1
|
Makowska S, Szymborski D, Sienkiewicz N, Kairytė A. Current Progress in Research into Environmentally Friendly Rigid Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3971. [PMID: 39203149 PMCID: PMC11355871 DOI: 10.3390/ma17163971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
Polyurethane foams are materials characterized by low density and thermal conductivity and can therefore be used as thermal insulation materials. They are synthesized from toxic and environmentally unfriendly petrochemicals called isocyanates and polyols, which react with each other to form a urethane group via the displacement of the movable hydrogen atom of the -OH group of the alcohol to the nitrogen atom of the isocyanate group. The following work describes the synthesis of polyurethane foams, focusing on using environmentally friendly materials, such as polyols derived from plant sources or modifiers, to strengthen the foam interface derived from plant precipitation containing cellulose derived from paper waste. The polyurethane foam industry is looking for new sources of materials to replace the currently used petrochemical products. The solutions described are proving to be an innovative and promising area capable of changing the face of current PU foam synthesis.
Collapse
Affiliation(s)
- Sylwia Makowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania
| | - Dawid Szymborski
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
| | - Natalia Sienkiewicz
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, 90-924 Lodz, Poland; (S.M.); (D.S.); (N.S.)
| | - Agnė Kairytė
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio av. 11, 10223 Vilnius, Lithuania
| |
Collapse
|
2
|
Radko T, Wajda A, Iluk T, Najser J. Investigation on the Correlation between Mechanical Strength, Grain Size, and Density of Fly Ash Microspheres in the Context of Refining Process. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3459. [PMID: 39063751 PMCID: PMC11278029 DOI: 10.3390/ma17143459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fly ash microspheres, also called cenospheres, have many valuable properties that allow them to be widely used. Some of its most important properties are its mechanical and thermal strength as well as its chemical stability. These features constitute an important commercial parameter. Refining processes aim to select the highest quality product from raw materials that meets the expectations of recipients. Generally, preparing a final product involves selecting the appropriate sequence and parameters of the grain separation process. However, the key to the optimal selection of these parameters is knowledge of the specificity of the processed raw material. Microspheres are materials that are created spontaneously, uncontrolled, and without the possibility of intentionally influencing their properties. Therefore, due to the potential directions of microsphere use, it is justified to study the relationship between density, grain size, and mechanical strength. Understanding these relationships in microspheres from various sources is particularly important at the stage of planning refining processes. This paper presents the results of research on microspheres from two different sources. The tested raw materials (microspheres) are subjected to densiometric and grain analysis. Also, mechanical strength was determined for the separated density fractions and grain classes. The test results did not show significant correlations between the tested features of the microspheres. In the case of both raw materials, the highest density was observed in the smallest grain classes, and the highest mechanical strength was determined for microspheres with grain sizes in the range of 75-100 µm. For this grain size range, the value of mechanical strength is 26 for raw Material 1 and 38 for raw Material 2. The shares of this grain fraction in the microsphere stream are 11.2% and 16%, respectively. An important difference that may significantly affect the efficiency of the refining process is the method of distribution of the primary falling parts, which affects the mechanical strength of the tested raw materials.
Collapse
Affiliation(s)
- Tomasz Radko
- Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland; (T.R.); (T.I.)
| | - Agata Wajda
- Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland; (T.R.); (T.I.)
| | - Tomasz Iluk
- Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland; (T.R.); (T.I.)
| | - Jan Najser
- Institute of Clean Technologies for Extraction and Utilization of Energy Resources, Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic;
| |
Collapse
|
3
|
Pęczek E, Pamuła R, Białowiec A. Recycled Waste as Polyurethane Additives or Fillers: Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1013. [PMID: 38473487 DOI: 10.3390/ma17051013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intensive development of the polyurethanes industry and limited resources (also due to the current geopolitical situation) of the raw materials used so far force the search for new solutions to maintain high economic development. Implementing the principles of a circular economy is an approach aimed at reducing the consumption of natural resources in PU production. This is understood as a method of recovery, including recycling, in which waste is processed into PU, and then re-used and placed on the market in the form of finished sustainable products. The effective use of waste is one of the attributes of the modern economy. Around the world, new ways to process or use recycled materials for polyurethane production are investigated. That is why innovative research is so important, in which development may change the existing thinking about the form of waste recovery. The paper presents the possibilities of recycling waste (such as biochar, bagasse, waste lignin, residual algal cellulose, residual pineapple cellulose, walnut shells, silanized walnut shells, basalt waste, eggshells, chicken feathers, turkey feathers, fiber, fly ash, wood flour, buffing dust, thermoplastic elastomers, thermoplastic polyurethane, ground corncake, Tetra Pak®, coffee grounds, pine seed shells, yerba mate, the bark of Western Red Cedar, coconut husk ash, cuttlebone, glass fibers and mussel shell) as additives or fillers in the formulation of polyurethanes, which can partially or completely replace petrochemical raw materials. Numerous examples of waste applications of one-component polyurethanes have been given. A new unexplored niche for the research on waste recycling for the production of two components has been identified.
Collapse
Affiliation(s)
- Edyta Pęczek
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Renata Pamuła
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
4
|
Cherednichenko K, Kopitsyn D, Smirnov E, Nikolaev N, Fakhrullin R. Fireproof Nanocomposite Polyurethane Foams: A Review. Polymers (Basel) 2023; 15:polym15102314. [PMID: 37242889 DOI: 10.3390/polym15102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
First introduced in 1954, polyurethane foams rapidly became popular because of light weight, high chemical stability, and outstanding sound and thermal insulation properties. Currently, polyurethane foam is widely applied in industrial and household products. Despite tremendous progress in the development of various formulations of versatile foams, their use is hindered due to high flammability. Fire retardant additives can be introduced into polyurethane foams to enhance their fireproof properties. Nanoscale materials employed as fire-retardant components of polyurethane foams have the potential to overcome this problem. Here, we review the recent (last 5 years) progress that has been made in polyurethane foam modification using nanomaterials to enhance its flame retardance. Different groups of nanomaterials and approaches for incorporating them into foam structures are covered. Special attention is given to the synergetic effects of nanomaterials with other flame-retardant additives.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Egor Smirnov
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Nikita Nikolaev
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas "Gubkin University", Moscow 119991, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml Uramı 18, Kazan 420008, Russia
| |
Collapse
|
5
|
Wang H, Liu Y, Lin L. Behavior Characteristics and Thermal Energy Absorption Mechanism of Physical Blowing Agents in Polyurethane Foaming Process. Polymers (Basel) 2023; 15:polym15102285. [PMID: 37242860 DOI: 10.3390/polym15102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Polyurethane rigid foam is a widely used insulation material, and the behavior characteristics and heat absorption performance of the blowing agent used in the foaming process are key factors that affect the molding performance of this material. In this work, the behavior characteristics and heat absorption of the polyurethane physical blowing agent in the foaming process were studied; this is something which has not been comprehensively studied before. This study investigated the behavior characteristics of polyurethane physical blowing agents in the same formulation system, including the efficiency, dissolution, and loss rates of the physical blowing agents during the polyurethane foaming process. The research findings indicate that both the physical blowing agent mass efficiency rate and mass dissolution rate are influenced by the vaporization and condensation process of physical blowing agent. For the same type of physical blowing agent, the amount of heat absorbed per unit mass decreases gradually as the quantity of physical blowing agent increases. The relationship between the two shows a pattern of initial rapid decrease followed by a slower decrease. Under the same physical blowing agent content, the higher the heat absorbed per unit mass of physical blowing agent, the lower the internal temperature of the foam when the foam stops expanding. The heat absorbed per unit mass of the physical blowing agents is a key factor affecting the internal temperature of the foam when it stops expanding. From the perspective of heat control of the polyurethane reaction system, the effects of physical blowing agents on the foam quality were ranked in order from good to poor as follows: HFC-245fa, HFC-365mfc, HFCO-1233zd(E), HFO-1336mzzZ, and HCFC-141b.
Collapse
Affiliation(s)
- Haozhen Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yingshu Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Wang H, Yang X, Liu Y, Lin L. Changes and Trends-Efficiency of Physical Blowing Agents in Polyurethane Foam Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16083186. [PMID: 37110022 PMCID: PMC10142121 DOI: 10.3390/ma16083186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
This work developed a novel method for measuring the effective rate of a PBA (physical blowing agent) and solved the problem that the effective rate of a PBA could not be directly measured or calculated in previous studies. The results show that the effectiveness of different PBAs under the same experimental conditions varied widely, from approximately 50% to almost 90%. In this study, the overall average effective rates of the PBAs HFC-245fa, HFO-1336mzzZ, HFC-365mfc, HFCO-1233zd(E), and HCFC-141b are in descending order. In all experimental groups, the relationship between the effective rate of the PBA, rePBA, and the initial mass ratio of the PBA to other blending materials in the polyurethane rigid foam, w, demonstrated a trend of first decreasing and then gradually stabilizing or slightly increasing. This trend is caused by the interaction of PBA molecules among themselves and with other component molecules in the foamed material and the temperature of the foaming system. In general, the influence of system temperature dominated when w was less than 9.05 wt%, and the interaction of PBA molecules among themselves and with other component molecules in the foamed material dominated when w was greater than 9.05 wt%. The effective rate of the PBA is also related to the states of gasification and condensation when they reach equilibrium. The properties of the PBA itself determine the overall efficiency, while the balance between the gasification and condensation processes of the PBA further leads to a regular change in efficiency with respect to w around the overall average level.
Collapse
|
7
|
Comparative Study on Selected Properties of Modified Polyurethane Foam with Fly Ash. Int J Mol Sci 2022; 23:ijms23179725. [PMID: 36077123 PMCID: PMC9456515 DOI: 10.3390/ijms23179725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
The aim of the article is to compare two types of fly ash (from the fluidized and pulverized coal combustion process) as a filler for rigid polyurethane foam. Pulverized fly ash (PFA) is widely used in building materials, while fluidized fly ash (FFA) is not currently recycled, but landfilled. The produced rigid polyurethane foams were reinforced with 5 and 10% by weight addition of fly ash from two different types of boilers. The foaming process, physical properties, morphologies and thermal degradation were subject to comparative analysis. The research indicated that fly ash intensifies the reactions of foam synthesis, most commonly, polyurethane (PU) foam with an addition of 10% PFA. What is interesting is that both ashes can be used in PU foam technology as they do not cause deterioration of the physical parameters. As shown, the addition of filler affects the morphology and impairs the brittleness. Additionally, the use of fly ash from coal combustion in the technology of polyurethane materials complies with the guidelines of the circular economy stated in the European Union legislation. Partial replacement of petrochemical components with waste filler also reduces the total energy consumption in the production of PU composites.
Collapse
|
8
|
Zhang S, Liu W, Yang K, Yu W, Zhu F, Zheng Q. The Influence of Fly Ash on the Foaming Behavior and Flame Retardancy of Polyurethane Grouting Materials. Polymers (Basel) 2022; 14:polym14061113. [PMID: 35335444 PMCID: PMC8951062 DOI: 10.3390/polym14061113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Polyurethane (PU) grouting material has been widely utilized to control water inrush in mining fields. However, the application has been limited by its high cost and poor flame retardancy. Here, we use the fly ash (FA), a waste from coal of the iron-making industry and power plants, as a partial replacement of conventional filler in PU grouting materials to reduce the production cost and the environmental pollution of FA. The surface-modified FA-filled PU (PU/FA) composites were prepared by room-temperature curing. The effects of FA contents (φ) on the structure, foaming behavior, thermal stability, mechanical properties, hydrophobic properties, and flammability of PU grouting materials were examined. Results showed that the higher the φ, the more porous the PU/FA composites are, resulting in a lower density and lower mechanical properties. The relationship between the compression modulus E and the density ρ of the PU/FA composites was E ∝ ρ1.3. In addition, the surface-modified FA improved the compatibility between the hard and soft segment of PU in the PU/FA composite, giving the composites enhanced thermal stability, high hydrophobicity, and flammability resistance.
Collapse
Affiliation(s)
- Sitong Zhang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (S.Z.); (W.L.); (K.Y.); (F.Z.)
| | - Wenying Liu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (S.Z.); (W.L.); (K.Y.); (F.Z.)
| | - Kaijie Yang
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (S.Z.); (W.L.); (K.Y.); (F.Z.)
| | - Wenwen Yu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (S.Z.); (W.L.); (K.Y.); (F.Z.)
- Correspondence: (W.Y.); (Q.Z.)
| | - Fengbo Zhu
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (S.Z.); (W.L.); (K.Y.); (F.Z.)
| | - Qiang Zheng
- College of Materials Science & Engineering, Taiyuan University of Technology, Taiyuan 030024, China; (S.Z.); (W.L.); (K.Y.); (F.Z.)
- Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
- Correspondence: (W.Y.); (Q.Z.)
| |
Collapse
|
9
|
The Effect of Ash Silanization on the Selected Properties of Rigid Polyurethane Foam/Coal Fly Ash Composites. ENERGIES 2022. [DOI: 10.3390/en15062014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
According to the assumptions of the European Union, by 2050 it is planned to achieve climate neutrality. For this purpose, a document called the “European Green Deal” was established, which is a set of policies of the European Commission. One of the assumptions is a circular economy that takes into account the use of waste in subsequent production cycles. In order to meet the latest trends in environmentally friendly materials and use of waste in the production of building materials, composites of rigid polyurethane foam with 10 wt.% of waste were produced. Fly ash from coal combustion after modification was used as a filler. Three types of modifications were used: silanization, sieving, and both processes together. The silanization process was carried out for 1 and 2% silane ([3-(2-aminoethylamino)propyl]trimethoxysilane) concentration in relation to the fly ash mass. The sieving was aimed at reaching a fraction with a particle diameter below 75 µm. Six composites with modified fillers were compared and one material containing unchanged fly ash was used as a reference. A comparative analysis was carried out on the basis of surface analysis, thermal stability and physical properties. It turned out that the polyurethane materials modified fly ash silanized with 1% and 2% silane solution proved the best results in performed tests. On the other hand, the polyurethane foam containing sieved ash was characterized by the lowest flammability and the lowest emission of smoke and CO. The use of modified fly ash in technology of polyurethane foams can be a good method of its disposal and can increase the applicability of the composites.
Collapse
|
10
|
Gabrijel I, Jelčić Rukavina M, Štirmer N. Influence of Wood Fly Ash on Concrete Properties through Filling Effect Mechanism. MATERIALS 2021; 14:ma14237164. [PMID: 34885318 PMCID: PMC8658400 DOI: 10.3390/ma14237164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022]
Abstract
This paper presents the results of an experimental study aimed at determining the influence of wood fly ash (WFA) from three Croatian power plants on the properties of concrete. First, the chemical and physical properties of WFA’s were determined. It was found that these properties are highly influenced by combustion technology, the type and parts of wood used as fuel, and the local operating conditions. Subsequently, workability, heat of hydration, stiffness development, 28-day compressive strength, apparent porosity, and capillary absorption were determined on concrete mixes prepared with WFA as cement replacement from 5–45% by weight. Cement replacement up to 15% with the finest WFA accelerated hydration, stiffness development, and increased compressive strength of concrete up to 18%, while replacement with coarser WFA’s led to a decrease in compressive strength of up to 5% and had more gradual heat liberation. The dominant effect that could explain these findings is attributed to the filler and filling effect mechanisms. At the same time replacement content of up to 45% had very little effect on capillary absorption and could give concrete with sufficiently high compressive strength to be suitable for construction purposes.
Collapse
|