1
|
Tüfekci M. Nonlinear Dynamic Mechanical and Impact Performance Assessment of Epoxy and Microcrystalline Cellulose-Reinforced Epoxy. Polymers (Basel) 2024; 16:3284. [PMID: 39684029 DOI: 10.3390/polym16233284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
This study focusses on imrpoving the mechanical performance of epoxy resin by reinforcing it with microcrystalline cellulose (MCC). Epoxy composites with varying MCC mass fractions (0.5%, 1%, 1.5%, and 2%) are prepared and characterised to assess the influence of MCC on strain-rate-dependent flexural properties, impact resistance, and nonlinear viscoelastic behaviour. Three-point bending tests at different strain rates reveal that MCC notably increases the flexural strength and leads to nonlinear mechanical behaviour. It is shown that stiffness, strength and elongation at break increase with rising MCC content. Charpy impact tests show improved energy absorption and toughness, while Dynamic Mechanical Analysis (DMA) demonstrates that the materials prepared exhibit increased storage modulus and improved damping across a frequency range. These results indicate that MCC serves as an effective bio-based reinforcement, significantly boosting the strength and toughness of epoxy composites. The findings contribute to the development of sustainable, high-performance materials for advanced engineering applications.
Collapse
Affiliation(s)
- Mertol Tüfekci
- Centre for Engineering Research, University of Hertfordshire, Hatfield AL10 9AB, UK
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| |
Collapse
|
2
|
Adel R, Fahim IS, Bakhoum ES, Ahmed AM, AbdelSalam SS. Sustainable nanocellulose coating for EPS geofoam extracted from agricultural waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 191:135-146. [PMID: 39531741 DOI: 10.1016/j.wasman.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Expanded polystyrene (EPS) geofoam blocks are gaining acceptance across industries due to their low density, insulation properties, strength, compressibility, and shock absorption under dynamic loads. The effective application of EPS is impeded by restrictions imposed by using conventional polymer-based synthetic geomembrane insulation ought for protection. Meanwhile, the production process of the geomembrane has detrimental environmental impacts, incurs high costs, and limits the utilization of EPS blocks in various applications. This research aims to create an innovative nanocoating substance using nanocellulose derived from agricultural residues to provide an eco-friendly alternative to geomembranes. The nanocellulose was extracted from four agricultural waste materials; sugarcane bagasse, banana fibers, rice straw, and spent-ground coffee; where each had a local percentage yield of 35 %, 25 %, 19 %, and 10 %, respectively. Based upon a technical criterion provided by the transmission electron microscopy (TEM) micrographs, the TOPSIS multi-criteria decision-making method was used to rank the sustainability of waste materials. It was found that sugarcane bagasse (SCB) is the most sustainable type with the smallest nano particle size. Nanocellulose extracted from SCB was characterized using X-ray diffraction (XRD), energy dispersive X-ray (EDX), nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopy (FTIR). The innovative nanocellulose coating primarily consisted of a nanocellulose mixture (SCB + water), polyvinyl acetate (PVA), and zinc oxide. Fourteen distinct formulas were obtained to identify the optimal proportions suitable for application on EPS surface with respect to the nano particle size, purity, and binding energy between the elements. It was found that the optimum formula consists of 42 % SCB, 50 % PVA, and 8 % zinc oxide.
Collapse
Affiliation(s)
- Rana Adel
- SESC, Smart Engineering Research Centre, Nile University, Giza, Egypt.
| | - Irene Samy Fahim
- SESC, Smart Engineering Research Centre, Nile University, Giza, Egypt; Industrial Engineering, School of Engineering & Applied Science, Nile University, Giza, Egypt.
| | - Emad S Bakhoum
- SESC, Smart Engineering Research Centre, Nile University, Giza, Egypt; Civil & Construction Engineering, School of Engineering & Applied Science, Nile University, Giza, Egypt; Civil Engineering Department, National Research Centre, Giza, Egypt.
| | - Ahmed M Ahmed
- SESC, Smart Engineering Research Centre, Nile University, Giza, Egypt; Civil & Construction Engineering, School of Engineering & Applied Science, Nile University, Giza, Egypt; Department of Civil Engineering, Faculty of Engineering, Mataria, Helwan University, Cairo, Egypt.
| | - Sherif S AbdelSalam
- SESC, Smart Engineering Research Centre, Nile University, Giza, Egypt; Civil & Construction Engineering, School of Engineering & Applied Science, Nile University, Giza, Egypt.
| |
Collapse
|
3
|
Ma Y, Zhao W, Xiong J, Zhang W, Dai M, Guo Y, Li Y, Long L, Zhou Z. Hierarchical Interfacial Construction by Grafting Cellulose Nanocrystals onto Carbon Fiber for Improving the Mechanical Performance of Epoxy Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1537. [PMID: 39330693 PMCID: PMC11434848 DOI: 10.3390/nano14181537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Carbon fiber-reinforced composites have been widely used in the aerospace industry because of their superior comprehensive performance, including high strength, low density, fatigue resistance, long service life, etc. The interface between the fiber reinforcement and the matrix is one of the key factors that determines the performance of the composites. The construction of covalent bonding connections between the components has proven to be an effective strategy for improving the interfacial bonding strength but always reduces the toughness. In this work, dual silane coupling agents are applied to covalently connect cellulose nanocrystals (CNCs) onto carbon fibers, constructing hierarchical interfacial connections between the fibers and the epoxy matrix and significantly improving the interfacial bonding strength. As a result, the tensile strength of the epoxy composites increased from 519 MPa to nearly 900 MPa, which provides a potential approach for significantly improving the mechanical performance of composites.
Collapse
Affiliation(s)
- Yanjiao Ma
- Chengdu Aircraft Industry Group Co., Ltd., Chengdu 610073, China; (Y.M.); (W.Z.); (J.X.)
| | - Wei Zhao
- Chengdu Aircraft Industry Group Co., Ltd., Chengdu 610073, China; (Y.M.); (W.Z.); (J.X.)
| | - Jun Xiong
- Chengdu Aircraft Industry Group Co., Ltd., Chengdu 610073, China; (Y.M.); (W.Z.); (J.X.)
| | - Wei Zhang
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (W.Z.); (M.D.)
| | - Mingfeng Dai
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (W.Z.); (M.D.)
| | - Yifan Guo
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (W.Z.); (M.D.)
- School of Aeronautical Equipment Manufacturing Industry, Chengdu Aeronautic Polytechnic, Chengdu 610100, China;
| | - Ying Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China;
| | - Ling Long
- School of Aeronautical Equipment Manufacturing Industry, Chengdu Aeronautic Polytechnic, Chengdu 610100, China;
| | - Zuowan Zhou
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China; (W.Z.); (M.D.)
| |
Collapse
|
4
|
Yildirim M, Mutlu I, Candan Z. Development and characterization of smart composites reinforced with fibrillated cellulose and nickel-titanium alloy. Int J Biol Macromol 2024; 267:131189. [PMID: 38554924 DOI: 10.1016/j.ijbiomac.2024.131189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The current study presents the synergistic effects of fibrillated cellulose (FC) and nickel-titanium (NiTi) alloy on the performance properties of smart composites. Epoxy resin was reinforced with loadings of 1 %, 3 %, and 5 % FC and 3 % NiTi. The composites were produced using the casting method. The morphological properties have been analyzed using scanning electron microscopy (SEM). For mechanical properties, yield strength, modulus of elasticity, hardness, and impact energy were determined. The corrosion rate was determined via electrochemical corrosion testing. The recovery test was used to measure the shape-memory of the composites. The self-healing of the artificial defect in the composites was observed using a thermal camera. The yield strength, modulus of elasticity, hardness, and impact energy of composites reinforced with 5 % FC and 3 % NiTi increased by 168.2 %, 290 %, 33.3 %, and 114.3 %, respectively, compared to pure epoxy resin. There has been a 56.3 % decrease in the corrosion rate. The percentage of composites that returned from the final state to the original state after a deformation was 4 %. Self-healing analysis revealed that the scratch defect in composites was healed after 24 h. It is concluded that smart composites can be used in the aviation and automotive industries.
Collapse
Affiliation(s)
- Mert Yildirim
- Department of Industrial Engineering, Istanbul Gelisim University, 34310 Istanbul, Türkiye; New Generation Entrepreneurship and Innovation Application and Research Center, Istanbul Gelisim University, Istanbul, Türkiye.
| | - Ilven Mutlu
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, 34320 Istanbul, Türkiye
| | - Zeki Candan
- Department of Forest Industrial Engineering, Istanbul University-Cerrahpasa, 34473 Istanbul, Türkiye; Biomaterials and Nanotechnology Research Group & BioNanoTeam, Istanbul, Türkiye
| |
Collapse
|
5
|
Samyn P, Cosemans P. Nanocellulose Grades with Different Morphologies and Surface Modification as Additives for Waterborne Epoxy Coatings. Polymers (Basel) 2024; 16:1095. [PMID: 38675014 PMCID: PMC11054773 DOI: 10.3390/polym16081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
While adding different micro- and nanocellulose types into epoxy coating formulations with waterborne phenalkamine crosslinker, effects on processing conditions and coating performance were systematically investigated. The variations in viscosity, thermal and thermomechanical properties, mechanical behavior, abrasive wear, water contact angles, and coating morphologies were evaluated. The selected additives include microcrystalline cellulose (MCC) at 1 to 10 wt.% and cellulose nanocrystals (CNC), cellulose nanofibers (CNF), cellulose microfibers (CMF), and hydrophobically modified cellulose microfibers (mCMF) at 0.1 to 1.5 wt.%. The viscosity profiles are determined by the inherent additive characteristics with strong shear thinning effects for epoxy/CNF, while the epoxy/mCMF provides lower viscosity and better matrix compatibility owing to the lubrication of encapsulated wax. The crosslinking of epoxy/CNF is favored and postponed for epoxy/(CNC, CMF, mCMF), as the stronger interactions between epoxy and CNF are confirmed by an increase in the glass transition temperature and reduction in the dampening factor. The mechanical properties indicate the highest hardness and impact strength for epoxy/CNF resulting in the lowest abrasion wear rates, but ductility enhances and wear rates mostly reduce for epoxy/mCMF together with hydrophobic protection. In addition, the mechanical reinforcement owing to the specific organization of a nanocellulose network at percolation threshold concentrations of 0.75 wt.% is confirmed by microscopic analysis: the latter results in a 2.6 °C (CNF) or 1.6 °C (CNC) increase in the glass transition temperature, 50% (CNF) or 20% (CNC) increase in the E modulus, 37% (CNF) or 32% (CNC) increase in hardness, and 58% (CNF) or 33% (CNC) lower abrasive wear compared to neat epoxy, while higher concentrations up to 1.5 wt.% mCMF can be added. This research significantly demonstrates that nanocellulose is directly compatible with a waterborne phenalkamine crosslinker and actively contributes to the crosslinking of waterborne epoxy coatings, changing the intrinsic glass transition temperatures and hardness properties, to which mechanical coating performance directly relates.
Collapse
Affiliation(s)
- Pieter Samyn
- Department of Innovations in Circular Economy and Renewable Materials, SIRRIS, 3001 Leuven, Belgium;
| | | |
Collapse
|
6
|
Jiang Y, Li J, Li D, Ma Y, Zhou S, Wang Y, Zhang D. Bio-based hyperbranched epoxy resins: synthesis and recycling. Chem Soc Rev 2024; 53:624-655. [PMID: 38109059 DOI: 10.1039/d3cs00713h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Epoxy resins (EPs), accounting for about 70% of the thermosetting resin market, have been recognized as the most widely used thermosetting resins in the world. Nowadays, 90% of the world's EPs are obtained from the bisphenol A (BPA)-based epoxide prepolymer. However, certain limitations severely impede further applications of this advanced material, such as limited fossil-based resources, skyrocketing oil prices, nondegradability, and a "seesaw" between toughness and strength. In recent years, more and more research has been devoted to the preparation of novel epoxy materials to overcome the compromise between toughness and strength and solve plastic waste problems. Among them, the development of bio-based hyperbranched epoxy resins (HERs) is unique and attractive. Bio-based HERs synthesized from bio-derived monomers can be used as a matrix resin or a toughener resulting in partially or fully bio-based epoxy thermosets. The introduction of a hyperbranched structure can balance the strength and toughness of epoxy thermosets. Here, we especially focused on the recent progress in the development of bio-based HERs, including the monomer design, synthesis approaches, mechanical properties, degradation, and recycling strategies. In addition, we advance the challenges and perspectives to engineering application of bio-based HERs in the future. Overall, this review presents an up-to-date overview of bio-based HERs and guidance for emerging research on the sustainable development of EPs in versatile high-tech fields.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, People's Republic of China
| | - Jiang Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Dan Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yunke Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Shucun Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Yu Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Daohong Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, Hubei R&D Center of Hyperbranched Polymers Synthesis and Applications, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
7
|
Iswarya S, Theivasanthi T, Gopinath SCB. Sodium alginate/Hydroxyapatite/nanocellulose composites: Synthesis and Potentials for bone tissue engineering. J Mech Behav Biomed Mater 2023; 148:106189. [PMID: 37852086 DOI: 10.1016/j.jmbbm.2023.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Sodium alginate/hydroxyapatite/Nano cellulose (SA/HA/NC) nanocomposite films that possess good biocompatibility for bone tissue engineering are prepared by a simple solution casting. HA is one of the most frequently used bioceramic materials to achieve a high biocompatibility. The bionanocomposite films are analysed by XRD, SEM, EDAX and FTIR studies. XRD confirms the existence of fillers in the polymer. FTIR spectrum shows the different functional modes in the bionanocomposite films. The morphology of fillers and bionanocomposite films are obtained through SEM. The inclusion of NC with different concentrations into the biopolymer film improves the tensile strength. As a result, the loading of 5 wt % of NC and 10 wt% of HA in the SA polymer shows high tensile strength when compared to the pure SA, SA filled with 10 wt% of HA and SA loaded with 10 wt% of HA and inclusion of NC (0.5 and 2.5 wt%). The tensile strength (TS) of bionanocomposite film with 10 wt % of HA is increased by 17%. TS of bionanocomposite film with 0.5 and 2.5 wt% of NC is increased by 177 and 277%, whereas TS of bionanocomposite film loaded 5 wt% of NC is increased by 331%. The swelling, biodegradation and biomineralization tests suggest that this bionanocomposite films are hopeful biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- S Iswarya
- International Research Centre, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil 626126, Tamil Nadu, India; Department of Physics, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil 626126, Tamil Nadu, India
| | - T Theivasanthi
- International Research Centre, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil 626126, Tamil Nadu, India; Department of Physics, Kalasalingam Academy of Research and Education (Deemed University), Krishnankoil 626126, Tamil Nadu, India.
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600 Arau, Perlis, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| |
Collapse
|
8
|
Necolau M, Bălănucă B, Frone AN, Damian CM. Tailoring an Effective Interface between Nanocellulose and the Epoxidized Linseed Oil Network through Functionalization. ACS OMEGA 2023; 8:15896-15908. [PMID: 37179605 PMCID: PMC10173339 DOI: 10.1021/acsomega.2c07033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/28/2023] [Indexed: 05/15/2023]
Abstract
Sustainable nanocomposite materials based on different functionalized nanocellulose (NC) structures embedded in epoxidized linseed oil (ELO) were developed as foundation toward a greener approach for anticorrosive coating evolution. The work leans on functionalization with (3-aminopropyl) triethoxysilane (APTS), (3-glycidyloxypropyl)trimethoxysilane (GPTS), and vanillin (V) of NC structures isolated from plum seed shells, evaluated as potential reinforcing agents for the increase of thermomechanical properties and water resistance of epoxy nanocomposites from renewable resources. The successful surface modification was confirmed from the deconvolution of X-ray photoelectron spectra for C 1s and correlated with Fourier transform infrared (FTIR) data. The secondary peaks assigned to C-O-Si at 285.9 eV and C-N at 286 eV were observed with the decrease of the C/O atomic ratio. Compatibility and efficient interface formation between the functionalized NC and the biobased epoxy network from linseed oil were translated as decreased values for the surface energy of bio-nanocomposites and better dispersion imaged through scanning electron microscopy (SEM). Thus, the storage modulus of the ELO network reinforced with only 1% APTS-functionalized NC structures reached 5 GPa, an almost 20% increase compared with that of the neat matrix. Mechanical tests were applied to assess an increase of 116% in compressive strength for the addition of 5 wt % NCA to the bioepoxy matrix.
Collapse
Affiliation(s)
- Mădălina
I. Necolau
- Advanced
Polymer Materials Group, University Politehnica
of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Brînduşa Bălănucă
- Advanced
Polymer Materials Group, University Politehnica
of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
- Department
of Organic Chemistry “C. Nenitescu”, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Adriana N. Frone
- National
Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Celina M. Damian
- Advanced
Polymer Materials Group, University Politehnica
of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| |
Collapse
|
9
|
Frone AN, Uşurelu CD, Oprică GM, Panaitescu DM, Gabor AR, Nicolae CA, Ciuprina F, Damian CM, Raduly FM. Contribution of the Surface Treatment of Nanofibrillated Cellulose on the Properties of Bio-Based Epoxy Nanocomposites Intended for Flexible Electronics. Int J Mol Sci 2023; 24:6544. [PMID: 37047517 PMCID: PMC10095063 DOI: 10.3390/ijms24076544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The growing interest in materials derived from biomass has generated a multitude of solutions for the development of new sustainable materials with low environmental impact. We report here, for the first time, a strategy to obtain bio-based nanocomposites from epoxidized linseed oil (ELO), itaconic acid (IA), and surface-treated nanofibrillated cellulose (NC). The effect of nanofibrillated cellulose functionalized with silane (NC/S) and then grafted with methacrylic acid (NC/SM) on the properties of the resulted bio-based epoxy systems was thoroughly investigated. The differential scanning calorimetry (DSC) results showed that the addition of NCs did not influence the curing process and had a slight impact on the maximum peak temperature. Moreover, the NCs improved the onset degradation temperature of the epoxy-based nanocomposites by more than 30 °C, regardless of their treatment. The most important effect on the mechanical properties of bio-based epoxy nanocomposites, i.e., an increase in the storage modulus by more than 60% at room temperature was observed in the case of NC/SM addition. Therefore, NC's treatment with silane and methacrylic acid improved the epoxy-nanofiber interface and led to a very good dispersion of the NC/SM in the epoxy network, as observed by the SEM investigation. The dielectric results proved the suitability of the obtained bio-based epoxy/NCs materials as substitutes for petroleum-based thermosets in the fabrication of flexible electronic devices.
Collapse
Affiliation(s)
- Adriana Nicoleta Frone
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Cătălina Diana Uşurelu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Gabriela Mădălina Oprică
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Denis Mihaela Panaitescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Augusta Raluca Gabor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Cristian-Andi Nicolae
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| | - Florin Ciuprina
- ELMAT Laboratory, Faculty of Electrical Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Celina Maria Damian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania;
| | - Florentina Monica Raduly
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (C.D.U.); (G.M.O.); (D.M.P.); (A.R.G.); (C.-A.N.)
| |
Collapse
|
10
|
Kim YS, Baek JW, Jin Z, Jeon HC, Han MW, Lim JY. Mechanical Properties of a Bone-like Bioceramic-Epoxy-Based Composite Material with Nanocellulose Fibers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:739. [PMID: 36676477 PMCID: PMC9863595 DOI: 10.3390/ma16020739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Several composite materials are being investigated as reinforcement fillers for surgery simulations. This study presents an artificial composite material with properties similar to those of the human bone, which may be used in surgery simulations. Moreover, considering the potential toxicity of debris generated during sawing, a safe epoxy-based composite material was synthesized using cellulose nanocrystals (CNCs) and bioceramics (i.e., hydroxyapatite, Yttria stabilized zirconia oxide, Zirconia oxide), which were used to mimic the stiffness of human bone. To examine the change in mechanical properties according to the composition, 1, 3, and 5 wt% of CNCs were mixed with 5 wt% of the bioceramics. When CNCs were added at 1 wt%, there was a confirmed change in the non-linear stiffness and ductility. The CNC-added specimen fractured when forming a nano-network around the local CNCs during curing. In contrast, the specimen without CNCs was more densely structured, and combined to form a network of all specimens such that a plastic region could exist. Thus, this study successfully manufactured a material that could mimic longitudinal and transverse characteristics similar to those of real human bone, as well as exhibit mechanical properties such as strength and stiffness. Bioceramics are harmless to the human body, and can be used by controlling the added quantity of CNCs. We expect that this material will be suitable for use in surgery simulations.
Collapse
Affiliation(s)
- Young-Seong Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jin Woo Baek
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Zhengyun Jin
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hee Chang Jeon
- Quantum Functional Semiconductor Research Center, Dongguk University, Seoul 04620, Republic of Korea
| | - Min-Woo Han
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Joong Yeon Lim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
11
|
Khalifa M, Berndt A, C. S, Pichler S, Lammer H, Wuzella G. Hybridization effect of cellulose paper and postcuring conditions on the mechanical properties of flax fiber reinforced epoxy biocomposite. J Appl Polym Sci 2022. [DOI: 10.1002/app.53297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammed Khalifa
- Wood Carintian Competence Center, St. Veit an der Glan Kompetenzzentrum Holz GmbH Linz Austria
| | - Alexander Berndt
- Department of Engineering and IT Carinthia University of Applied Sciences in Austria Villach Austria
| | - Shamitha C.
- Department of Electronics and Communication Engineering Manipal Institute of Technology Bengaluru India
| | - Stefan Pichler
- Wood Carintian Competence Center, St. Veit an der Glan Kompetenzzentrum Holz GmbH Linz Austria
| | - Herfried Lammer
- Wood Carintian Competence Center, St. Veit an der Glan Kompetenzzentrum Holz GmbH Linz Austria
| | - Guenter Wuzella
- Wood Carintian Competence Center, St. Veit an der Glan Kompetenzzentrum Holz GmbH Linz Austria
| |
Collapse
|
12
|
Busiak R, Masek A, Węgier A, Rylski A. Accelerated Aging of Epoxy Biocomposites Filled with Cellulose. MATERIALS 2022; 15:ma15093256. [PMID: 35591590 PMCID: PMC9104355 DOI: 10.3390/ma15093256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
The presented research concerns the mechanochemical modification of a snap-cure type of epoxy resin, A.S. SET 1010, with the addition of different amounts of cellulose (0, 2, 5, 10, 15 and 20 per 100 resin), for a novel, controlled-degradation material with possible application in the production of passenger seats in rail transport. Composite samples were prepared on a hydraulic press in ac-cordance with the resin manufacturer’s recommendations, in the form of tiles with dimensions of 80 × 80 × 1 mm. The prepared samples were subjected to thermo-oxidative aging and weathering for a period of 336 h. Changes in the color and surface defects in the investigated composites were evaluated using UV-Vis spectrophotometry (Cie-Lab). The degree of degradation by changes in the chemical structure of the samples was analyzed using FTIR/ATR spectroscopy. Differential scan-ning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed, and the sur-face energy of the samples was determined by measuring the contact angle of droplets. Tests were performed to determine changes in cellulose-filled epoxy resin composites after thermo-oxidative aging and weathering. It was found out that the addition of cellulose did not inflict sufficient changes to the properties within tested parameters. In the tested case, cellulose acted as a natural active biofiller. Our research is in line with the widespread pursuit of pro-ecological solutions in industry and the creation of materials with a positive impact on the natural environment.
Collapse
Affiliation(s)
- Radosław Busiak
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (R.B.); (A.W.)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (R.B.); (A.W.)
- Correspondence:
| | - Aleksandra Węgier
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (R.B.); (A.W.)
- S.Z.T.K. “TAPS”—Maciej Kowalski, ul. Borowa 4, 94-247 Lodz, Poland
| | - Adam Rylski
- Institute of Materials Science and Engineering, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
13
|
Recent Advances in Development of Waste-Based Polymer Materials: A Review. Polymers (Basel) 2022; 14:polym14051050. [PMID: 35267873 PMCID: PMC8914771 DOI: 10.3390/polym14051050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
Limited petroleum sources, suitable law regulations, and higher awareness within society has caused sustainable development of manufacturing and recycling of polymer blends and composites to be gaining increasing attention. This work aims to report recent advances in the manufacturing of environmentally friendly and low-cost polymer materials based on post-production and post-consumer wastes. Sustainable development of three groups of materials: wood polymer composites, polyurethane foams, and rubber recycling products were comprehensively described. Special attention was focused on examples of industrially applicable technologies developed in Poland over the last five years. Moreover, current trends and limitations in the future “green” development of waste-based polymer materials were also discussed.
Collapse
|
14
|
Disposable Food Packaging and Serving Materials-Trends and Biodegradability. Polymers (Basel) 2021; 13:polym13203606. [PMID: 34685364 PMCID: PMC8537343 DOI: 10.3390/polym13203606] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022] Open
Abstract
Food is an integral part of everyone’s life. Disposable food serving utensils and tableware are a very convenient solution, especially when the possibility of the use of traditional dishes and cutlery is limited (e.g., takeaway meals). As a result, a whole range of products is available on the market: plates, trays, spoons, forks, knives, cups, straws, and more. Both the form of the product (adapted to the distribution and sales system) as well as its ecological aspect (biodegradability and life cycle) should be of interest to producers and consumers, especially considering the clearly growing trend of “eco-awareness”. This is particularly important in the case of single-use products. The aim of the study was to present the current trends regarding disposable utensils intended for contact with food in the context of their biodegradability. This paper has summarized not only conventional polymers but also their modern alternatives gaining the attention of manufacturers and consumers of single-use products (SUPs).
Collapse
|
15
|
Nascimento NRD, Pinheiro IF, Alves GF, Mei LHI, Macedo Neto JCD, Morales AR. Role of cellulose nanocrystals in epoxy-based nanocomposites: mechanical properties, morphology and thermal behavior. POLIMEROS 2021. [DOI: 10.1590/0104-1428.20210057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|