1
|
Liao S, Zhou K, Kang Y, Zhao T, Lin Y, Lv J, Zhu D. Enhanced cartilage repair using gelatin methacryloyl hydrogels combined with icariin and magnesium-doped bioactive glass. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2025; 53:181-193. [PMID: 40235097 DOI: 10.1080/21691401.2025.2490677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/17/2025]
Abstract
Cartilage repair remains challenging due to limited self-healing, poor biocompatibility, and insufficient mechanical properties of current materials. To overcome these issues, we developed a multifunctional composite hydrogel by integrating gelatine methacrylate (GelMA) with magnesium-doped bioactive glass (Mg-BG) and icariin (ICA). SEM analysis revealed that pure GelMA exhibited a highly porous yet loosely organized structure, whereas the addition of Mg-BG and ICA produced a denser, more interconnected porous network that enhances cell adhesion and nutrient diffusion. In vitro, the ICA/Mg-BG/GelMA hydrogel achieved a swelling ratio up to 430% and maintained cell viability above 80% over 5 days. Moreover, qRT-PCR and immunohistochemical analyses demonstrated that the composite hydrogel upregulated chondrogenic markers (SOX9, ACAN, and COL2A1) compared with GelMA alone. Specifically, it downregulates M1 pro-inflammatory markers (CCR7, iNOS, CD86) and upregulates M2 anti-inflammatory markers (ARG1, CD163, CD206), thereby creating a regenerative microenvironment. These results indicate that the synergistic combination of GelMA, Mg-BG, and ICA not only improves the scaffold's mechanical support but also enhances its biological functionality, offering a promising strategy for cartilage repair. Future studies will focus on in vivo validation to further assess its clinical potential.
Collapse
Affiliation(s)
- Shiyao Liao
- Department of Orthopedics, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Kai Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Kang
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Tingxiao Zhao
- Department of Orthopedics, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yicheng Lin
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jun Lv
- Department of Orthopedics, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Danjie Zhu
- Department of Orthopedics, Center for Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Huang W, Wang X, Zhao Z. Ultrasound-Triggered Mg 2+ Blasting Release Hydrogel Microspheres for Promoting Bone Reconstruction. Adv Healthc Mater 2025; 14:e2402935. [PMID: 39600054 DOI: 10.1002/adhm.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Indexed: 11/29/2024]
Abstract
Mg2+ (Magnesium ion) can affect bone tissue metabolism by regulating related signaling pathways in bone metabolism. However, how to realize precise controlled release of Mg2+ in bone regeneration treatment still presents a challenge. Herein, for the first time, the GelMA-BP (Gelatin Methacryloyl-Bisphosphonate) and the composite nano-bubble system are fused to construct the Mg2+ blasting controlled-release hydrogel microspheres, the stability of the nano-bubbles in the microspheres is enhanced through metal coordination complexation, and the burst of the nano-bubbles is controlled by using ultrasonic cavitation to achieve the precise controlled release of Mg2+, ultimately effectively promoting bone reconstruction. First, GelMA-BP composite is prepared by Schiff base reaction. Second, the nanobubble BP (Bisphosphonate) system is constructed, and Mg2+ is combined with the ligand coordination to prepare the composite nanobubble system. Thirdly, through Mg2+ co-coordination, the ultrasound-triggered Mg2+ blasting controlled release microspheres were prepared to achieve bone repair. Overall, this innovative strategy effectively solves the problem of accurate controlled release of Mg2+, and finally effectively activates in situ bone tissue regeneration.
Collapse
Affiliation(s)
- Wenlin Huang
- College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xu Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, 200233, China
| | - Zhenyu Zhao
- School of medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
3
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Sharma SK, Gajević S, Sharma LK, Pradhan R, Miladinović S, Ašonja A, Stojanović B. Magnesium-Titanium Alloys: A Promising Solution for Biodegradable Biomedical Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5157. [PMID: 39517433 PMCID: PMC11546690 DOI: 10.3390/ma17215157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Magnesium (Mg) has attracted considerable attention as a biodegradable material for medical implants owing to its excellent biocompatibility, mitigating long-term toxicity and stress shielding. Nevertheless, challenges arise from its rapid degradation and low corrosion resistance under physiological conditions. To overcome these challenges, titanium (biocompatibility and corrosion resistance) has been integrated into Mg. The incorporation of titanium significantly improves mechanical and corrosion resistance properties, thereby enhancing performance in biological settings. Mg-Ti alloys are produced through mechanical alloying and spark plasma sintering (SPS). The SPS technique transforms powder mixtures into bulk materials while preserving structural integrity, resulting in enhanced corrosion resistance, particularly Mg80-Ti20 alloy in simulated body fluids. Moreover, Mg-Ti alloy revealed no more toxicity when assessed on pre-osteoblastic cells. Furthermore, the ability of Mg-Ti-based alloy to create composites with polymers such as PLGA (polylactic-co-glycolic acid) widen their biomedical applications by regulating degradation and ensuring pH stability. These alloys promote temporary orthopaedic implants, offering initial load-bearing capacity during the healing process of fractures without requiring a second surgery for removal. To address scalability constraints, further research is necessary to investigate additional consolidation methods beyond SPS. It is essential to evaluate the relationship between corrosion and mechanical loading to confirm their adequacy in physiological environments. This review article highlights the importance of mechanical characterization and corrosion evaluation of Mg-Ti alloys, reinforcing their applicability in fracture fixation and various biomedical implants.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Sandra Gajević
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | | | - Reshab Pradhan
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institute of Eminence, Gautam Buddha Nagar 201314, India;
| | - Slavica Miladinović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| | - Aleksandar Ašonja
- Faculty of Economics and Engineering Management in Novi Sad, University Business Academy in Novi Sad, Cvećarska 2, 21000 Novi Sad, Serbia;
| | - Blaža Stojanović
- Faculty of Engineering, University of Kragujevac, Sestre Janjić 6, 34000 Kragujevac, Serbia; (S.M.); (B.S.)
| |
Collapse
|
5
|
Kumar A, Choudhari A, Gupta AK, Kumar A. Rare-Earth based magnesium alloys as a potential biomaterial for the future. JOURNAL OF MAGNESIUM AND ALLOYS 2024; 12:3841-3897. [DOI: 10.1016/j.jma.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Du Q, Dickinson A, Nakuleswaran P, Maghami S, Alagoda S, Hook AL, Ghaemmaghami AM. Targeting Macrophage Polarization for Reinstating Homeostasis following Tissue Damage. Int J Mol Sci 2024; 25:7278. [PMID: 39000385 PMCID: PMC11242417 DOI: 10.3390/ijms25137278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Tissue regeneration and remodeling involve many complex stages. Macrophages are critical in maintaining micro-environmental homeostasis by regulating inflammation and orchestrating wound healing. They display high plasticity in response to various stimuli, showing a spectrum of functional phenotypes that vary from M1 (pro-inflammatory) to M2 (anti-inflammatory) macrophages. While transient inflammation is an essential trigger for tissue healing following an injury, sustained inflammation (e.g., in foreign body response to implants, diabetes or inflammatory diseases) can hinder tissue healing and cause tissue damage. Modulating macrophage polarization has emerged as an effective strategy for enhancing immune-mediated tissue regeneration and promoting better integration of implantable materials in the host. This article provides an overview of macrophages' functional properties followed by discussing different strategies for modulating macrophage polarization. Advances in the use of synthetic and natural biomaterials to fabricate immune-modulatory materials are highlighted. This reveals that the development and clinical application of more effective immunomodulatory systems targeting macrophage polarization under pathological conditions will be driven by a detailed understanding of the factors that regulate macrophage polarization and biological function in order to optimize existing methods and generate novel strategies to control cell phenotype.
Collapse
Affiliation(s)
- Qiran Du
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Anna Dickinson
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Pruthvi Nakuleswaran
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK;
| | - Savindu Alagoda
- Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK; (A.D.); (P.N.); (S.A.)
| | - Andrew L. Hook
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Amir M. Ghaemmaghami
- Immuno-Bioengineering Group, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
7
|
Li YB, Zhang HQ, Lu YP, Yang XJ, Wang GD, Wang YY, Tang KL, Huang SY, Xiao GY. Construction of Magnesium Phosphate Chemical Conversion Coatings with Different Microstructures on Titanium to Enhance Osteogenesis and Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21672-21688. [PMID: 38637290 DOI: 10.1021/acsami.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Titanium (Ti) and its alloys are widely used as hard tissue substitutes in dentistry and orthopedics, but their low bioactivity leads to undesirable osseointegration defects in the early osteogenic phase. Surface modification is an important approach to overcome these problems. In the present study, novel magnesium phosphate (MgP) coatings with controllable structures were fabricated on the surface of Ti using the phosphate chemical conversion (PCC) method. The effects of the microstructure on the physicochemical and biological properties of the coatings on Ti were researched. The results indicated that accelerators in PCC solution were important factors affecting the microstructure and properties of the MgP coatings. In addition, the coated Ti exhibited excellent hydrophilicity, high bonding strength, and good corrosion resistance. Moreover, the biological results showed that the MgP coatings could improve the spread, proliferation, and osteogenic differentiation of mouse osteoblast cells (MC3T3-E1) and vascular differentiation of human umbilical vein endothelial cells (HUVECs), indicating that the coated Ti samples had a great effect on promoting osteogenesis and angiogenesis. Overall, this study provided a new research idea for the surface modification of conventional Ti to enhance osteogenesis and angiogenesis in different bone types for potential biomedical applications.
Collapse
Affiliation(s)
- Yi-Bo Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Huan-Qing Zhang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Peng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao-Juan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Guan-Duo Wang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
| | - Yu-Ying Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Kang-le Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Sheng-Yun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, China
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Gui-Yong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
8
|
Pahlevanzadeh F, Emadi R, Kharaziha M, Poursamar SA, Nejatidanesh F, Emadi H, Aslani R, Moroni L, Setayeshmehr M. Amorphous magnesium phosphate-graphene oxide nano particles laden 3D-printed chitosan scaffolds with enhanced osteogenic potential and antibacterial properties. BIOMATERIALS ADVANCES 2024; 158:213760. [PMID: 38242056 DOI: 10.1016/j.bioadv.2024.213760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The utilization of 3D printing technology for the fabrication of graft substitutes in bone repair holds immense promise. However, meeting the requirements for printability, bioactivity, mechanical strength, and biological properties of 3D printed structures concurrently poses a significant challenge. In this study, we introduce a novel approach by incorporating amorphous magnesium phosphate-graphene oxide (AMP-GO) into a thermo-crosslinkable chitosan/β glycerol phosphate (CS/GP) ink. We fabricated thermo-crosslinkable CS inks containing varying concentrations (10 %, 20 %, or 30 % weight) of AMP-GO. The 3D printed scaffolds incorporating 20 % AMP-GO exhibited significantly improved mechanical properties, with compressive strengths of 4.5 ± 0.06 MPa compared to 0.5 ± 0.03 MPa for CS printed scaffolds. Moreover, the CS/AMP-GO inks demonstrated enhanced antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria, attributed to the release of magnesium cations and the performance of GO. Additionally, CS/20AMP-GO ink facilitated increased adhesion, viability, proliferation, and osteogenic differentiation of mesenchymal stem cells (MSCs), as evidenced by the upregulation of ALP, COL1, and Runx2 expression, which were elevated 9.8, 6.5, and >22 times, respectively, compared to pure CS scaffolds. Considering its exceptional in vivo osteogenic potential, we anticipate that the CS/20AMP-GO ink holds great potential for 3D printing of bone grafts.
Collapse
Affiliation(s)
- F Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S A Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - F Nejatidanesh
- Dental Materials Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - H Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - R Aslani
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - L Moroni
- Complex Tissue Regeneration Department, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| | - M Setayeshmehr
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
9
|
Chen K, He W, Gao W, Wu Y, Zhang Z, Liu M, Hu Y, Xiao X, Li F, Feng Q. A Dual Reversible Cross-Linked Hydrogel with Enhanced Mechanical Property and Capable of Proangiogenic and Osteogenic Activities for Bone Defect Repair. Macromol Biosci 2024; 24:e2300325. [PMID: 37805941 DOI: 10.1002/mabi.202300325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/29/2023] [Indexed: 10/10/2023]
Abstract
The clinical treatment of bone defects presents ongoing challenges. One promising approach is bone tissue engineering (BTE), wherein hydrogels have garnered significant attention. However, the application of hydrogels in BTE is severely limited due to their poor mechanical properties, as well as their inferior proangiogenic and osteogenic activities. To address these limitations, our develop a dual cross-linked alendronate (ALN)-Ca2+ /Mg2+ -doped sulfated hyaluronic acid (SHA@CM) hydrogel, using a one-step mixing injection molding method known as "three-in-one" approach. This approach enabled the simultaneous formation of Schiff-Base crosslinking and electric attraction-based crosslinking within the hydrogel. The Schiff-Base crosslinking contributed to the majority of the hydrogel's mechanical strength, while the electric attraction-based crosslinking served as a release reservoir for Ca2+ /Mg2+ and ALN, promoting enhanced osteogenic activities and providing additional mechanical reinforcement to the hydrogel. These experimental data demonstrates several favorable properties of the SHA@CM hydrogel, including satisfactory injectability, rapid gelation, self-healing capacity, and excellent cytocompatibility. Moreover, the presence of sulfated groups and Mg2+ within the SHA@CM hydrogel exhibited pro-angiogenic effects, while the controlled release of nanoparticles formed by Ca2+ /Mg2+ and ALN further enhanced the osteogenesis of the hydrogel. Overall, these results indicate that the SHA@CM hydrogel holds significant potential for the clinical translation of BTE.
Collapse
Affiliation(s)
- Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Sanming, 365004, China
| | - Wenbao He
- Department of Orthopedics, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Wei Gao
- Qingdao medical college of Qingdao University, Qingdao, 266073, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhe Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mingxiang Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Fuping Li
- Department of Spine Surgery, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
10
|
El-Sayed SAM, ElShebiney S, Beherei HH, Kumar P, Choonara YE, Mabrouk M. Copper-doped magnesium phosphate nanopowders for critical size calvarial bone defect intervention. J Biomed Mater Res B Appl Biomater 2024; 112:e35376. [PMID: 38359173 DOI: 10.1002/jbm.b.35376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Calvarial defects of bone present difficult clinical situations, and their restoration using biocompatible materials requires special treatments that enable bone regeneration. Magnesium phosphate (MgP) is known as an osteoinductive biomaterial because it contains Mg2+ ions and P ions that enhance the activity of osteoplast cells and help in bone regeneration. In this study, MgP and CuO-doped MgP were fabricated and characterized for their physicomechanical properties, particle size, morphology, surface area, antibacterial test, and in vitro bioactivity evaluation using the following techniques: X-rays diffraction, Fourier-transformer infrared, TEM, and Brunauer, Emmett and Teller (BET) surface area, X-rays photoelectron spectroscopy (XPS), and Scanning electron microscopy (SEM). Furthermore, these nanopowders were implanted in adult inbred male Wistar rats and studied after two periods (28 and 56 days). The results demonstrated that the obtained semiamorphous powders are in nanoscale (≤ 50 nm). XPS analysis ensured the preparation of MgP as mono MgP and CuO were incorporated in the structure as Cu2+ . The bioactivity was supported by the observation of calcium phosphate layer on the nanopowders' surface. The in vivo study demonstrated success of MgP nanopowders especially those doped with CuO in restoration of calvarial defect bone. Therefore, fabricated biomaterials are of great potential in restoration of bone calvarial defects.
Collapse
Affiliation(s)
- Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
| | - Shaimaa ElShebiney
- Department of Narcotics, Ergogenic Aids and Poisons, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
- Academy of Scientific Research and Technology (ASRT), Cairo, 11516, Egypt
| |
Collapse
|
11
|
Posada VM, Ramírez J, Civantos A, Fernández-Morales P, Allain JP. Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation. Colloids Surf B Biointerfaces 2024; 234:113717. [PMID: 38157767 DOI: 10.1016/j.colsurfb.2023.113717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Porous Mg scaffolds are promising for bone repair but are limited by high corrosion rates and challenges in preserving coating integrity. We used Directed Plasma Nanosynthesis (DPNS) at 400 eV and a fluence of 1 × 1018 cm-2 to augment the bioactivity and corrosion resistance of porous Mg scaffolds, maintaining their overall material integrity. DPNS creates nanostructures that increase surface area, promote apatite nucleation, and enhance osseointegration, improving the bioactivity and corrosion resistance of porous Mg scaffolds without compromising their structure. Our findings indicate a decrease in surface roughness, with pre-irradiated samples having Rq = 60.4 ± 5.3 nm andRa = 48.2 ± 3.1 nm, and post-DPNS samples showing Rq = 36.9 ± 0.3 nm andRa = 28.6 ± 0.8 nm. This suggests changes in topography and wettability, corroborated by the increased water contact angles (CA) of 129.2 ± 3.2 degrees. The complexity of the solution influences the CA: DMEM results in a CA of 120.4 ± 0.1 degrees, while DMEM + SBF decreases it to 103.6 ± 0.5 degrees, in contrast to the complete spreading observed in non-irradiated samples. DPNS-treated scaffolds exhibit significantly reduced corrosion rates at 5.7 × 10-3 ± 3.8 × 10-4 mg/cm²/day, compared to the control's 2.3 × 10-2 ± 3.2 × 10-4 mg/cm²/day over 14 days (P < 0.01). The treatment encourages the formation of a Ca-phosphate-rich phase, which facilitates cell spreading and the development of focal adhesion points in hBM-MSCs on the scaffolds. Additionally, J774A.1 murine macrophages show an enhanced immune response with diminished TNF-α cytokine expression. These results offer insights into nanoscale modifications of Mg-based biomaterials and their promise for bone substitutes or tissue engineering scaffolds.
Collapse
Affiliation(s)
- Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA; Department of Mechanical Engineering, School of Mines, Universidad Nacional de Colombia, Colombia; Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, USA.
| | - Juan Ramírez
- Department of Mechanical Engineering, School of Mines, Universidad Nacional de Colombia, Colombia.
| | - Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, USA
| | | | - Jean Paul Allain
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, USA; Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, USA
| |
Collapse
|
12
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Sun Y, Wang W. Synthesis Technology of Magnesium-Doped Nanometer Hydroxyapatite: A Review. ACS OMEGA 2023; 8:44458-44471. [PMID: 38046298 PMCID: PMC10688058 DOI: 10.1021/acsomega.3c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Ion substitution techniques for nanoparticles have become an important neighborhood of biomedical engineering and have led to the development of innovative bioactive materials for health systems. Magnesium-doped nanohydroxyapatite (Mg-nHA) has good bone conductivity, biological activity, flexural strength, and fracture toughness due to particle doping technology, making it an ideal candidate material for biomedical applications. In this Review, we have systematically presented the synthesis methods of Mg-nHA and their application in the field of biomedical science and highlighted the pros and cons of each method. Finally, some future prospects for this important neighborhood are proposed. The purpose of this Review is to provide readers with an understanding of this new field of research on bioactive materials with innovative functions and systematically introduce the latest technologies for obtaining uniform, continuous, and morphologically diverse Mg-nHA.
Collapse
Affiliation(s)
- Kui Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Liu
- Department
of Gynecology, First Affiliated Hospital
of Xi ’an Medical College, Xi’an, Shaanxi 710000, China
| | - Zhenrui Zhao
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuewen Shi
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruihao Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yixiang He
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huaibin Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi Sun
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenji Wang
- Department
of Orthopedics, The First Hospital of Lanzhou
University, Lanzhou, Gansu 730000, China
| |
Collapse
|
13
|
Baecher H, Hoch CC, Knoedler S, Maheta BJ, Kauke-Navarro M, Safi AF, Alfertshofer M, Knoedler L. From bench to bedside - current clinical and translational challenges in fibula free flap reconstruction. Front Med (Lausanne) 2023; 10:1246690. [PMID: 37886365 PMCID: PMC10598714 DOI: 10.3389/fmed.2023.1246690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Fibula free flaps (FFF) represent a working horse for different reconstructive scenarios in facial surgery. While FFF were initially established for mandible reconstruction, advancements in planning for microsurgical techniques have paved the way toward a broader spectrum of indications, including maxillary defects. Essential factors to improve patient outcomes following FFF include minimal donor site morbidity, adequate bone length, and dual blood supply. Yet, persisting clinical and translational challenges hamper the effectiveness of FFF. In the preoperative phase, virtual surgical planning and artificial intelligence tools carry untapped potential, while the intraoperative role of individualized surgical templates and bioprinted prostheses remains to be summarized. Further, the integration of novel flap monitoring technologies into postoperative patient management has been subject to translational and clinical research efforts. Overall, there is a paucity of studies condensing the body of knowledge on emerging technologies and techniques in FFF surgery. Herein, we aim to review current challenges and solution possibilities in FFF. This line of research may serve as a pocket guide on cutting-edge developments and facilitate future targeted research in FFF.
Collapse
Affiliation(s)
- Helena Baecher
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Cosima C. Hoch
- Medical Faculty, Friedrich Schiller University Jena, Jena, Germany
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bhagvat J. Maheta
- College of Medicine, California Northstate University, Elk Grove, CA, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Ali-Farid Safi
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
- Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
14
|
Zhang K, Hu H, Sun Y, Nan J, Liu W, Lei P, Hu Y. The bio-functionalized membrane loaded with Ta/WH nanoparticles promote bone regeneration through neurovascular coupling. Colloids Surf B Biointerfaces 2023; 230:113506. [PMID: 37572400 DOI: 10.1016/j.colsurfb.2023.113506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Electrospinning technology, as a novel approach, has been extensively applied in the field of tissue engineering. Nanofiber membranes prepared by electrospinning can effectively mimic the structure and function of natural bone matrix, providing an ideal scaffold for attachment, proliferation, and differentiation of bone cells while inducing osteogenic differentiation and new bone formation. However, it lacks bioactivities such as osteoinduction, angiogenesis and the ability to promote nerve regeneration. In the presence of complex critical bone defects, a single component electrospun membrane often fails to suffice for bone repair needs. Based on this, we prepared a biofunctionalized membrane loaded with Tantalum(Ta)/Whitlockite(WH) nanoparticles (poly-ε-caprolactone (PCL)/Ta/WH) in order to promote high-quality bone defect repair through neurovascular coupling effect. According to the results of in vitro and in vivo experiments, the early Mg2+ release of WH can effectively increase the local nerve and vascular density, and synergize with Tantalum nanoparticles (TaNPs) to create a rich nerve-vascular microenvironment. This allows the PCL/Ta/WH membrane to repair bone defects in multiple dimensions and achieve high-quality repair of bone tissue, providing new solutions for the treatment of critical bone defects in clinical.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Hongkun Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Yan Sun
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Jiangyu Nan
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan China..
| | - Pengfei Lei
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China; Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China.
| | - Yihe Hu
- Department of Orthopedic Surgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, China; Department of Orthopedics, The First Affiliated Hospital, Medical College of Zhejiang University, Hangzhou, China.
| |
Collapse
|
15
|
He F, Rao J, Zhou J, Fu W, Wang Y, Zhang Y, Zuo F, Shi H. Fabrication of 3D printed Ca 3Mg 3(PO 4) 4-based bioceramic scaffolds with tailorable high mechanical strength and osteostimulation effect. Colloids Surf B Biointerfaces 2023; 229:113472. [PMID: 37487286 DOI: 10.1016/j.colsurfb.2023.113472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Calcium, magnesium and phosphate are predominant constituents in the human bone. In this study, magnesium-calcium phosphate composite bioceramic scaffolds were fabricated utilizing Mg3(PO4)2 and β-Ca3(PO4)2 as starting materials, and their pore structure was constructed by 3D printing. The porosity and compressive strength of the composite bioceramic scaffolds could be adjusted by altering the sintering temperature and the formula of starting materials. The composite bioceramic scaffolds prepared from 60 wt% Mg3(PO4)2 and 40 wt% β-Ca3(PO4)2 were dominated by the Ca3Mg3(PO4)4 phase, and this Ca3Mg3(PO4)4-based bioceramic scaffolds possessed the highest compressive strength (12.7 - 92.4 MPa). Moreover, the Ca3Mg3(PO4)4-based bioceramic scaffolds stimulated cellular growth and osteoblastic differentiation of bone marrow stromal cells. The Ca3Mg3(PO4)4-based bioceramic scaffolds as bone regenerative biomaterials are flexible to the requirement of bone defects at various sites.
Collapse
Affiliation(s)
- Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
| | - Jin Rao
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jielin Zhou
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wenhao Fu
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yao Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Yihang Zhang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fei Zuo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Haishan Shi
- School of Stomatology, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
16
|
Golubchikov D, Evdokimov P, Zuev D, Filippov Y, Shatalova T, Putlayev V. Three-Dimensional-Printed Molds from Water-Soluble Sulfate Ceramics for Biocomposite Formation through Low-Pressure Injection Molding. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3077. [PMID: 37109912 PMCID: PMC10145792 DOI: 10.3390/ma16083077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Powder mixtures of MgSO4 with 5-20 mol.% Na2SO4 or K2SO4 were used as precursors for making water-soluble ceramic molds to create thermoplastic polymer/calcium phosphate composites by low pressure injection molding. To increase the strength of the ceramic molds, 5 wt.% of tetragonal ZrO2 (Y2O3-stabilized) was added to the precursor powders. A uniform distribution of ZrO2 particles was obtained. The average grain size for Na-containing ceramics ranged from 3.5 ± 0.8 µm for MgSO4/Na2SO4 = 91/9% to 4.8 ± 1.1 µm for MgSO4/Na2SO4 = 83/17%. For K-containing ceramics, the values were 3.5 ± 0.8 µm for all of the samples. The addition of ZrO2 made a significant contribution to the strength of ceramics: for the MgSO4/Na2SO4 = 83/17% sample, the compressive strength increased by 49% (up to 6.7 ± 1.3 MPa), and for the stronger MgSO4/K2SO4 = 83/17% by 39% (up to 8.4 ± 0.6 MPa). The average dissolution time of the ceramic molds in water did not exceed 25 min.
Collapse
Affiliation(s)
- Daniil Golubchikov
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
| | - Pavel Evdokimov
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp., 31, 119071 Moscow, Russia
| | - Dmitry Zuev
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
| | - Yaroslav Filippov
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
- Research Institute of Mechanics, Lomonosov Moscow State University, Michurinsky, 1, 119192 Moscow, Russia
| | - Tatiana Shatalova
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
| | - Valery Putlayev
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
| |
Collapse
|
17
|
Nigar F, Johnston AL, Smith J, Oakley W, Islam MT, Felfel R, Grant D, Lester E, Ahmed I. Production of Nano Hydroxyapatite and Mg-Whitlockite from Biowaste-Derived products via Continuous Flow Hydrothermal Synthesis: A Step towards Circular Economy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2138. [PMID: 36984019 PMCID: PMC10058175 DOI: 10.3390/ma16062138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Biowastes from agriculture, sewage, household wastes, and industries comprise promising resources to produce biomaterials while reducing adverse environmental effects. This study focused on utilising waste-derived materials (i.e., eggshells as a calcium source, struvite as a phosphate source, and CH3COOH as dissolution media) to produce value-added products (i.e., calcium phosphates (CaPs) derived from biomaterials) using a continuous flow hydrothermal synthesis route. The prepared materials were characterised via XRD, FEG-SEM, EDX, FTIR, and TEM analysis. Magnesium whitlockite (Mg-WH) and hydroxyapatite (HA) were produced by single-phase or biphasic CaPs by reacting struvite with either calcium nitrate tetrahydrate or an eggshell solution at 200 °C and 350 °C. Rhombohedral-shaped Mg-WH (23-720 nm) along with tube (50-290 nm diameter, 20-71 nm thickness) and/or ellipsoidal morphologies of HA (273-522 nm width) were observed at 350 °C using HNO3 or CH3COOH to prepare the eggshell and struvite solutions, and NH4OH was used as the pH buffer. The Ca/P (atomic%) ratios obtained ranged between 1.3 and 1.7, indicating the formation of Mg-WH and HA. This study showed that eggshells and struvite usage, along with CH3COOH, are promising resources as potential sustainable precursors and dissolution media, respectively, to produce CaPs with varying morphologies.
Collapse
Affiliation(s)
- Farah Nigar
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Amy-Louise Johnston
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jacob Smith
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Oakley
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Md Towhidul Islam
- School of Physical Sciences, University of Kent, Canterbury CT2 7NZ, UK
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Reda Felfel
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
- Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - David Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Edward Lester
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Ifty Ahmed
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
18
|
Bai B, Hao J, Hou M, Wang T, Wu X, Liu Y, Wang Y, Dai C, Hua Y, Ji G, Zhou G. Repair of Large-Scale Rib Defects Based on Steel-Reinforced Concrete-Designed Biomimetic 3D-Printed Scaffolds with Bone-Mineralized Microenvironments. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42388-42401. [PMID: 36094886 DOI: 10.1021/acsami.2c08422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tissue engineering technology provides a promising approach for large-scale bone reconstruction in cases of extensive chest wall defects. However, previous studies did not consider meticulous scaffold design specific to large-scale rib regeneration in terms of three-dimensional (3D) shape, proper porous structures, enough mechanical strength, and osteogenic microenvironments. Thus, there is an urgent need to develop an appropriate bone biomimetic scaffold (BBS) to address this problem. In this study, a BBS with controllable 3D morphology, appropriate mechanical properties, good biocompatibility and biodegradability, porous structure suitable for cell loading, and a biomimetic osteogenic inorganic salt (OIS) microenvironment was successfully prepared by integrating computer-aided design, 3D-printing, cast-molding, and freeze-drying technologies. The addition of the OIS in the scaffold substantially promoted ectopic bone regeneration in vivo, which might be attributed to the activation of osteogenic and angiogenic signaling pathways as well as upregulated expression of osteogenic genes. More importantly, dual long rib defects could be successfully repaired and medullary cavity recanalized by the rib-shaped mature cortical bone, which might be mediated by the activation of osteoclast signaling pathways. Thus, this paper presents a reliable BBS and proposes a new strategy for the repair of large-scale bone defects.
Collapse
Affiliation(s)
- Baoshuai Bai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Junxiang Hao
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Tao Wang
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
| | - Yanhan Liu
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Yiyang Wang
- National Tissue Engineering Center of China, Shanghai 200001, China
- Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chengxiang Dai
- Cellular Biomedicine Group, Incorporated, No. 85 Faladi Road, Building 3, Pudong New Area, Shanghai 201210, China
| | - Yujie Hua
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| | - Guangyu Ji
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
- Research Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261000, China
- National Tissue Engineering Center of China, Shanghai 200001, China
- Shanghai JiaoTong University School of Medicine, Shanghai 200240, China
| |
Collapse
|
19
|
Fadeeva IV, Deyneko DV, Forysenkova AA, Morozov VA, Akhmedova SA, Kirsanova VA, Sviridova IK, Sergeeva NS, Rodionov SA, Udyanskaya IL, Antoniac IV, Rau JV. Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility. Molecules 2022; 27:molecules27186085. [PMID: 36144818 PMCID: PMC9505591 DOI: 10.3390/molecules27186085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Sr2+-substituted β-tricalcium phosphate (β-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that β-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial β-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the β-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Dina V. Deyneko
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Anna A. Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Vladimir A. Morozov
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
| | - Suraya A. Akhmedova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Valentina A. Kirsanova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Irina K. Sviridova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Natalia S. Sergeeva
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- Academician Yarygin Department of Biology, Federal State Autonomous Educational Institution of Higher Education Russian National Research Medical University Named after N.I. Pirogov, Str. Ostrovityanova, 1, 117997 Moscow, Russia
| | - Sergey A. Rodionov
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics, 10 Priorova Str., 127299 Moscow, Russia
| | - Irina L. Udyanskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Iulian V. Antoniac
- Department of Metallic Materials Science and Physical Metallurg, University Politehnica of Bucharest, Street Splaiul Independentei No 313, Sector 6, 060042 Bucharest, Romania
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
- Correspondence:
| |
Collapse
|
20
|
Fernández-Villa D, Ramírez-Jiménez RA, Aranaz I, Acosta N, Vázquez-Lasa B, Rojo L. Development of Methotrexate Complexes Endowed with New Biological Properties Envisioned for Musculoskeletal Regeneration in Rheumatoid Arthritis Environments. Int J Mol Sci 2022; 23:10054. [PMID: 36077450 PMCID: PMC9456012 DOI: 10.3390/ijms231710054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Methotrexate (MTX) administration is the gold standard treatment for rheumatoid arthritis (RA), but its effects are limited to preventing the progression of the disease. Therefore, effective regenerative therapies for damaged tissues are still to be developed. In this regard, MTX complexes of general molecular formula M(MTX)·xH2O, where M = Sr, Zn, or Mg, were synthesized and physicochemically characterized by TGA, XRD, NMR, ATR-FTIR, and EDAX spectroscopies. Characterization results demonstrated the coordination between the different cations and MTX via two monodentate bonds with the carboxylate groups of MTX. Cation complexation provided MTX with new bioactive properties such as increasing the deposition of glycosaminoglycans (GAGs) and alternative anti-inflammatory capacities, without compromising the immunosuppressant properties of MTX on macrophages. Lastly, these new complexes were loaded into spray-dried chitosan microparticles as a proof of concept that they can be encapsulated and further delivered in situ in RA-affected joints, envisioning them as a suitable alternative to oral MTX therapy.
Collapse
Affiliation(s)
- Daniel Fernández-Villa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Rosa Ana Ramírez-Jiménez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Inmaculada Aranaz
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Niuris Acosta
- Instituto Pluridisciplinar, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros (ICTP) CSIC, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
21
|
He Z, Liu Y, Wang H, Wang J, Pei X, Chen J, Zhang X, Zhu Z, Wan Q. Logic-Based Diagnostic and Therapeutic Nanoplatform with Infection and Inflammation Monitoring and Microenvironmental Regulation Accelerating Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39172-39187. [PMID: 35977147 DOI: 10.1021/acsami.2c07732] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Infectious cutaneous wounds are a thorny clinical problem. The microenvironment of the infectious wound is complicated and changes at different healing stages. Traditional treatments either have a single effect such as anti-inflammation, antibacteria, or angiogenesis or a simple mixture of several functions. They fail to deal with the change of the physiological healing process, leading to unsatisfactory outcomes. Herein, we have designed a logic-based smart nanoplatform (named as ZEM), aiming to self-monitor the wound microenvironment and accordingly react to the changes of the healing process, fitting multiple needs of physiological repair at different stages. ZEM was synthesized using zeolitic imidazolate framework-8 (ZIF-8) coated with an epigallocatechin gallate (EGCG)/Mg2+ complex. We characterized ZEM in the aspects of morphology, physical and chemical properties, and ion release pattern. At the initial stage, ZEM sensed the weakly acidic environment and responsively released a large number of zinc ions to eliminate bacterial infection. Then came the second inflammation stage, where ZEM responded to the oxidative stress of the local wound area with EGCG absorbing excessive reactive oxygen species (ROS), contributing to the downregulation of intracellular ROS. Meanwhile, local inflammation was alleviated by reducing the expression of proinflammatory M1 phenotype factors (IL-6, TNF-α, and IL-1β). Since the balance of local ROS had been achieved, the resulting disintegration of the EGCG/Mg2+ complex gave rise to the sustainable release of Mg2+ at the proliferation stage, promoting vascularized healing. In vivo animal experiments further proved the diagnostic and therapeutic functions of ZEM. All these results demonstrated that ZEM was a promising treatment strategy in soft tissue engineering.
Collapse
Affiliation(s)
- Zihan He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hengfei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Zuev DM, Golubchikov DO, Evdokimov PV, Putlyaev VI. Synthesis of Amorphous Calcium Phosphate Powders for Production of Bioceramics and Composites by 3D Printing. RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622070257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
A Comparative EPR Study of Non-Substituted and Mg-Substituted Hydroxyapatite Behaviour in Model Media and during Accelerated Ageing. CRYSTALS 2022. [DOI: 10.3390/cryst12020297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To assess the application potential of novel biomaterials, their behaviour in model media and upon sterilization should be investigated, as well as the stability related to their storage conditions. Such data are lacking for Mg-substituted HAP (Mg-HAP). Therefore, the changes in the local structure of non-substituted and Mg-HAP after irradiation and immersion in corrected simulated fluid and saline solution for 28 days were followed by electron paramagnetic resonance (EPR) spectroscopy for the first time. To better understand the stability of radical species induced by sterilization, EPR spectra of samples kept for 2 h at temperatures up to 373 K were recorded to provide an insight into the stability of the sample storage conditions by the accelerated aging method. Samples were characterized by PXRD, FTIR, SEM, EDS, AAS and TGA. Results confirmed that irradiation does not induce changes in the composition or the structure of any of the investigated materials. Fading or the complete disappearance of radical signals in the EPR spectra after immersion in both media was accompanied by the disappearance of other phases formed as a minor byproduct in the synthesis of substituted HAP, as confirmed by PXRD and FTIR analysis. Obtained results confirm the great potential of Mg-HAPs for biomedical applications, although closer attention should be given to the processes related to sample storage stability at different temperatures.
Collapse
|