1
|
Sahm BD, Ferreira I, Carvalho-Silva JM, Teixeira ABV, Teixeira JVU, Lisboa-Filho PN, Dos Reis AC. Microstructural characterization, mechanical and microbiological properties of acrylic resins added with reduced graphene oxide. Odontology 2024:10.1007/s10266-024-00981-7. [PMID: 39046588 DOI: 10.1007/s10266-024-00981-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
To evaluate the microstructural characterization, mechanical properties and antimicrobial activity of acrylic resins incorporated with different concentrations of reduced graphene oxide (rGO). Specimens were made of self-cured and heat-cured acrylic resins for the control group and concentrations of 0.5%, 1%, and 3%. The microstructural characterization was evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS). For mechanical testing, flexural strength, and Knoop hardness tests were performed. Microbiological evaluations were performed by colony forming units (CFU) analysis, tetrazolium salt reduction (XTT), and SEM images. The modified acrylic resins showed increased mechanical properties at low concentrations (p < 0.05) and with reduced S. mutans (p < 0.05). Reduced graphene oxide interfered with the mechanical performance and microbiological properties of acrylic resins depending on the concentration of rGO, and type of polymerization and microorganism evaluated. The incorporation of graphene compounds into acrylic resins is an alternative to improve the antimicrobial efficacy and performance of the material.
Collapse
Affiliation(s)
- Beatriz Danieletto Sahm
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), FORP-USP. Av. Do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Izabela Ferreira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), FORP-USP. Av. Do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), FORP-USP. Av. Do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Ana Beatriz Vilela Teixeira
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), FORP-USP. Av. Do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | | | | | - Andréa Cândido Dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), FORP-USP. Av. Do Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
2
|
Çakmak G, Rusa AM, Donmez MB, Akay C, Kahveci Ç, Schimmel M, Yilmaz B. Trueness of crowns fabricated by using additively and subtractively manufactured resin-based CAD-CAM materials. J Prosthet Dent 2024; 131:951-958. [PMID: 36470758 DOI: 10.1016/j.prosdent.2022.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022]
Abstract
STATEMENT OF PROBLEM Advancements in digital dental technologies have enabled the use of different resin-based materials that can be fabricated either additively or subtractively. However, knowledge on the fabrication trueness of these materials is scarce. PURPOSE The purpose of this in vitro study was to investigate the trueness of crowns fabricated by using different resin-based computer-aided design and computer-aided manufacturing (CAD-CAM) materials. MATERIAL AND METHODS A complete crown for a mandibular right first molar with a 30-μm cement space was designed in standard tessellation language (STL) format. This master STL (MC-STL) was used to fabricate 40 complete crowns with 4 different resin-based CAD-CAM materials and either additive (Crowntec [MS]) or subtractive techniques (Brilliant Crios [BC], breCAM.monoCOM [PMMA], and G-CAM [GR]; n=10). All crowns were digitized with an intraoral scanner (CEREC Primescan SW 5.2) to generate their STL files (TC-STLs). MC-STL and TC-STLs were transferred into a 3-dimensional analysis software program (Medit Link v2.4.4), and a trueness (overall, external, occlusal, intaglio occlusal, and marginal) analysis was performed by using the root mean square (RMS) method. The Kruskal-Wallis and Dunn tests were performed to analyze data (α=.05). RESULTS The test groups had significantly different deviations on all surfaces (P≤.001). MS crowns had higher overall (P≤.007) and external surface (P≤.001) deviations than GR and PMMA crowns, while the differences between GR and PMMA crowns were not significant (P≥.441). BC crowns had higher external surface deviations than GR crowns (P=.005), higher occlusal deviations than GR and MS crowns (P≤.007), and higher intaglio occlusal deviations than GR and MS crowns (P≤.009). However, BC crowns had lower marginal deviations than MS and GR crowns (P≤.018). CONCLUSIONS The brand of resin-based CAD-CAM materials affected the trueness of crowns. Additively manufactured crowns (MS) mostly had lower overall and external surface trueness than the other groups. Nevertheless, the deviation values of occlusal, intaglio occlusal, and marginal trueness were generally small; thus, the effect of the tested materials on clinical crown fit may be negligible.
Collapse
Affiliation(s)
- Gülce Çakmak
- Senior Research Associate, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ana Maria Rusa
- Dissertation Student, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Mustafa Borga Donmez
- Asisstant Professor, Department of Prosthodontics, Istinye University, Faculty of Dentistry, İstanbul, Turkey; Visiting Researcher, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Canan Akay
- Associate Professor, Department of Prosthodontics, Faculty of Dentistry, Osmangazi University, Eskisehir, Turkey; Associate Professor, Translational Medicine Research and Clinical Center, Osmangazi University, Eskisehir, Turkey
| | - Çiğdem Kahveci
- Assistant Professor, Department of Prosthodontics, Giresun University Faculty of Dentistry, Giresun, Turkey
| | - Martin Schimmel
- Chairman, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; External Research Associate, Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Burak Yilmaz
- Associate Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
3
|
Çakmak G, Weber FA, Donmez MB, Kahveci Ç, Schimmel M, Yilmaz B. Effect of coffee thermocycling on the surface roughness and stainability of denture base materials with different chemical compositions manufactured with additive and subtractive technologies. J ESTHET RESTOR DENT 2024; 36:453-459. [PMID: 37705502 DOI: 10.1111/jerd.13136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE To evaluate the effect of coffee thermocycling (CTC) on the surface roughness (Ra ) and stainability of denture base materials with different chemical compositions fabricated by using additive and subtractive manufacturing. MATERIALS AND METHODS Disk-shaped specimens were additively (FREEPRINT denture, AM) or subtractively (G-CAM, GSM and M-PM, SM) fabricated from three pink denture base materials in different chemical compositions (n = 10). Ra was measured before and after polishing, while color coordinates were measured after polishing. Specimens were subjected to CTC (5000 cycles) and measurements were repeated. Color differences (ΔE00 ) after CTC were calculated. Ra among different time intervals within materials was evaluated by using repeated measures analysis of variance (ANOVA), while 1-way ANOVA was used to evaluate the Ra of different materials within each time interval and the ΔE00 values. Color coordinates within each material were compared by using paired samples t-tests (α = 0.05). RESULTS Ra before polishing was the highest for all materials (p < 0.001), while SM had its lowest Ra after CTC and AM had its lowest Ra after polishing (p ≤ 0.008). Before polishing, AM had the highest Ra among the materials (p < 0.001). After polishing, SM had higher Ra than AM (p < 0.001). After CTC, GSM had the lowest Ra (p ≤ 0.048). SM had the lowest (p ≤ 0.031) and AM had the highest (p < 0.001) ΔE00 . CTC decreased the a* and b* values of SM and AM (p ≤ 0.017), and increased the L* values of AM (p < 0.001). CONCLUSIONS Polishing significantly reduced the surface roughness of all materials. CTC did not increase the surface roughness of materials above the clinically acceptable threshold. Only AM had perceptible color change when previously reported threshold values for denture base materials were considered. CLINICAL SIGNIFICANCE Tested denture base materials may have similar surface stability after coffee thermocycling. However, subtractively manufactured denture base materials may have improved color stability when subjected to long-term coffee consumption.
Collapse
Affiliation(s)
- Gülce Çakmak
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Franziska Alexandra Weber
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Zahnarztpraxis Landmesser, Spiez, Switzerland
- Zahnarztpraxis Krebs, Oey, Switzerland
| | - Mustafa Borga Donmez
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Prosthodontics, Faculty of Dentistry, Istinye University, İstanbul, Turkey
| | | | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
- Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
4
|
Sahm BD, Teixeira ABV, dos Reis AC. Graphene loaded into dental polymers as reinforcement of mechanical properties: A systematic review. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:160-166. [PMID: 37362606 PMCID: PMC10285463 DOI: 10.1016/j.jdsr.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Graphene compounds are incorporated into polymers in order to improve their mechanical properties and in dentistry this modification favors the clinical performance of these materials. The aim of this review was to evaluate graphene compounds, their concentrations, and their effect on mechanical properties as flexural, tensile, and compressive strength and hardness of polymethylmethacrylate (PMMA) and polyether-ether-ketone (PEEK) for dental application. The search was carried out in two steps in PubMed/Medline, Embase, Scopus, and Web of Science databases. The eligibility criteria included studies that incorporated pure graphene compounds into dental polymers and evaluated their mechanical properties. Were found 4984 results, of which 11 articles were included in this review. Graphene compounds: graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanoplatelets (GNP) were incorporated into PMMA and PEEK, in concentrations ranging from 0.1 to 10 wt%. Concentrations lower than 0.75 wt% of GO in PMMA and 1 wt% of GNP in PEEK resulted in increased flexural, tensile, compression strength, and hardness of these polymers. It was concluded that the incorporation of graphene compounds in low concentrations increases dental polymers' mechanical properties.
Collapse
Affiliation(s)
| | | | - Andréa Cândido dos Reis
- Correspondence to: Department of Dental Materials and Prosthesis, Ribeirão Preto School of Dentistry, University of São Paulo (USP), Av. Do Café, s/n, 14040-904 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Apostu AM, Sufaru IG, Tanculescu O, Stoleriu S, Doloca A, Ciocan Pendefunda AA, Solomon SM. Can Graphene Pave the Way to Successful Periodontal and Dental Prosthetic Treatments? A Narrative Review. Biomedicines 2023; 11:2354. [PMID: 37760795 PMCID: PMC10525677 DOI: 10.3390/biomedicines11092354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene, as a promising material, holds the potential to significantly enhance the field of dental practices. Incorporating graphene into dental materials imparts enhanced strength and durability, while graphene-based nanocomposites offer the prospect of innovative solutions such as antimicrobial dental implants or scaffolds. Ongoing research into graphene-based dental adhesives and composites also suggests their capacity to improve the quality and reliability of dental restorations. This narrative review aims to provide an up-to-date overview of the application of graphene derivatives in the dental domain, with a particular focus on their application in prosthodontics and periodontics. It is important to acknowledge that further research and development are imperative to fully explore the potential of graphene and ensure its safe use in dental practices.
Collapse
Affiliation(s)
- Alina Mihaela Apostu
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina-Georgeta Sufaru
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Tanculescu
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Stoleriu
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Adrian Doloca
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alice Arina Ciocan Pendefunda
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Sorina Mihaela Solomon
- Odontology-Periodontology and Fixed Prosthodontics Department, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
6
|
Çakmak G, Herren KV, Donmez MB, Kahveci Ç, Schimmel M, Yilmaz B. Effect of coffee thermocycling on the surface roughness and stainability of nanographene-reinforced polymethyl methacrylate used for fixed definitive prostheses. J Prosthet Dent 2023; 129:507.e1-507.e6. [PMID: 36737355 DOI: 10.1016/j.prosdent.2022.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/04/2023]
Abstract
STATEMENT OF PROBLEM A nanographene-reinforced polymethyl methacrylate (PMMA) has been introduced for definitive prostheses. However, knowledge on the surface roughness and stainability of this material is lacking. PURPOSE The purpose of this in vitro study was to compare the surface roughness and stainability of nanographene-reinforced PMMA with those of a prepolymerized PMMA and a reinforced composite resin after coffee thermocycling. MATERIAL AND METHODS Disk-shaped specimens (Ø10×1.5-mm) were prepared from 3 different A1-shade millable resins (prepolymerized PMMA [M-PM; PMMA]; nanographene-reinforced PMMA [G-CAM; G-PMMA]; reinforced composite resin [Brilliant Crios; RCR]). Surface roughness (Ra) values were measured before and after conventional polishing by using a noncontact profilometer. Initial color coordinates were measured over a gray background with a spectrophotometer after polishing. Specimens were then thermocycled in coffee for 5000 cycles. Measurements were repeated after coffee thermocycling, and color differences (ΔE00) were calculated. Ra values among different time intervals were analyzed by using either the Friedman and Dunn tests (RCR) or repeated measures analysis of variance (ANOVA) and Bonferroni corrected paired samples t tests (PMMA and G-PMMA), while Ra values within a time interval were analyzed by using either the Kruskal-Wallis and Dunn tests (before polishing) or 1-way ANOVA and Tukey HSD (after polishing) or Tamhane T2 tests (after coffee thermocycling). ΔE00 values were analyzed by using 1-way ANOVA and Tukey HSD tests, while color coordinates of the specimens after polishing and after coffee thermocycling were compared by using paired samples t tests (α=.05). RESULTS All materials had their highest Ra values before polishing (P≤.011), while differences after polishing and after coffee thermocycling values were nonsignificant (P≥.140). PMMA had higher Ra than RCR before polishing (P=.002), and RCR had higher values than G-PMMA after polishing and after coffee thermocycling (P≤.023). RCR had the highest ΔE00 (P<.001). Polishing increased the b∗ values of PMMA, and coffee thermocycling increased the a∗ values of G-PMMA and all values of RCR (P≤.012). CONCLUSIONS The tested materials had similar and acceptable surface roughness after polishing. The surface roughness of materials was not affected by coffee thermocycling. Considering the reported color thresholds, all materials had acceptable color change, but the computer-aided design and computer-aided manufacturing composite resin had perceptible color change after coffee thermocycling.
Collapse
Affiliation(s)
- Gülce Çakmak
- Senior Research Associate, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Kira Vera Herren
- Predoctoral student, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Private Practice, Zahnaerzte Flamatt, Wünnewil-Flamatt, Switzerland
| | - Mustafa Borga Donmez
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Istinye University, İstanbul, Turkey; Visiting Researcher, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Çiğdem Kahveci
- Assistant Professor, Department of Prosthodontics, Faculty of Dentistry, Giresun University, Giresun, Turkey
| | - Martin Schimmel
- Chairman, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; External Research Associate, Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Burak Yilmaz
- Associate Professor, Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Associate Professor, Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Adjunct Professor, Division of Restorative and Prosthetic Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
7
|
Graphene-Doped Polymethyl Methacrylate (PMMA) as a New Restorative Material in Implant-Prosthetics: In Vitro Analysis of Resistance to Mechanical Fatigue. J Clin Med 2023; 12:jcm12041269. [PMID: 36835805 PMCID: PMC9960587 DOI: 10.3390/jcm12041269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Provisional prostheses in restorations over several implants with immediate loading in completely edentulous patients increase the risk of frequent structural fractures. An analysis was performed of the resistance to fracture of prosthetic structures with cantilevers using graphene-doped polymethyl methacrylate (PMMA) resins and CAD-CAM technology. METHODS A master model was produced with four implants measuring 4 mm in diameter and spaced 3 mm apart, over which 44 specimens representing three-unit fixed partial prostheses with a cantilever measuring 11 mm were placed. These structures were cemented over titanium abutments using dual cure resin cement. Twenty-two of the 44 units were manufactured from machined PMMA discs, and 22 were manufactured from PMMA doped with graphene oxide nanoparticles (PMMA-G). All of the samples were tested in a chewing simulator with a load of 80 N until fracture or 240,000 load applications. RESULTS The mean number of load applications required for temporary restoration until the fracture was 155,455 in the PMMA-G group versus 51,136 in the PMMA group. CONCLUSIONS Resistance to fracture under cyclic loading was three times greater in the PMMA-G group than in the PMMA group.
Collapse
|
8
|
Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials. Polymers (Basel) 2022; 14:polym14245346. [PMID: 36559715 PMCID: PMC9785261 DOI: 10.3390/polym14245346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer.
Collapse
|