suggestions for future research in this area. In conclusion, this review acts as a valuable reference for advancing the research in the field of bone repair scaffolds.
Collapse
Affiliation(s)
- Jianghui Dong
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Hangxing Ding
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Qin Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Liping Wang
- Guangxi Engineering Research Center of Digital Medicine and Clinical Translation, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
2
|
Pańtak P, Czechowska JP, Cichoń E, Zima A. Novel Double Hybrid-Type Bone Cements Based on Calcium Phosphates, Chitosan and Citrus Pectin. Int J Mol Sci 2023; 24:13455. [PMID: 37686268 PMCID: PMC10488044 DOI: 10.3390/ijms241713455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, the influence of the liquid phase composition on the physicochemical properties of double hybrid-type bone substitutes was investigated. The solid phase of obtained biomicroconcretes was composed of highly reactive α-tricalcium phosphate powder (α-TCP) and hybrid hydroxyapatite/chitosan granules (HA/CTS). Various combinations of disodium phosphate (Na2HPO4) solution and citrus pectin gel were used as liquid phases. The novelty of this study is the development of double-hybrid materials with a dual setting system. The double hybrid phenomenon is due to the interactions between polycationic polymer (chitosan in hybrid granules) and polyanionic polymer (citrus pectin). The chemical and phase composition (FTIR, XRD), setting times (Gillmore needles), injectability, mechanical strength, microstructure (SEM) and chemical stability in vitro were studied. The setting times of obtained materials ranged from 4.5 to 30.5 min for initial and from 7.5 to 55.5 min for final setting times. The compressive strength varied from 5.75 to 13.24 MPa. By incorporating citrus pectin into the liquid phase of the materials, not only did it enhance their physicochemical properties, but it also resulted in the development of fully injectable materials featuring a dual setting system. It has been shown that the properties of materials can be controlled by using the appropriate ratio of citrus pectin in the liquid phase.
Collapse
Affiliation(s)
- Piotr Pańtak
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| | - Joanna P. Czechowska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| | - Ewelina Cichoń
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Krakow, Poland
| |
Collapse
|
3
|
Kaya İ, Yakar H, Kesen E. Low-Cost 3-D-Printer-Assisted Personalized Cranioplasty Treatment: A Case Series of 14 Consecutive Patients. World Neurosurg 2023; 175:e1197-e1209. [PMID: 37121505 DOI: 10.1016/j.wneu.2023.04.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
OBJECTIVE The current study used polylactic acid molds [developed locally using three-dimensional printers and our software] and polymethyl methacrylate (PMMA) to perform cranioplasty of bone defects in technically demanding areas of the skull while ensuring ideal cosmetic results and functional recovery. The overall aim was to identify the ideal method for standard cranioplasty procedures METHODS: Polylactic acid duplicates of the skull defects were created for eligible patients, after which a two-part negative mold composed of plaster and silicone was used to form artificial bone with PMMA. Thereafter, cranioplasty was performed and the treatment success was assessed by evaluating the percentage of similarity objectively and the body image scale subjectively. RESULTS No surgical complications were seen to occur in the 14 patients included in the current study. Furthermore, the subjective and objective evaluation revealed a significant improvement in outcomes (p < 0.05). No postoperative complications were observed over a follow-up period of 6 months, except in 1 patient who exhibited late infection. CONCLUSIONS Cranioplasty operations were performed at an economical price of approximately US$50 dollars, suggesting that this method can be applied widely. Furthermore, preoperative preparation of the PMMA models can help reduce the duration of anesthesia and surgery which, in turn, will minimize the risk of surgical complications. Based on current knowledge in the field, we believe that this method represents the ideal technique.
Collapse
Affiliation(s)
- İsmail Kaya
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Neurosurgery, Niğde, Turkey.
| | - Hüseyin Yakar
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Neurosurgery, Niğde, Turkey
| | - Enes Kesen
- Kocaeli University, Faculty of Engineering, Department of Computer Engineering, Kocaeli, Turkey
| |
Collapse
|
4
|
Sivakumar NK, Palaniyappan S, Sekar V, Alodhayb A, Braim M. An optimization approach for studying the effect of lattice unit cell's design-based factors on additively manufactured poly methyl methacrylate cranio-implant. J Mech Behav Biomed Mater 2023; 141:105791. [PMID: 37004304 DOI: 10.1016/j.jmbbm.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
In craniomaxillofacial surgery the inclusion of lattice structure on the Cranio-implants for the surgical procedure of cranial defects is difficult. Additive manufacturing open ups a huge space for the development of intricate profiles for complex surgical practices. Designing lattice structures with various design topologies has gained more interest in the medical community for reducing the weight of the implants in the cranial region. This research proposes the mimicking of cranial defective portion concerning bone-like porous structure by means of Poly methyl methacrylate (PMMA) material via 3D printing technology. The experiments were optimized by incorporating square-type porous lattice structure in the development of cranial implants. The design-based factors of the unit cell were enhanced with the aid of the Design of experiments (DOE) technique. L9 orthogonal array is developed by incorporating various design-based factors of the lattice unit cell like unit cell size (mm), skewing angle (°), wall thickness (mm), and unit cell orientation (°). The experiments are optimized with respect to obtaining better compressive strength and compressive strength/density of the prepared lattice structure incorporated polymeric samples. The result shows that for obtaining the maximum compressive strength in the porous square lattice-structured PMMA compression samples will be a lower cell size of 2 mm, a higher skewing angle of 30°, a higher wall thickness of 1 mm, and a unit cell orientation of 90°. The experimental optimized condition results of the design-based factors achieve the maximum compressive strength and compressive strength/density of 83.37 MPa and 189.73 MPa/g mm-3. The lattice structure orientated with 90° has a significant contribution towards reducing the development of structural deviations of incorporating square lattice structure on the PMMA polymeric material. Therefore, the topologically modified square lattice structure incorporated 3D printed PMMA material has a potential scope for the replacement of conventional maxillofacial cranial implants.
Collapse
|
5
|
Repair of Cranial Defects in Rabbits with 3D-Printed Hydroxyapatite/Polylactic Acid Composites. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7562291. [PMID: 36624851 PMCID: PMC9825207 DOI: 10.1155/2022/7562291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/02/2023]
Abstract
Objective The safety and efficacy of three-dimensional- (3D-) printed hydroxyapatite/polylactic acid (HA-PLA) composites in repairing cranial defects were evaluated in a rabbit experimental model. Methods Twelve New Zealand rabbits were selected as experimental subjects. Two holes (A and B), each with a diameter of approximately 1 cm, were made in the cranium of each rabbit. Hole A served as the experimental manipulation, and hole B served as the control manipulation. A 3D-printed HA-PLA composite was used for placement onto hole A, whereas autologous bone powder was used for placement onto hole B. Samples from the experimental holes and the control holes were collected at 30 and 90 days after surgery. The obtained materials were examined in terms of their morphologies and histopathologies and were also subjected to simultaneous hardness tests. Results Both the 3D-printed HA-PLA composite and autologous bone powder were able to repair and fill the cranial defects at 30 days and 90 days after surgery. At 30 days after surgery, the microhardness of the area repaired by the HA-PLA composite was lower than that of the area repaired by autogenous bone powder (p < 0.01), but neither of these treatments reached the hardness of normal bone at this time (p < 0.01). At 90 days after surgery, there was no statistically significant difference in the microhardness of the repaired area from the 3D-printed HA-PLA composite compared with that of the repaired area from autologous bone powder (p > 0.05), and there was no statistically significant difference in the hardness of the two repaired areas compared with that of the normal bone (p > 0.05). Hematoxylin-eosin staining showed that bone cells in the HA-PLA material in the experimental group grew and were arranged in an orderly manner. Bone trabeculae and marrow cavities were formed on the pore surface and inside of the HA-PLA scaffold, and the arrangement of bone trabeculae was regular. Conclusion 3D-printed HA-PLA composites can induce bone regeneration, are biocompatible, have the same strength as autologous bone powder, are able to degrade, and are ultimately safe and effective for repairing cranial defects in rabbits. However, further research is needed to determine the feasibility of 3D-printed HA-PLA composites in human cranioplasty.
Collapse
|
6
|
Czyżewski W, Jachimczyk J, Hoffman Z, Szymoniuk M, Litak J, Maciejewski M, Kura K, Rola R, Torres K. Low-Cost Cranioplasty-A Systematic Review of 3D Printing in Medicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4731. [PMID: 35888198 PMCID: PMC9315853 DOI: 10.3390/ma15144731] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 11/22/2022]
Abstract
The high cost of biofabricated titanium mesh plates can make them out of reach for hospitals in low-income countries. To increase the availability of cranioplasty, the authors of this work investigated the production of polymer-based endoprostheses. Recently, cheap, popular desktop 3D printers have generated sufficient opportunities to provide patients with on-demand and on-site help. This study also examines the technologies of 3D printing, including SLM, SLS, FFF, DLP, and SLA. The authors focused their interest on the materials in fabrication, which include PLA, ABS, PET-G, PEEK, and PMMA. Three-dimensional printed prostheses are modeled using widely available CAD software with the help of patient-specific DICOM files. Even though the topic is insufficiently researched, it can be perceived as a relatively safe procedure with a minimal complication rate. There have also been some initial studies on the costs and legal regulations. Early case studies provide information on dozens of patients living with self-made prostheses and who are experiencing significant improvements in their quality of life. Budget 3D-printed endoprostheses are reliable and are reported to be significantly cheaper than the popular counterparts manufactured from polypropylene polyester.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland; (W.C.); (K.T.)
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Jakub Jachimczyk
- Student Scientific Society, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Zofia Hoffman
- Student Scientific Society, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Michał Szymoniuk
- Student Scientific Association of Neurosurgery, Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marcin Maciejewski
- Department of Electronics and Information Technology, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Krzysztof Kura
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery in Lublin, 20-090 Lublin, Poland; (J.L.); (K.K.); (R.R.)
| | - Kamil Torres
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-093 Lublin, Poland; (W.C.); (K.T.)
| |
Collapse
|
7
|
3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. J Funct Biomater 2022; 13:jfb13020075. [PMID: 35735931 PMCID: PMC9225379 DOI: 10.3390/jfb13020075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800-2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels.
Collapse
|
8
|
Tor-Świątek A, Garbacz T, Stloukal P. Analysis of Selected Properties of Microporous PLA as a Result of Abiotic Degradation. MATERIALS 2022; 15:ma15093133. [PMID: 35591467 PMCID: PMC9101509 DOI: 10.3390/ma15093133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023]
Abstract
In the study, an investigation was made into the hydrolytic degradation behavior of the microporous polylactide (PLA) in the initial stage in three biological buffer solutions with various pH-simulating body fluids in comparison with pure PLA. Studies also include the analysis of selected mechanical properties and physical structures. A microporous PLA was obtained by melt extrusion using a chemical blowing agent. The rate of Mw decrease induced by hydrolysis over 35 days of microporous PLA was roughly comparable to the pure material. The rate of depolymerization was slightly accelerated at an acid pH due to acid-catalyzed hydrolysis at the end of the observed period. The mechanical analysis showed the influence of various pH on the obtained results.
Collapse
Affiliation(s)
- Aneta Tor-Świątek
- Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka, Str., 20-816 Lublin, Poland;
| | - Tomasz Garbacz
- Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka, Str., 20-816 Lublin, Poland;
- Correspondence:
| | - Petr Stloukal
- Centre of Polymer Systems, Tomas Bata University in Zlin, Tř. T. Bati 5678, 760 01 Zlin, Czech Republic;
| |
Collapse
|
9
|
Influence of Different Nanometals Implemented in PMMA Bone Cement on Biological and Mechanical Properties. NANOMATERIALS 2022; 12:nano12050732. [PMID: 35269220 PMCID: PMC8911740 DOI: 10.3390/nano12050732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023]
Abstract
Cemented arthroplasty is a common process to fix prostheses when a patient becomes older and his/her bone quality deteriorates. The applied cements are biocompatible, can transfer loads, and dampen vibrations, but do not provide antibacterial protection. The present work is aimed at the development of cement with antibacterial effectivity achieved with the implementation of nanoparticles of different metals. The powders of Ag, Cu with particles size in a range of 10–30 nm (Cu10) and 70–100 nm (Cu70), AgCu, and Ni were added to PMMA cement. Their influence on compression strength, wettability, and antibacterial properties of cement was assessed. The surface topography of samples was examined with biological and scanning electron microscopy. The mechanical properties were determined by compression tests. A contact angle was observed with a goniometer. The biological tests included an assessment of cytotoxicity (XTT test on human cells Saos-2 line) and bacteria viability exposure (6 months). The cements with Ag and Cu nanopowders were free of bacteria. For AgCu and Ni nanoparticles, the bacterial solution became denser over time and, after 6 months, the bacteria clustered into conglomerates, creating a biofilm. All metal powders in their native form in direct contact reduce the number of eukaryotic cells. Cell viability is the least limited by Ag and Cu particles of smaller size. All samples demonstrated hydrophobic nature in the wettability test. The mechanical strength was not significantly affected by the additions of metal powders. The nanometal particles incorporated in PMMA-based bone cement can introduce long-term resistance against bacteria, not resulting in any serious deterioration of compression strength.
Collapse
|
10
|
Effect of Different Filler Contents and Printing Directions on the Mechanical Properties for Photopolymer Resins. Int J Mol Sci 2022; 23:ijms23042296. [PMID: 35216411 PMCID: PMC8874542 DOI: 10.3390/ijms23042296] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Photopolymer resins are widely used in the production of dental prostheses, but their mechanical properties require improvement. We evaluated the effects of different zirconia filler contents and printing directions on the mechanical properties of photopolymer resin. Three-dimensional (3D) printing was used to fabricate specimens using composite photopolymers with 0 (control), 3, 5, and 10 wt.% zirconia filler. Two printing directions for fabricating rectangular specimens (25 mm × 2 mm × 2 mm) and disk-shaped specimens (φ10 mm × 2 mm) were used, 0° and 90°. Three-point bending tests were performed to determine the flexural strengths and moduli of the specimens. The Vickers hardness test was performed to determine the hardness of the specimens. Tukey’s multiple comparison tests were performed on the average values of the flexural strengths, elastic moduli, and Vickers hardness after one-way ANOVA (α = 0.05). The flexural strengths and elastic moduli at 0° from high to low were in the order of 0, 3, 10, and 5 wt.%, and those at 90° were in the order of 3, 0, 10, and 5 wt.% (p < 0.05). For 5 and 10 wt.%, no significant differences were observed in mechanical properties at 0° and 90° (p < 0.05). The Vickers hardness values at 0° and 90° from low to high were in the order of 0, 3, 5, and 10 wt.% (p < 0.05). Within the limits of this study, the optimal zirconia filler content in the photopolymer resin for 3D printing was 0 wt.% at 0° and 3 wt.% at 90°.
Collapse
|
11
|
Mechanical Behaviour Evaluation of Porous Scaffold for Tissue-Engineering Applications Using Finite Element Analysis. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6020046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In recent years, finite element analysis (FEA) models of different porous scaffold shapes consisting of various materials have been developed to predict the mechanical behaviour of the scaffolds and to address the initial goals of 3D printing. Although mechanical properties of polymeric porous scaffolds are determined through FEA, studies on the polymer nanocomposite porous scaffolds are limited. In this paper, FEA with the integration of material designer and representative volume elements (RVE) was carried out on a 3D scaffold model to determine the mechanical properties of boron nitride nanotubes (BNNTs)-reinforced gelatin (G) and alginate (A) hydrogel. The maximum stress regions were predicted by FEA stress distribution. Furthermore, the analysed material model and the boundary conditions showed minor deviation (4%) compared to experimental results. It was noted that the stress regions are detected at the zone close to the pore areas. These results indicated that the model used in this work could be beneficial in FEA studies on 3D-printed porous structures for tissue engineering applications.
Collapse
|
12
|
Mechanical Strength Study of a Cranial Implant Using Computational Tools. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human head is sometimes subjected to impact loads that lead to skull fracture or other injuries that require the removal of part of the skull, which is called craniectomy. Consequently, the removed portion is replaced using autologous bone or alloplastic material. The aim of this work is to develop a cranial implant to fulfil a defect created on the skull and then study its mechanical performance by integrating it on a human head finite element model. The material chosen for the implant was PEEK, a thermoplastic polymer that has been recently used in cranioplasty. A6 numerical model head coupled with an implant was subjected to analysis to evaluate two parameters: the number of fixation screws that enhance the performance and ensure the structural integrity of the implant, and the implant’s capacity to protect the brain compared to the integral skull. The main findings point to the fact that, among all tested configurations of screws, the model with eight screws presents better performance when considering the von Mises stress field and the displacement field on the interface between the implant and the skull. Additionally, under the specific analyzed conditions, it is observable that the model with the implant offers more efficient brain protection when compared with the model with the integral skull.
Collapse
|
13
|
Chu J, Li C, Guo J, Xu Y, Fu Y. Preparation of new bio-based antibacterial acrylic bone cement via modification with a biofunctional monomer of nitrofurfuryl methacrylate. Polym Chem 2022. [DOI: 10.1039/d2py00235c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The new bio-based antibacterial p(NFMA-co-MMA) bone cement exhibits excellent antibacterial performance in the treatment of osteoporotic vertebral compression fracture.
Collapse
Affiliation(s)
- Jianjun Chu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- The Second People's Hospital of Hefei, Hefei 230011, China
| | - Chuang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China
| | - Jing Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yang Xu
- The Second People's Hospital of Hefei, Hefei 230011, China
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230000, China
| | - Yao Fu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Additives Imparting Antimicrobial Properties to Acrylic Bone Cements. MATERIALS 2021; 14:ma14227031. [PMID: 34832430 PMCID: PMC8622877 DOI: 10.3390/ma14227031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/16/2022]
Abstract
PMMA bone cements are mainly used to fix implanted prostheses and are introduced as a fluid mixture, which hardens over time. The problem of infected prosthesis could be solved due to the development of some new antibacterial bone cements. In this paper, we show the results obtained to develop four different modified PMMA bone cements by using antimicrobial additives, such as gentamicin, peppermint oil incorporated in hydroxyapatite, and silver nanoparticles incorporated in a ceramic glass matrix (2 and 4%). The structure and morphology of the modified bone cements were investigated by SEM and EDS. We perform experimental measurements on wettability, hydration degree, and degradation degree after immersion in simulated body fluid. The cytotoxicity was evaluated by MTT assay using the human MG-63 cell line. Antimicrobial properties were checked against standard strains Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The addition of antimicrobial agents did not significantly affect the hydration and degradation degree. In terms of biocompatibility assessed by the MTT test, all experimental PMMA bone cements are biocompatible. The performance of bone cements with peppermint essential oil and silver nanoparticles against these two pathogens suggests that these antibacterial additives look promising to be used in clinical practice against bacterial infection.
Collapse
|
15
|
Bonferoni MC, Caramella C, Catenacci L, Conti B, Dorati R, Ferrari F, Genta I, Modena T, Perteghella S, Rossi S, Sandri G, Sorrenti M, Torre ML, Tripodo G. Biomaterials for Soft Tissue Repair and Regeneration: A Focus on Italian Research in the Field. Pharmaceutics 2021; 13:pharmaceutics13091341. [PMID: 34575417 PMCID: PMC8471088 DOI: 10.3390/pharmaceutics13091341] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/22/2022] Open
Abstract
Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.
Collapse
Affiliation(s)
| | | | | | - Bice Conti
- Correspondence: (M.C.B.); (B.C.); (F.F.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wang Y, Zhang W, Yao Q. Copper-based biomaterials for bone and cartilage tissue engineering. J Orthop Translat 2021; 29:60-71. [PMID: 34094859 PMCID: PMC8164005 DOI: 10.1016/j.jot.2021.03.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Backgroud Tissue engineering using cells, scaffolds, and bioactive molecules can promote the repair and regeneration of injured tissues. Copper is an essential element for the human body that is involved in many physiological activities and in recent years, copper has been used increasingly in tissue engineering. Methods The current advances of copper-based biomaterial for bone and cartilage tissue engineering were searched on PubMed and Web of Science. Results Various forms of copper-based biomaterials, including pure copper, copper ions, copper nanoparticles, copper oxides, and copper alloy are introduced. The incorporation of copper into base materials provides unique properties, resulting in tuneable porosity, mechanical strength, degradation, and crosslinking of scaffolds. Copper also shows promising biological performance in cell migration, cell adhesion, osteogenesis, chondrogenesis, angiogenesis, and antibacterial activities. In vivo applications of copper for bone and cartilage tissue engineering are discussed. Conclusion This review focuses on copper’s physiochemical and biological effects, and its applications in bone and cartilage tissue engineering. The potential limitations and future perspectives are also discussed. Translational potential of this article This review introduces the recent advances in copper-based biomaterial for bone and cartilage tissue engineering. This revie could guide researchers to apply copper in biomaterials, improving the generation of bone and cartilages, decrease the possibility of infection and shorten the recovery time so as to decrease medical costs.
Collapse
Affiliation(s)
- Yufeng Wang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.,China Orthopedic Regenerative Medicine Group (CORMed), China
| |
Collapse
|
17
|
Siracusa V, Maimone G, Antonelli V. State-of-Art of Standard and Innovative Materials Used in Cranioplasty. Polymers (Basel) 2021; 13:1452. [PMID: 33946170 PMCID: PMC8124570 DOI: 10.3390/polym13091452] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Cranioplasty is the surgical technology employed to repair a traumatic head injury, cerebrovascular disease, oncology resection and congenital anomalies. Actually, different bone substitutes are used, either derived from biological products such as hydroxyapatite and demineralized bone matrix or synthetic ones such as sulfate or phosphate ceramics and polymer-based substitutes. Considering that the choice of the best material for cranioplasty is controversial, linked to the best operation procedure, the intent of this review was to report the outcome of research conducted on materials used for such applications, comparing the most used materials. The most interesting challenge is to preserve the mechanical properties while improving the bioactivity, porosity, biocompatibility, antibacterial properties, lowering thickness and costs. Among polymer materials, polymethylmethacrylate and polyetheretherketone are the most motivating, due to their biocompatibility, rigidity and toughness. Other biomaterials, with ecofriendly attributes, such as polycaprolactone and polylactic acid have been investigated, due to their microstructure that mimic the trabecular bone, encouraging vascularization and cell-cell communications. Taking into consideration that each material must be selected for specific clinical use, the main limitation remains the defects and the lack of vascularization, consequently porous synthetic substitutes could be an interesting way to support a faster and wider vascularization, with the aim to improve patient prognosis.
Collapse
Affiliation(s)
- Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Giuseppe Maimone
- Department of Neurosurgery, Hospital M. Bufalini—AUSL della Romagna, Viale Ghirotti 286, 47521 Cesena, Italy; (G.M.); (V.A.)
| | - Vincenzo Antonelli
- Department of Neurosurgery, Hospital M. Bufalini—AUSL della Romagna, Viale Ghirotti 286, 47521 Cesena, Italy; (G.M.); (V.A.)
| |
Collapse
|
18
|
Preparation of antibacterial acrylic bone cement with methacrylate derived from benzothiazole. J Mech Behav Biomed Mater 2021; 117:104403. [PMID: 33621864 DOI: 10.1016/j.jmbbm.2021.104403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022]
Abstract
Methacrylate derived from benzothiazole (BTTMA) was incorporated into acrylic bone cement with a series of mass ratio (5 wt%, 10 wt%, and 15 wt%) with the aim to endow antibacterial activity. Properties such as dough time (tdough), setting time (tset), maximum temperature (Tpeak), fluid uptake, water solubility, mechanical properties, and biocompatibility of BTTMA containing bone cements were all investigated. Bone cement without BTTMA was used as control and named as plain cement. The results showed that, after incorporating BTTMA, tdough, flexural modulus, compressive strength of bone cements could be increased, while tset, Tpeak, fluid uptake, water solubility, and flexural strength would be reduced. All of BTTMA containing bone cements did not show hemolytic activity and cell toxicity, but only bone cement with 15 wt% of BTTMA showed antibacterial activity against Staphylococcus aureus (S. aureus).
Collapse
|