1
|
Galati M, Gatto ML, Bloise N, Fassina L, Saboori A, Visai L, Mengucci P, Iuliano L. Electron Beam Powder Bed Fusion of Ti-48Al-2Cr-2Nb Open Porous Scaffold for Biomedical Applications: Process Parameters, Adhesion, and Proliferation of NIH-3T3 Cells. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:314-322. [PMID: 38389689 PMCID: PMC10880641 DOI: 10.1089/3dp.2022.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Titanium aluminide (TiAl)-based intermetallics, especially Ti-48Al-2Cr-2Nb, are a well-established class of materials for producing bulky components using the electron beam powder bed fusion (EB-PBF) process. The biological properties of Ti-48Al-2Cr-2Nb alloy have been rarely investigated, specifically using complex cellular structures. This work investigates the viability and proliferation of NIH-3T3 fibroblasts on Ti-48Al-2Cr-2Nb dodecahedral open scaffolds manufactured by the EB-PBF process. A process parameter optimization is carried out to produce a fully dense part. Then scaffolds are produced and characterized using different techniques, including scanning electron microscopy and X-ray tomography. In vitro viability tests are performed with NIH-3T3 cells after incubation for 1, 4, and 7 days. The results show that Ti-48Al-2Cr-2Nb represents a promising new entry in the biomaterial field.
Collapse
Affiliation(s)
- Manuela Galati
- Department of Management and Production Engineering (DIGEP), Integrated Additive Manufacturing Center (IAM)—Politecnico di Torino, Torino, Italy
| | - Maria Laura Gatto
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica (SIMAU)—Università Politecnica delle Marche, Ancona, Italy
| | - Nora Bloise
- Department of Molecular Medicine (DMM), Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DII), Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Abdollah Saboori
- Department of Management and Production Engineering (DIGEP), Integrated Additive Manufacturing Center (IAM)—Politecnico di Torino, Torino, Italy
| | - Livia Visai
- Department of Molecular Medicine (DMM), Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, Pavia, Italy
- Department of Electrical, Computer and Biomedical Engineering (DII), Centre for Health Technologies (CHT), University of Pavia, Pavia, Italy
| | - Paolo Mengucci
- Dipartimento di Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica (SIMAU)—Università Politecnica delle Marche, Ancona, Italy
| | - Luca Iuliano
- Department of Management and Production Engineering (DIGEP), Integrated Additive Manufacturing Center (IAM)—Politecnico di Torino, Torino, Italy
| |
Collapse
|
2
|
Restivo E, Pugliese D, Gallichi-Nottiani D, Sammartino JC, Bloise N, Peluso E, Percivalle E, Janner D, Milanese D, Visai L. Effect of Low Copper Doping on the Optical, Cytocompatible, Antibacterial, and SARS-CoV-2 Trapping Properties of Calcium Phosphate Glasses. ACS OMEGA 2023; 8:42264-42274. [PMID: 38024754 PMCID: PMC10652837 DOI: 10.1021/acsomega.3c04293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.
Collapse
Affiliation(s)
- Elisa Restivo
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Diego Pugliese
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | | | - José Camilla Sammartino
- Department
of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia27100,Italy
| | - Nora Bloise
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| | - Emanuela Peluso
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
| | - Elena Percivalle
- Molecular
Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia27100,Italy
| | - Davide Janner
- Department
of Applied Science and Technology, UdR INSTM, Politecnico di Torino, Torino10129,Italy
| | - Daniel Milanese
- Department
of Engineering and Architecture, UdR INSTM, University of Parma, Parma43121,Italy
| | - Livia Visai
- Department
of Molecular Medicine, Center for Health Technologies, UdR INSTM, University of Pavia, Pavia27100,Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia27100,Italy
| |
Collapse
|
3
|
Gatto ML, Cerqueni G, Groppo R, Tognoli E, Santoni A, Cabibbo M, Mattioli-Belmonte M, Mengucci P. On the Biomechanical Performances of Duplex Stainless Steel Graded Scaffolds Produced by Laser Powder Bed Fusion for Tissue Engineering Applications. J Funct Biomater 2023; 14:489. [PMID: 37888154 PMCID: PMC10607882 DOI: 10.3390/jfb14100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
This experimental study aims to extend the know-how on biomechanical performances of duplex stainless steel (DSS) for tissue engineering applications to a graded lattice geometry scaffold based on the F53 DSS (UNS S32750 according to ASTM A182) produced by laser powder bed fusion (LPBF). The same dense-out graded geometry based on rhombic dodecahedral elementary unit cells investigated in previous work on 316L stainless steel (SS) was adopted here for the manufacturing of the F53 DSS scaffold (SF53). Microstructural characterization and mechanical and biological tests were carried out on the SF53 scaffold, using the in vitro behavior of the 316L stainless steel scaffold (S316L) as a control. Results show that microstructure developed as a consequence of different volume energy density (VED) values is mainly responsible for the different mechanical behaviors of SF53 and S316L, both fabricated using the same LPBF manufacturing system. Specifically, the ultimate compressive strength (σUC) and elastic moduli (E) of SF53 are three times and seven times higher than S316L, respectively. Moreover, preliminary biological tests evidenced better cell viability in SF53 than in S316L already after seven days of culture, suggesting SF53 with dense-out graded geometry as a viable alternative to 316L SS for bone tissue engineering applications.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.L.G.); (A.S.); (M.C.)
| | - Giorgia Cerqueni
- Department DISCLIMO & UdR INSTM, Marche Polytechnic University, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Riccardo Groppo
- 3D4MEC S.r.l., Via Porrettana 48, 40037 Sasso Marconi, Italy;
| | - Emanuele Tognoli
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy;
| | - Alberto Santoni
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.L.G.); (A.S.); (M.C.)
| | - Marcello Cabibbo
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Marche Polytechnic University, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.L.G.); (A.S.); (M.C.)
| | - Monica Mattioli-Belmonte
- Department DISCLIMO & UdR INSTM, Marche Polytechnic University, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Paolo Mengucci
- Department SIMAU & UdR INSTM, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| |
Collapse
|
4
|
Gatto ML, Cerqueni G, Groppo R, Santecchia E, Tognoli E, Defanti S, Mattioli-Belmonte M, Mengucci P. Improved biomechanical behavior of 316L graded scaffolds for bone tissue regeneration produced by laser powder bed fusion. J Mech Behav Biomed Mater 2023; 144:105989. [PMID: 37369172 DOI: 10.1016/j.jmbbm.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
Graded lattice scaffolds based on rhombic dodecahedral (RD) elementary unit cell geometry were manufactured in 316L stainless steel (SS) by laser powder bed fusion (LPBF). Two different strategies based on varying strut thickness layer-by-layer in the building direction were adopted to obtain the graded scaffolds: a) decreasing strut size from core to edge to produce the dense-in (DI) structure and b) increasing strut size in the same direction to produce the dense-out (DO) structure. Both graded structures (DI and DO) were constructed with specular symmetry with respect to the central horizontal axis. Structural, mechanical, and biological characterizations were carried out to evaluate feasibility of designing appropriate biomechanical performances of graded scaffolds in the perspective of bone tissue regeneration. Results showed that mechanical behavior is governed by graded geometry, while printing parameters influence structural properties of the material such as density, textures, and crystallographic phases. The predominant failure mechanism in graded structures initiates in correspondence of thinner struts, due to high stress concentrations on strut junctions. Biological tests evidenced better proliferation of cells in the DO graded scaffold, which in turn exhibits mechanical properties close to cortical bone. The combined control of grading strategy, printing parameters and elementary unit cell geometry can enable implementing scaffolds with improved biomechanical performances for bone tissue regeneration.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department DIISM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy.
| | - Giorgia Cerqueni
- Department DISCLIMO & UdR INSTM, Università Politecnica Delle Marche, Via Tronto 10/a, Ancona, 60126, Italy
| | - Riccardo Groppo
- 3D4MEC S.r.l, Via Porrettana 48, 40037, Sasso Marconi, BO, Italy
| | - Eleonora Santecchia
- Department DIISM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| | - Emanuele Tognoli
- Department of Engineering "Enzo Ferrari", Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy
| | - Silvio Defanti
- Department of Engineering "Enzo Ferrari", Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy
| | - Monica Mattioli-Belmonte
- Department DISCLIMO & UdR INSTM, Università Politecnica Delle Marche, Via Tronto 10/a, Ancona, 60126, Italy
| | - Paolo Mengucci
- Department SIMAU & UdR INSTM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131, Ancona, Italy
| |
Collapse
|
5
|
Matsko A, Shaker N, Fernandes ACBCJ, Haimeur A, França R. Nanoscale Chemical Surface Analyses of Recycled Powder for Direct Metal Powder Bed Fusion Ti-6Al-4V Root Analog Dental Implant: An X-ray Photoelectron Spectroscopy Study. Bioengineering (Basel) 2023; 10:379. [PMID: 36978770 PMCID: PMC10045388 DOI: 10.3390/bioengineering10030379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Over the past couple of decades, additive manufacturing and the use of root-analogue-printed titanium dental implants have been developed. Not all powder particles are sintered into the final product during the additive manufacturing process. Reuse of the remaining powder could reduce the overall implant manufacturing cost. However, Ti-6Al-4V powder particles are affected by heat, mechanical factors, and oxidization during the powder bed fusion manufacturing process. Degradation of the powder may harm the final surface composition and decrease the biocompatibility and survival of the implant. The uncertainty of the recycled powder properties prevents implant fabrication facilities from reusing the powder. This study investigates the chemical composition of controlled, clean, and recycled titanium alloy powder and root-analogue implants (RAI) manufactured from these powders at three different depths. The change in titanium's quantity, oxidization state, and chemical composition in powder and RAI implants have been demonstrated and analyzed. While not identical, the surface chemical composition of the recycled powder implant and the implant manufactured from unused powder are similar. The results also indicate the presence of TiO2 on all surfaces. Many studies confirmed that titanium dioxide on the implant's surface correlates with better osteointegration, reduced bacterial infection, and increased corrosion resistance. Considering economic and environmental aspects, surface chemical composition comparison of clean and reused powder is crucial for the future manufacturing of cost-effective and biocompatible implants.
Collapse
Affiliation(s)
- Anastasia Matsko
- Biomedical Engineering Program, Faculty of Engineering University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Nader Shaker
- Department of Restorative Dentistry, College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | | | - Asmaa Haimeur
- Department of Restorative Dentistry, College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Rodrigo França
- Department of Restorative Dentistry, College of Dentistry, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
6
|
Gatto ML, Cerqueni G, Furlani M, Riberti N, Tognoli E, Denti L, Leonardi F, Giuliani A, Mattioli-Belmonte M, Mengucci P. Influence of Trabecular Geometry on Scaffold Mechanical Behavior and MG-63 Cell Viability. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2342. [PMID: 36984222 PMCID: PMC10056383 DOI: 10.3390/ma16062342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In a scaffold-based approach for bone tissue regeneration, the control over morphometry allows for balancing scaffold biomechanical performances. In this experimental work, trabecular geometry was obtained by a generative design process, and scaffolds were manufactured by vat photopolymerization with 60% (P60), 70% (P70) and 80% (P80) total porosity. The mechanical and biological performances of the produced scaffolds were investigated, and the results were correlated with morphometric parameters, aiming to investigate the influence of trabecular geometry on the elastic modulus, the ultimate compressive strength of scaffolds and MG-63 human osteosarcoma cell viability. The results showed that P60 trabecular geometry allows for matching the mechanical requirements of human mandibular trabecular bone. From the statistical analysis, a general trend can be inferred, suggesting strut thickness, the degree of anisotropy, connectivity density and specific surface as the main morphometric parameters influencing the biomechanical behavior of trabecular scaffolds, in the perspective of tissue engineering applications.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department DIISM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Giorgia Cerqueni
- Department DISCLIMO & UdR INSTM, Università Politecnica Delle Marche, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Michele Furlani
- Department DISCO, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.F.); (A.G.)
| | - Nicole Riberti
- Neurosciences Imaging and Clinical Sciences Department, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Emanuele Tognoli
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy; (E.T.); (L.D.)
| | - Lucia Denti
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy; (E.T.); (L.D.)
| | | | - Alessandra Giuliani
- Department DISCO, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy; (M.F.); (A.G.)
| | - Monica Mattioli-Belmonte
- Department DISCLIMO & UdR INSTM, Università Politecnica Delle Marche, Via Tronto 10/a, 60126 Ancona, Italy; (G.C.); (M.M.-B.)
| | - Paolo Mengucci
- Department SIMAU & UdR INSTM, Università Politecnica Delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| |
Collapse
|
7
|
Gatto ML, Mengucci P, Munteanu D, Nasini R, Tognoli E, Denti L, Gatto A. Beads for Cell Immobilization: Comparison of Alternative Additive Manufacturing Techniques. Bioengineering (Basel) 2023; 10:bioengineering10020150. [PMID: 36829644 PMCID: PMC9951852 DOI: 10.3390/bioengineering10020150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
The attachment or entrapment of microbial cells and enzymes are promising solutions for various industrial applications. When the traps are beads, they are dispersed in a fluidized bed in a vessel where a pump guarantees fresh liquid inflow and waste outflow without washing out the cells. Scientific papers report numerous types of cell entrapment, but most of their applications remain at the laboratory level. In the present research, rigid polymer beads were manufactured by two different additive manufacturing (AM) techniques in order to verify the economy, reusability, and stability of the traps, with a view toward a straightforward industrial application. The proposed solutions allowed for overcoming some of the drawbacks of traditional manufacturing solutions, such as the limited mechanical stability of gel traps, and they guaranteed the possibility of producing parts of constant quality with purposely designed exchange surfaces, which are unfeasible when using conventional processes. AM proved to be a viable manufacturing solution for beads with complex shapes of two different size ranges. A deep insight into the production and characteristics of beads manufactured by AM is provided. The paper provides biotechnologists with a manufacturing perspective, and the results can be directly applied to transit from the laboratory to the industrial scale.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department DIISM, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Paolo Mengucci
- Department SIMAU, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy
| | - Daniel Munteanu
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania
| | - Roberto Nasini
- Prosilas S.r.l., Via Terracini 14, 60212 Civitanova Marche (MC), Italy
| | - Emanuele Tognoli
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
- Correspondence:
| | - Lucia Denti
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Andrea Gatto
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| |
Collapse
|
8
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
9
|
Calin BS, Paun IA. A Review on Stimuli-Actuated 3D Micro/Nanostructures for Tissue Engineering and the Potential of Laser-Direct Writing via Two-Photon Polymerization for Structure Fabrication. Int J Mol Sci 2022; 23:14270. [PMID: 36430752 PMCID: PMC9699325 DOI: 10.3390/ijms232214270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In this review, we present the most recent and relevant research that has been done regarding the fabrication of 3D micro/nanostructures for tissue engineering applications. First, we make an overview of 3D micro/nanostructures that act as backbone constructs where the seeded cells can attach, proliferate and differentiate towards the formation of new tissue. Then, we describe the fabrication of 3D micro/nanostructures that are able to control the cellular processes leading to faster tissue regeneration, by actuation using topographical, mechanical, chemical, electric or magnetic stimuli. An in-depth analysis of the actuation of the 3D micro/nanostructures using each of the above-mentioned stimuli for controlling the behavior of the seeded cells is provided. For each type of stimulus, a particular recent application is presented and discussed, such as controlling the cell proliferation and avoiding the formation of a necrotic core (topographic stimulation), controlling the cell adhesion (nanostructuring), supporting the cell differentiation via nuclei deformation (mechanical stimulation), improving the osteogenesis (chemical and magnetic stimulation), controlled drug-delivery systems (electric stimulation) and fastening tissue formation (magnetic stimulation). The existing techniques used for the fabrication of such stimuli-actuated 3D micro/nanostructures, are briefly summarized. Special attention is dedicated to structures' fabrication using laser-assisted technologies. The performances of stimuli-actuated 3D micro/nanostructures fabricated by laser-direct writing via two-photon polymerization are particularly emphasized.
Collapse
Affiliation(s)
- Bogdan Stefanita Calin
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
- Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania
- Faculty of Applied Sciences, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
10
|
Derimow N, Gorham JM, Martin ML, Benzing JT, White RM, Hrabe N. Surface chemistry in Ti-6Al-4V feedstock as influenced by powder reuse in electron beam additive manufacturing. APPLIED SURFACE SCIENCE 2022; 602:10.1016/j.apsusc.2022.154280. [PMID: 36751653 PMCID: PMC9901169 DOI: 10.1016/j.apsusc.2022.154280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
X-ray photoelectron spectroscopy (XPS) as well as scanning and transmission electron microscopy (SEM/TEM) analysis was carried out on four Ti-6Al-4V powders used in electron beam powder-bed fusion (PBF-EB) production environments: virgin low oxygen (0.080 wt% O), reused medium oxygen (0.140 wt% O), reused high oxygen (0.186 wt% O), and virgin high oxygen (0.180 wt% O). The two objectives of this comparative analyses were to (1) investigate high oxygen containing Grade 23 Ti-6Al-4V powders which were further oxidized as a function of reuse and (2) comparing the two virgin Grade 23 and Grade 5 powders of similar oxygen content. The microstructure of the low oxygen virgin Grade 23 powder was consistent with martensitic α' microstructure, whereas the reused powder displayed tempered α/β Widmänstatten microstructure. XPS revealed a decrease in TiO2 at the surface of the reused powders with an increase in Al2O3. This trend is energetically favorable at the temperatures and pressures in PBF-EB machines, and it is consistent with the thermodynamics of Al2O3 vs. TiO2 reactions. An unexpected amount of nitrogen was measured on the titanium powder, with a general increase in nitride on the surface of the particles as a function of reuse in the Grade 23 powder.
Collapse
Affiliation(s)
- Nicholas Derimow
- Applied Chemicals and Materials Division, NIST, 325 Broadway, Boulder, CO 80305, USA
| | - Justin M. Gorham
- Materials Measurement Science Division, NIST, 100 Bureau Dr., Gaithersburg, MD 20899, USA
| | - May L. Martin
- Applied Chemicals and Materials Division, NIST, 325 Broadway, Boulder, CO 80305, USA
| | - Jake T. Benzing
- Applied Chemicals and Materials Division, NIST, 325 Broadway, Boulder, CO 80305, USA
| | - Ryan M. White
- Applied Chemicals and Materials Division, NIST, 325 Broadway, Boulder, CO 80305, USA
| | - Nikolas Hrabe
- Applied Chemicals and Materials Division, NIST, 325 Broadway, Boulder, CO 80305, USA
| |
Collapse
|
11
|
Reconditioning by Welding of Prosthesis Obtained through Additive Manufacturing. METALS 2022. [DOI: 10.3390/met12071177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biocompatible titanium alloys are increasingly being used to make custom medical implants using additive manufacturing processes. This paper considered the welding reconditioning of a titanium-alloy customized additive manufactured hip implant with several manufacturing defects. The personalized implants are made starting from a Computer-Aided Design (CAD) model as a direct result from the medical imaging investigations of the areas of interest. Then the customized implant is fabricated using an additive manufacturing process (in this case Powder Bed Fusion—Direct Metal Laser Sintering—DMLS). The analysis of the chemical composition values as well as the values of the mechanical properties of the samples obtained via DMLS additive manufacturing process, revealed that such a manufacturing process can be successfully used to make customized surgical implants. The mechanical properties values of the DMLS samples are approximately equal to those specified by the manufacturer of the titanium powder used for sintering. On average, the tensile strength was found to be 24.75% higher, while yield strength 22.7% higher than the values provided in the standard for surgical implants applications. In case the additive manufacturing process produces products with defects one might want to try and recover the implant due to costs and time constraints. The Tungsten Inert Gas (TIG) welding reconditioning process with ERTi-5 Ti64 rod for welding titanium alloys with a content of 6% aluminum and 4% vanadium filler material was used to restore the geometric characteristics as well as the functional properties of a custom hip medical prosthesis. After welding depositing successive layers of materials, the surfaces of the prosthesis were machined to restore the functional properties according to the characteristics of the original 3D model. A 3D scan was used to compare the geometrical characteristics between the original part and reconditioned one. Deviations were less than 1 mm and were acceptable from the medical point of view.
Collapse
|
12
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
13
|
Gatto ML, Furlani M, Giuliani A, Bloise N, Fassina L, Visai L, Mengucci P. Biomechanical performances of PCL/HA micro- and macro-porous lattice scaffolds fabricated via laser powder bed fusion for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112300. [PMID: 34474851 DOI: 10.1016/j.msec.2021.112300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022]
Abstract
The present experimental study aims to extend know-how on resorbable polycaprolactone/hydroxyapatite (PCL/HA, 70/30 wt%) scaffolds, produced by Laser Powder Bed Fusion (LPBF) technology, to geometrically complex lattice structures and micro porous struts. Using optimized LPBF printing parameters, micro- and macro-porous scaffolds for bone tissue regeneration were produced by regularly repeating in space Diamond (DO) and Rhombic Dodecahedron (RD) elementary unit cells. After production, scaffolds were submitted to structural, mechanical, and biological characterization. The interaction of scaffolds with human Mesenchymal Stem Cells (hMSCs) allowed studying the degradative processes of the PCL matrix. Biomechanical performances and biodegradation of scaffolds were compared to literature results and bone tissue data. Mechanical compression test, biological viability up to 4 days of incubation and degradation rate evidenced strong dependence of scaffold behavior on unit cell geometry as well as on global geometrical features.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Michele Furlani
- Department of Clinical Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Alessandra Giuliani
- Department of Clinical Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Nora Bloise
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering, Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Livia Visai
- Department of Molecular Medicine, Centre for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia, 27100 Pavia, Italy; Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, Pavia, Italy
| | - Paolo Mengucci
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
14
|
Porous Titanium by Additive Manufacturing: A Focus on Surfaces for Bone Integration. METALS 2021. [DOI: 10.3390/met11091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Additive manufacturing (AM) is gaining increasing interest for realization of customized porous titanium constructs for biomedical applications and, in particular, for bone substitution. As first, the present review gives a short introduction on the techniques used for additive manufacturing of Ti/Ti-Alloys (Direct Energy Deposition—DED, Selective Laser Melting—SLM and Electron Beam Melting—EBM) and on the main bulk properties of additively manufactured titanium porous structures. Then, it discusses the main advancements in surface modifications of additively manufactured titanium constructs for bone contact applications. Even if specific surface modifications of constructs from AM are currently not widely explored, it is a critical open issue for application in biomedical implants. Some thermal, chemical, electrochemical, and hydrothermal treatments as well as different coatings are here described. The main aim of these treatments is the development of surface micro/nano textures, specific ion release, and addition of bioactivity to induce bone bonding and antibacterial activity. Physicochemical characterizations, in vitro bioactivity tests, protein absorption, in vitro (cellular/bacterial) and in vivo tests reported in the literature for bare and surface modified AM Ti-based constructs are here reviewed. Future perspectives for development of innovative additively manufactured titanium implants are also discussed.
Collapse
|
15
|
Vantadori S. A Novel Multiaxial Strain-Based Criterion Considering Additional Cyclic Hardening. MATERIALS 2021; 14:ma14102542. [PMID: 34068426 PMCID: PMC8153637 DOI: 10.3390/ma14102542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 12/24/2022]
Abstract
The present paper is dedicated to the theoretical evaluation of a loading feature, that may have a significant influence on fatigue phenomenon: non-proportionality. As a matter of fact, considerable interactions between dislocations, leading to the formation of dislocation cells, cause additional cyclic hardening of material. Such a phenomenon is experimentally observed for materials sensitive to non-proportionality. In such a context, the present paper is aimed to propose a novel multiaxial strain-based criterion, the refined equivalent deformation (RED) criterion, which allows to take into account, in fatigue life estimation, both strain amplitude and additional cyclic hardening. The accuracy of the novel criterion is evaluated by considering experimental tests, performed on Ti-6Al-4V specimens, subjected to multiaxial LCF loading.
Collapse
Affiliation(s)
- Sabrina Vantadori
- Department of Engineering & Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
16
|
Mirică IC, Furtos G, Lucaciu O, Pascuta P, Vlassa M, Moldovan M, Campian RS. Electrospun Membranes Based on Polycaprolactone, Nano-Hydroxyapatite and Metronidazole. MATERIALS 2021; 14:ma14040931. [PMID: 33669270 PMCID: PMC7920077 DOI: 10.3390/ma14040931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
The aim of this research was to develop new electrospun membranes (EMs) based on polycaprolactone (PCL) with or without metronidazole (MET)/nano-hydroxyapatite (nHAP) content. New nHAP with a mean diameter of 34 nm in length was synthesized. X-ray diffraction (XRD) and attenuated total reflectance Fourier transform infrared spectroscopy (FTIR-ATR) were used for structural characterization of precursors and EMs. The highest mechanical properties (the force at maximum load, Young's modulus and tensile strength) were found for the PCL membranes, and these properties decreased for the other samples in the following order: 95% PCL + 5% nHAP > 80% PCL + 20% MET > 75% PCL + 5% nHAP + 20% MET. The stiffness increased with the addition of 5 wt.% nHAP. The SEM images of EMs showed randomly oriented bead-free fibers that generated a porous structure with interconnected macropores. The fiber diameter showed values between 2 and 16 µm. The fiber diameter increased with the addition of nHAP filler and decreased when MET was added. New EMs with nHAP and MET could be promising materials for guided bone regeneration or tissue engineering.
Collapse
Affiliation(s)
- Ioana-Codruţa Mirică
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania; (I.-C.M.); (O.L.); (R.-S.C.)
| | - Gabriel Furtos
- Department of Dental Materials, Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry, Fantanele Street 30, 400294 Cluj-Napoca, Romania; (M.V.); (M.M.)
- Correspondence: ; Tel.: +40-364-405972
| | - Ondine Lucaciu
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania; (I.-C.M.); (O.L.); (R.-S.C.)
| | - Petru Pascuta
- Technical University of Cluj-Napoca, Memorandumului Street 28, 400114 Cluj-Napoca, Romania;
| | - Mihaela Vlassa
- Department of Dental Materials, Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry, Fantanele Street 30, 400294 Cluj-Napoca, Romania; (M.V.); (M.M.)
| | - Mărioara Moldovan
- Department of Dental Materials, Babes-Bolyai University-Raluca Ripan, Institute of Research in Chemistry, Fantanele Street 30, 400294 Cluj-Napoca, Romania; (M.V.); (M.M.)
| | - Radu-Septimiu Campian
- Department of Oral Health, Iuliu Hatieganu University of Medicine and Pharmacy, Victor Babes Street 15, 400012 Cluj-Napoca, Romania; (I.-C.M.); (O.L.); (R.-S.C.)
| |
Collapse
|
17
|
Popov VV, Grilli ML, Koptyug A, Jaworska L, Katz-Demyanetz A, Klobčar D, Balos S, Postolnyi BO, Goel S. Powder Bed Fusion Additive Manufacturing Using Critical Raw Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:909. [PMID: 33672909 PMCID: PMC7918580 DOI: 10.3390/ma14040909] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
The term "critical raw materials" (CRMs) refers to various metals and nonmetals that are crucial to Europe's economic progress. Modern technologies enabling effective use and recyclability of CRMs are in critical demand for the EU industries. The use of CRMs, especially in the fields of biomedicine, aerospace, electric vehicles, and energy applications, is almost irreplaceable. Additive manufacturing (also referred to as 3D printing) is one of the key enabling technologies in the field of manufacturing which underpins the Fourth Industrial Revolution. 3D printing not only suppresses waste but also provides an efficient buy-to-fly ratio and possesses the potential to entirely change supply and distribution chains, significantly reducing costs and revolutionizing all logistics. This review provides comprehensive new insights into CRM-containing materials processed by modern additive manufacturing techniques and outlines the potential for increasing the efficiency of CRMs utilization and reducing the dependence on CRMs through wider industrial incorporation of AM and specifics of powder bed AM methods making them prime candidates for such developments.
Collapse
Affiliation(s)
- Vladimir V. Popov
- Israel Institute of Metals, Technion R&D Foundation, Haifa 3200003, Israel;
| | - Maria Luisa Grilli
- ENEA–Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Energy Technologies and Renewable Sources Department, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy;
| | - Andrey Koptyug
- SportsTech Research Center, Mid Sweden University, Akademigatan 1, SE-83125 Östersund, Sweden;
| | - Lucyna Jaworska
- Faculty of Non-Ferrous Metals, AGH University of Science and Technology, 30-059 Krakow, Poland;
| | | | - Damjan Klobčar
- Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva c. 6, 1000 Ljubljana, Slovenia;
| | - Sebastian Balos
- Department of Production Engineering, Faculty of Technical Science, University of Novi Sad, Novi Sad, Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia;
| | - Bogdan O. Postolnyi
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Department of Physics and Astronomy, Faculty of Sciences, University of Porto, 687 Rua do Campo Alegre, 4169-007 Porto, Portugal;
- Department of Nanoelectronics and Surface Modification, Sumy State University, 2 Rymskogo-Korsakova St., 40007 Sumy, Ukraine
| | - Saurav Goel
- School of Engineering, London South Bank University, London SE1 0AA, UK;
- School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield MK4 30AL, UK
- Department of Mechanical Engineering, Shiv Nadar University, Gautam Budh Nagar 201314, India
| |
Collapse
|