1
|
Tzror Y, Bezner M, Deri S, Trigano T, Ben-Harush K. Nanofilament organization in highly tough fibers based on lamin proteins. J Mech Behav Biomed Mater 2024; 160:106748. [PMID: 39332142 DOI: 10.1016/j.jmbbm.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
The escalating plastic pollution crisis necessitates sustainable alternatives, and one promising solution involves replacing petroleum-based polymers with fibrous proteins. This study focused on the recombinant production of intracellular fibrous proteins, specifically Caenorhabditis elegans lamin (Ce-lamin). Ce-lamins spontaneously organize within the cell nucleus, forming a network of nanofilaments. This intricate structure serves as an active layer that responds dynamically to mechanical strain and stress. Herein, we investigated the arrangement of nanofilaments into nanofibrils within wet-spun Ce-lamin fibers using alcoholic solutions as coagulants. Our goal was to understand their structural and mechanical properties, particularly in comparison with those produced with solutions containing Ca+2 ions, which typically result in the formation of nanofibrils with a collagen-like pattern. The introduction of ethanol solutions significantly altered this pattern, likely through rearrangement of the nanofilaments. Nevertheless, the resulting fibers exhibited superior toughness and strain, outperforming various synthetic fibers. The significance of the nanofilament structure in enhancing fiber toughness was emphasized through both the secondary structure transition during stretching and the influence of the Q159K point mutation. This study improves our understanding of the structural and mechanical aspects of Ce-lamin fibers, paving the way for the development of eco-friendly and high-quality fibers suitable for various applications, including medical implants and composite materials.
Collapse
Affiliation(s)
- Yael Tzror
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Mark Bezner
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Shani Deri
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Tom Trigano
- Department of Electrical Engineering, SCE - Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel
| | - Kfir Ben-Harush
- Department of Chemical Engineering, Shamoon College of Engineering, Jabotinsky 84, 77245, Ashdod, Israel.
| |
Collapse
|
2
|
Tummino ML, Peila R, Tonetti C, Velić N, Stjepanović M. Towards zero-waste processes: Waste wool derivatives as phosphate adsorbents and auxiliaries for textiles' natural dyeing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34395-3. [PMID: 39046637 DOI: 10.1007/s11356-024-34395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
The textile industry is a pillar of the manufacturing sector worldwide, but it still represents a significantly polluting production sector since it is energy-, water- and natural resource-intensive. Herein, waste wool that did not meet the technical requirements to be used for yarns and fabrics was recovered first to prepare materials for wastewater remediation, specifically for phosphate removal. The wool underwent an alkaline treatment, eventually saturated with FeCl3 and then left at room temperature or thermally treated to induce crosslinking/stabilisation, obtaining adsorbent panels. The main characterisation findings concerned the impact of alkaline treatment on morphology and structure; additionally, the samples with iron displayed a behaviour attributable to a crosslinking effect operated by Fe3+. Batch experiments showed that only samples with iron were efficient in phosphate adsorption, with a high removal percentage obtained in a wide pH range. Adsorption isotherms and kinetics were investigated, suggesting a complex system of interactions. Moreover, during the alkaline treatment necessary to prepare such wool-derived adsorbent panels, a significant amount of wool hydrolysates left in the solution was produced. These substances, in view of zero-waste procedures, were isolated and re-employed as dyeing auxiliaries. Preliminary results demonstrated that the wool hydrolysates enabled the dyeing of cotton with natural dyes, which is generally a tricky process.
Collapse
Affiliation(s)
- Maria Laura Tummino
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900, Biella, Italy
| | - Roberta Peila
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900, Biella, Italy
| | - Cinzia Tonetti
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing (STIIMA), National Research Council of Italy (CNR), Corso Giuseppe Pella 16, 13900, Biella, Italy
| | - Natalija Velić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000, Osijek, Croatia
| | - Marija Stjepanović
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000, Osijek, Croatia.
| |
Collapse
|
3
|
Buratti E, Sguizzato M, Sotgiu G, Zamboni R, Bertoldo M. Keratin-PNIPAM Hybrid Microgels: Preparation, Morphology and Swelling Properties. Gels 2024; 10:411. [PMID: 38920957 PMCID: PMC11202486 DOI: 10.3390/gels10060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Combinations of synthetic polymers, such as poly(N-isopropylacrylamide) (PNIPAM), with natural biomolecules, such as keratin, show potential in the field of biomedicine, since these hybrids merge the thermoresponsive properties of PNIPAM with the bioactive characteristics of keratin. This synergy aims to produce hybrids that can respond to environmental stimuli while maintaining biocompatibility and functionality, making them suitable for various medical and biotechnological uses. In this study, we exploit keratin derived from wool waste in the textile industry, extracted via sulfitolysis, to synthesize hybrids with PNIPAM microgel. Utilizing two distinct methods-polymerization of NIPAM with keratin (HYB-P) and mixing preformed PNIPAM microgels with keratin (HYB-M)-resulted in hybrids with 20% and 25% keratin content, respectively. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) analyses indicated the formation of colloidal systems with particle sizes of around 110 nm for HYB-P and 518 nm for HYB-M. The presence of keratin in both systems, 20% and 25%, respectively, was confirmed by spectroscopic (FTIR and NMR) and elemental analyses. Distinct structural differences were observed between HYB-P and HYB-M, suggesting a graft copolymer configuration for the former hybrid and a complexation for the latter one. Furthermore, these hybrids demonstrated temperature responsiveness akin to PNIPAM microgels and pH responsiveness, underscoring their potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Elena Buratti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| | - Giovanna Sotgiu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy; (G.S.); (R.Z.)
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy; (G.S.); (R.Z.)
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| |
Collapse
|
4
|
Han S, Lu Y, Peng L, Dong X, Zhu L, Han Y. Transcriptomics Reveals the Mechanism of Purpureocillium lilacinum GZAC18-2JMP in Degrading Keratin Material. Curr Microbiol 2024; 81:227. [PMID: 38879855 DOI: 10.1007/s00284-024-03757-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/03/2024] [Indexed: 07/21/2024]
Abstract
Microbial degradation of keratin is characterized by its inherent safety, remarkable efficiency, and the production of copious degradation products. All these attributes contribute to the effective management of waste materials at high value-added and in a sustainable manner. Microbial degradation of keratin materials remains unclear, however, with variations observed in the degradation genes and pathways among different microorganisms. In this study, we sequenced the transcriptome of Purpureocillium lilacinum GZAC18-2JMP mycelia on control medium and the medium containing 1% feather powder, analyzed the differentially expressed genes, and revealed the degradation mechanism of chicken feathers by P. lilacinum GZAC18-2JMP. The results showed that the chicken feather degradation rate of P. lilacinum GZAC18-2JMP reached 64% after 216 h of incubation in the fermentation medium, reaching a peak value of 148.9 μg·mL-1 at 192 h, and the keratinase enzyme activity reached a peak value of 211 U·mL-1 at 168 h, which revealed that P. lilacinum GZAC18-2JMP had a better keratin degradation effect. A total of 1001 differentially expressed genes (DEGs) were identified from the transcriptome database, including 475 upregulated genes and 577 downregulated genes. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis of the DEGs revealed that the metabolic pathways related to keratin degradation were mainly sulfur metabolism, ABC transporters, and amino acid metabolism. Therefore, the results of this study provide an opportunity to gain further insight into keratin degradation and promote the biotransformation of feather wastes.
Collapse
Affiliation(s)
- Shumei Han
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yingxia Lu
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lan Peng
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xuan Dong
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Liping Zhu
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yanfeng Han
- Institute of Fungus Resource, College of Life Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Bayanmunkh O, Baatar B, Tserendulam N, Boldbaatar K, Radnaabazar C, Khishigjargal T, Norov E, Jambaldorj B. Fabrication of Wet-Spun Wool Keratin/Poly(vinyl alcohol) Hybrid Fibers: Effects of Keratin Concentration and Flow Rate. ACS OMEGA 2023; 8:12327-12333. [PMID: 37033852 PMCID: PMC10077447 DOI: 10.1021/acsomega.3c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
Sheep wool is one of the most common wastes derived from agriculture and also a great source of keratin. In this study, chemical reduction and alkali hydrolysis methods of extracting keratin from wool were studied for the purpose of reusing the waste wool, and the products were used to fabricate wet-spun hybrid fibers by mixing with PVA. The comparative yield of the two extraction methods was investigated, and the optimal precursor concentration ratio for keratin extraction was identified. The effects of keratin concentration and wet-spinning flow rate on the mechanical properties of fabricated fibers were studied. Therefore, this study encourages the further investigation of wool keratin-based hybrid biomaterials, which could provide a new way to reuse waste wool.
Collapse
Affiliation(s)
- Oyunkhorol Bayanmunkh
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Boldbaatar Baatar
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Nomin Tserendulam
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Khongorzul Boldbaatar
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
- Leather
Study Department, Research and Development Institute of Light Industry, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia
| | - Chinzorig Radnaabazar
- Department
of Chemical and Biological Engineering and Applied Science, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Tegshjargal Khishigjargal
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Erdene Norov
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Boldbaatar Jambaldorj
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| |
Collapse
|
6
|
Mattiello S, Guzzini A, Del Giudice A, Santulli C, Antonini M, Lupidi G, Gunnella R. Physico-Chemical Characterization of Keratin from Wool and Chicken Feathers Extracted Using Refined Chemical Methods. Polymers (Basel) 2022; 15:181. [PMID: 36616532 PMCID: PMC9824254 DOI: 10.3390/polym15010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
In this work, the characteristic structure of keratin extracted from two different kinds of industrial waste, namely sheep wool and chicken feathers, using the sulfitolysis method to allow film deposition, has been investigated. The structural and microscopic properties have been studied by means of scanning electron microscopy (SEM), Raman spectroscopy, atomic force microscopy (AFM), and infrared (IR) spectroscopy. Following this, small-angle X-ray scattering (SAXS) analysis for intermediate filaments has been performed. The results indicate that the assembly character of the fiber can be obtained by using the most suitable extraction method, to respond to hydration, thermal, and redox agents. The amorphous part of the fiber and medium range structure is variously affected by the competition between polar bonds (reversible hydrogen bonds) and disulfide bonds (DB), the covalent irreversible ones, and has been investigated by using fine structural methods such as Raman and SAXS, which have depicted in detail the intermediate filaments of keratin from the two different animal origins. The preservation of the secondary structure of the protein obtained does offer a potential for further application of the waste-obtained keratin in polymer films and, possibly, biocomposites.
Collapse
Affiliation(s)
- Sara Mattiello
- Physics Section, School of Science and Technology, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
| | - Alessandro Guzzini
- School of Bioscience and Veterinary Medicine, Università di Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carlo Santulli
- Geology Section, School of Science and Technology, Università di Camerino, via Gentile III da Varano 7, 62032 Camerino, Italy
| | - Marco Antonini
- ENEA—SSPT BIOAG PROBIO Via Gentile III da Varano, 62032 Camerino, Italy
| | - Giulio Lupidi
- School of Bioscience and Veterinary Medicine, Università di Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Roberto Gunnella
- Physics Section, School of Science and Technology, Università di Camerino, via Madonna delle Carceri, 62032 Camerino, Italy
| |
Collapse
|
7
|
Zubair M, Roopesh MS, Ullah A. Nano-modified feather keratin derived green and sustainable biosorbents for the remediation of heavy metals from synthetic wastewater. CHEMOSPHERE 2022; 308:136339. [PMID: 36122754 DOI: 10.1016/j.chemosphere.2022.136339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, we employed a facile method to synthesize feather keratin derived biosorbents using water dispersed graphene oxide. The successful cross-linking of feather keratin with graphene oxide was investigated through X-ray photoelectrons spectroscopy (XPS), scanning and transmission electron microscopy, and Brunauer-Emmett-Teller (BET) analysis. The modifications resulted in increased surface area of the keratin proteins with substantial morphological changes including the development of cracked and rough patches on the surface. The chicken feather keratin/graphene oxide based biosorbents exhibited excellent performance for the simultaneous removal of metal oxyanions including arsenic (As), selenium (Se), chromium (Cr) and cations including nickel (Ni), cobalt (Co), lead (Pb), cadmium (Cd) and zinc (Zn) up to 99%, from polluted synthetic water containing 600 μgL-1 of each metal concentration in 24 h. The insights into the biosorption mechanism revealed that the electrostatic interaction, chelation and complexation primarily contributed to the removal of multiple heavy metal ions in a single treatment. This study has demonstrated that modification of chicken feather keratin with graphene oxide is an effective way to improve its sorption capacity for removing multiple trace metal ions from contaminated water.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540 South Academic Building University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, Lab# 540 South Academic Building University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540 South Academic Building University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
8
|
Preparation Methods and Functional Characteristics of Regenerated Keratin-Based Biofilms. Polymers (Basel) 2022; 14:polym14214723. [DOI: 10.3390/polym14214723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
The recycling, development, and application of keratin-containing waste (e.g., hair, wool, feather, and so on) provide an important means to address related environmental pollution and energy shortage issues. The extraction of keratin and the development of keratin-based functional materials are key to solving keratin-containing waste pollution. Keratin-based biofilms are gaining substantial interest due to their excellent characteristics, such as good biocompatibility, high biodegradability, appropriate adsorption, and rich renewable sources, among others. At present, keratin-based biofilms are a good option for various applications, and the development of keratin-based biofilms from keratin-containing waste is considered crucial for sustainable development. In this paper, in order to achieve clean production while maintaining the functional characteristics of natural keratin as much as possible, four important keratin extraction methods—thermal hydrolysis, ultrasonic technology, eco-friendly solvent system, and microbial decomposition—are described, and the characteristics of these four extraction methods are analysed. Next, methods for the preparation of keratin-based biofilms are introduced, including solvent casting, electrospinning, template self-assembly, freeze-drying, and soft lithography methods. Then, the functional properties and application prospects of keratin-based biofilms are discussed. Finally, future research directions related to keratin-based biofilms are proposed. Overall, it can be concluded that the high-value conversion of keratin-containing waste into regenerated keratin-based biofilms has great importance for sustainable development and is highly suggested due to their great potential for use in biomedical materials, optoelectronic devices, and metal ion detection applications. It is hoped that this paper can provide some basic information for the development and application of keratin-based biofilms.
Collapse
|
9
|
Chukwunonso Ossai I, Shahul Hamid F, Hassan A. Valorisation of keratinous wastes: A sustainable approach towards a circular economy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 151:81-104. [PMID: 35933837 DOI: 10.1016/j.wasman.2022.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The valorisation of keratinous wastes involves biorefining and recovering the bioresource materials from the keratinous wastes to produce value-added keratin-based bioproducts with a broad application, distribution, and marketability potential. Valorisation of keratinous wastes increases the value of the wastes and enables more sustainable waste management towards a circular bioeconomy. The abundance of keratinous wastes as feedstock from agro-industrial processing, wool processing, and grooming industry benefits biorefinery and extraction of keratins, which could be the optimal solution for developing an ecologically and economically sustainable keratin-based economy. The transition from the current traditional linear models that are deleterious to the environment, which end energy and resources recovery through disposal by incineration and landfilling, to a more sustainable and closed-loop recycling and recovery approach that minimises pollution, disposal challenges, loss of valuable bioresources and potential revenues are required. The paper provides an overview of keratinous wastes and the compositional keratin proteins with the descriptions of the various keratin extraction methods in biorefinery and functional material synthesis, including enzymatic and microbial hydrolysis, chemical hydrolysis (acid/alkaline hydrolysis, dissolution in ionic liquids, oxidative and sulphitolysis) and chemical-free hydrolysis (steam explosion and ultrasonic). The study describes various uses and applications of keratinases and keratin-based composites fabricated through various manufacturing processes such as lyophilisation, compression moulding, solvent casting, hydrogel fabrication, sponge formation, electrospinning, and 3D printing for value-added applications.
Collapse
Affiliation(s)
- Innocent Chukwunonso Ossai
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Fauziah Shahul Hamid
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Auwalu Hassan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Waste Management, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Biological Sciences, Faculty of Science, Federal University Kashere, Gombe State, Nigeria
| |
Collapse
|
10
|
Ghaffari-Bohlouli P, Jafari H, Taebnia N, Abedi A, Amirsadeghi A, Niknezhad SV, Alimoradi H, Jafarzadeh S, Mirzaei M, Nie L, Zhang J, Varma RS, Shavandi A. Protein by-products: Composition, extraction, and biomedical applications. Crit Rev Food Sci Nutr 2022; 63:9436-9481. [PMID: 35546340 DOI: 10.1080/10408398.2022.2067829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Significant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources. This article appraises the most recent studies conducted in the last five years on animal-derived proteins' separation and biomedical application. The effort encompasses an introduction about the composition, an overview of the extraction and purification methods, and the broad range of biomedical applications of these ensuing proteins.
Collapse
Affiliation(s)
| | - Hafez Jafari
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Nayere Taebnia
- Center for Intestinal Absorption and Transport of Biopharmaceuticals, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ali Abedi
- Department of Life Science Engineering, Faculty of New Sciences and Technology, University of Tehran, Tehran, Iran
| | - Armin Amirsadeghi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahta Mirzaei
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| | - Lei Nie
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R. China
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
| | - Amin Shavandi
- 3BIO-BioMatter, Faculty of engineering, Free University of Brussels (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Preparing Biomass Carbon Fiber Derived from Waste Rabbit Hair as a Carrier of TiO 2 for Photocatalytic Degradation of Methylene Blue. Polymers (Basel) 2022; 14:polym14081593. [PMID: 35458344 PMCID: PMC9033106 DOI: 10.3390/polym14081593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
In the past few years, biomass carbon materials have gained wide attention from many scholars as TiO2 carrier materials to improve photocatalytic activity due to their renewable, green, low-cost, and high-efficiency advantages. In this study, TiO2/carbonized waste rabbit fibers (TiO2/CRFs) nanocomposites with the hierarchical microporous/mesoporous structure were fabricated by a combination of carbonization, immersion, and calcination methods using tetrabutyl titanate as the titanium source and waste rabbit hair as the carbon source. The properties and catalytic activity of TiO2/CRFs composite were evaluated based on several characterization techniques and methylene blue (MB) photodegradation studies. The results showed that the degradation of MB by TiO2/CRFs could reach 98.1% after 80 min of solar irradiation. Moreover, TiO2/CRFs still maintained high photocatalytic activity after five cycles of degradation tests, exhibiting good stability and reusability. The improved photocatalytic performance of TiO2/CRFs materials is attributed to the natural carbon and nitrogen element doping of TiO2/CRFs and its morphology, which reduces the compounding of photogenerated electron-hole pairs and narrows the TiO2 band gap, while the multiple reflections of visible light in the pore channels enhance the visible light absorption of the materials. Furthermore, the large specific surface area provides abundant reaction sites for adsorbed reactants. This paper provides the experimental basis for the application of waste rabbit biomass carbon composites in photocatalytic degradation field.
Collapse
|
12
|
Timorshina S, Popova E, Osmolovskiy A. Sustainable Applications of Animal Waste Proteins. Polymers (Basel) 2022; 14:polym14081601. [PMID: 35458349 PMCID: PMC9027211 DOI: 10.3390/polym14081601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
Currently, the growth of the global population leads to an increase in demand for agricultural products. Expanding the obtaining and consumption of food products results in a scale up in the amount of by-products formed, the development of processing methods for which is becoming an urgent task of modern science. Collagen and keratin make up a significant part of the animal origin protein waste, and the potential for their biotechnological application is almost inexhaustible. The specific fibrillar structure allows collagen and keratin to be in demand in bioengineering in various forms and formats, as a basis for obtaining hydrogels, nanoparticles and scaffolds for regenerative medicine and targeted drug delivery, films for the development of biodegradable packaging materials, etc. This review describes the variety of sustainable sources of collagen and keratin and the beneficial application multiformity of these proteins.
Collapse
|
13
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
14
|
Popescu V, Blaga AC, Pruneanu M, Cristian IN, Pîslaru M, Popescu A, Rotaru V, Crețescu I, Cașcaval D. Green Chemistry in the Extraction of Natural Dyes from Colored Food Waste, for Dyeing Protein Textile Materials. Polymers (Basel) 2021; 13:polym13223867. [PMID: 34833166 PMCID: PMC8621441 DOI: 10.3390/polym13223867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 02/04/2023] Open
Abstract
The beetroot peels can be a sustainable source of betalains that can dye the wool materials through green processes based on low water and energy consumption. Green chemistry in the extraction of betalains from colored food waste/peels from red beetroot involved the use of water as a solvent, without other additives. In order for the extract obtained to be able to dye the wool, it was necessary to functionalize betalains or even the wool. Three types of sustainable functionalizations were performed, with (1) acetic acid; (2) ethanol; and (3) arginine. For each functionalization, the mechanism that can justify dyeing the wool in intense colors was elucidated. The characterization of the extract was performed with the data provided by UV-VIS and HPLC-MS analyses. The characterization of the wool dyed with the extract obtained from the red beetroot peels was possible due to the information resulting from the FTIR and CIELab analyses. The functionalizations of betalains and wool in acid environments lead to the most intense red colors. The color varies depending on the pH and the concentration of betalains.
Collapse
Affiliation(s)
- Vasilica Popescu
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (M.P.); (V.R.)
- Correspondence:
| | - Alexandra Cristina Blaga
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (A.C.B.); (D.C.)
| | - Melinda Pruneanu
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (M.P.); (V.R.)
| | - Irina Niculina Cristian
- Design and Engineering of Textile Products, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Marius Pîslaru
- Department of Engineering and Management, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Andrei Popescu
- Department of Machine Design, Mechatronics and Robotics, Faculty of Mechanical Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Vlad Rotaru
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (M.P.); (V.R.)
| | - Igor Crețescu
- Department of Environmental Engineering and Management, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Dan Cașcaval
- Department of Organic, Biochemical and Food Engineering, “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (A.C.B.); (D.C.)
| |
Collapse
|
15
|
Wang X, Shi Z, Tian Z, Tang H, Li Q, Shen X. Molecular Mechanism of Rabbit Hair Keratin Hydrogel Fabricated via Cryoablation. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoqing Wang
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
- School of Materials Science and Engineering Inner Mongolia University of Technology Hohhot 010051 China
| | - Zhiming Shi
- School of Materials Science and Engineering Inner Mongolia University of Technology Hohhot 010051 China
| | - Zhan Tian
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| | - Henglong Tang
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| | - Qingchun Li
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| | - Xianyi Shen
- College of Textile and Light Industry Inner Mongolia University of Technology Hohhot 010080 China
| |
Collapse
|
16
|
Wool Keratin Hydrolysates for Bioactive Additives Preparation. MATERIALS 2021; 14:ma14164696. [PMID: 34443218 PMCID: PMC8399299 DOI: 10.3390/ma14164696] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
The aim of this paper was to select keratin hydrolysate with bioactive properties by using the enzymatic hydrolysis of wool. Different proteolytic enzymes such as Protamex, Esperase, and Valkerase were used to break keratin molecules in light of bioactive additive preparation. The enzymatic keratin hydrolysates were assessed in terms of the physico-chemical characteristics related to the content of dry substance, total nitrogen, keratin, ash, cysteic sulphur, and cysteine. The influence of enzymatic hydrolysis on molecular weight and amino acid composition was determined by gel permeation chromatography (GPC) and gas chromatography-mass spectrometry (GC-MS) analyses. Antimicrobial activity of keratin hydrolysates was analysed against Fusarium spp., a pathogenic fungus that can decrease the quality of plants. The bioactivity of enzymatic hydrolysates was tested on maize plants and allowed us to select the keratin hydrolysates processed with the Esperase and Valkerase enzymes. The ratio of organised structures of hydrolysate peptides was analysed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) deconvolution of the amide I band and may explain the difference in their bioactive behaviour. The most important modifications in the ATR spectra of maize leaves in correlation with the experimentally proven performance on maize development by plant length and chlorophyll index quantification were detailed. The potential of enzymatic hydrolysis to design additives with different bioactivity was shown in the case of plant growth stimulation.
Collapse
|
17
|
Human Hair Keratin Composite Scaffold: Characterisation and Biocompatibility Study on NIH 3T3 Fibroblast Cells. Pharmaceuticals (Basel) 2021; 14:ph14080781. [PMID: 34451878 PMCID: PMC8401710 DOI: 10.3390/ph14080781] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to transform human hair keratin waste into a scaffold for soft tissue engineering to heal wounds. The keratin was extracted using the Shindai method. Keratin and polyvinyl alcohol (PVA) was cross-linked with alginate dialdehyde and converted into a scaffold by the freeze-drying method using gentamycin sulphate (GS) as a model drug. The scaffold was subjected to Fourier transform infrared spectra (FTIR), swelling index, porosity, water absorption, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), drug release, and cell viability (MTT) analysis. The scaffold was tested for keratinocyte growth using the murine fibroblast cell line (NIH 3T3 cells). The outcome from the keratin had a molecular weight band between 52-38 kDa in SDS-PAGE (Sodium dodecylsulfate-Polyacrylamide gel electrophoresis). A porous scaffold was capable of water absorption (73.64 ± 14.29%), swelling ability (68.93 ± 1.33%), and the release of GS shown as 97.45 ± 4.57 and 93.86 ± 5.22 of 1:4 and 1:3 scaffolds at 16 h. The physicochemical evaluation revealed that the prepared scaffold exhibits the proper structural integrity: partially crystalline with a strong thermal property. The scaffold demonstrated better cell viability against the murine fibroblast cell line (NIH 3T3 cells). In conclusion, we found that the prepared composite scaffold (1:4) can be used for wound healing applications.
Collapse
|
18
|
Perța-Crișan S, Ursachi CȘ, Gavrilaș S, Oancea F, Munteanu FD. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers (Basel) 2021; 13:1896. [PMID: 34200460 PMCID: PMC8201023 DOI: 10.3390/polym13111896] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the agro-industry's side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering these facts, the keratin-rich waste can be considered as a treasure for the producers interested in the valorization of such slowly-biodegradable by-products. As keratin is a protein that needs harsh conditions for its degradation, and that in most of the cases its constitutive amino acids are destroyed, we review new extraction methods that are eco-friendly and cost-effective. The chemical and enzymatic extractions of keratin are compared and the optimization of the extraction conditions at the lab scale is considered. In this study, there are also considered the potential applications of the extracted keratin as well as the reuse of the by-products obtained during the extraction processes.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Florin Oancea
- Bioresource Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| |
Collapse
|