1
|
Li Y, Cao CF, Chen ZY, Liu SC, Bae J, Tang LC. Waterborne Intumescent Fire-Retardant Polymer Composite Coatings: A Review. Polymers (Basel) 2024; 16:2353. [PMID: 39204573 PMCID: PMC11360002 DOI: 10.3390/polym16162353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Intumescent fire-retardant coatings, which feature thinner layers and good decorative effects while significantly reducing heat transfer and air dispersion capabilities, are highly attractive for fire safety applications due to their effective prevention of material combustion and protection of materials. Particularly, the worldwide demand for improved environmental protection requirements has given rise to the production of waterborne intumescent fire-retardant polymer composite coatings, which are comparable to or provide more advantages than solvent-based intumescent fire-retardant polymer composite coatings in terms of low cost, reduced odor, and minimal environmental and health hazards. However, there is still a lack of a comprehensive and in-depth overview of waterborne intumescent fire-retardant polymer composite coatings. This review aims to systematically and comprehensively discuss the composition, the flame retardant and heat insulation mechanisms, and the practical applications of waterborne intumescent fire-retardant polymer composite coatings. Finally, some key challenges associated with waterborne intumescent fire-retardant polymer composite coatings are highlighted, following which future perspectives and opportunities are proposed.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (C.-F.C.); (Z.-Y.C.); (S.-C.L.)
| | - Cheng-Fei Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (C.-F.C.); (Z.-Y.C.); (S.-C.L.)
| | - Zuan-Yu Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (C.-F.C.); (Z.-Y.C.); (S.-C.L.)
| | - Shuai-Chi Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (C.-F.C.); (Z.-Y.C.); (S.-C.L.)
| | - Joonho Bae
- Department of Physics, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Long-Cheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China; (Y.L.); (C.-F.C.); (Z.-Y.C.); (S.-C.L.)
| |
Collapse
|
2
|
Prasath S, Palaniappan K, Chan S, James C. A scoping review to evaluate occupational controls and their effectiveness when handling engineered nanomaterials in workplaces. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:515-528. [PMID: 38754019 DOI: 10.1080/15459624.2024.2339383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Research has shown that controlling worker exposure to engineered nanomaterials (ENMs) helps to reduce the exposure risk to employees in workplaces. This study aimed to identify the available evidence on the effectiveness of various control methods used in the workplace to reduce worker exposure to ENMs. The search was conducted in databases-Medline, OVID, Scopus, Science Direct, Web of Science, and Cochrane and the gray literature published from January 2010 to December 2022. The search keywords included ENM controls and their efficiency in workplace environments. Of the 152 studies retrieved, 22 were included in the review. The control measures in the review included (1) substitution controls; (2) engineering measures (i.e., isolation, direct source extraction, and wetting technologies); (3) personal protective equipment; and (4) administrative and work practices. The study results indicate that the above-mentioned control measures were effective in reducing ENM exposures. This information can be used to help employers choose the most effective controls for their workplaces.
Collapse
Affiliation(s)
- Sriram Prasath
- University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | - Carole James
- University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
3
|
Tao H, Wang G, Liu J, Yang Z. A deep learning-based dynamic deformable adaptive framework for locating the root region of the dynamic flames. PLoS One 2024; 19:e0301839. [PMID: 38630706 PMCID: PMC11023485 DOI: 10.1371/journal.pone.0301839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/24/2024] [Indexed: 04/19/2024] Open
Abstract
Traditional optical flame detectors (OFDs) in flame detection are susceptible to environmental interference, which will inevitably cause detection errors and miscalculations when confronted with a complex environment. The conventional deep learning-based models can mitigate the interference of complex environments by flame image feature extraction, which significantly improves the precision of flame recognition. However, these models focus on identifying the general profile of the static flame, but neglect to effectively locate the source of the dynamic flame. Therefore, this paper proposes a novel dynamic flame detection method named Dynamic Deformable Adaptive Framework (DDAF) for locating the flame root region dynamically. Specifically, to address limitations in flame feature extraction of existing detection models, the Deformable Convolution Network v2 (DCNv2) is introduced for more flexible adaptation to the deformations and scale variations of target objects. The Context Augmentation Module (CAM) is used to convey flame features into Dynamic Head (DH) to feature extraction from different aspects. Subsequently, the Layer-Adaptive Magnitude-based Pruning (LAMP) where the connection with the smallest LAMP score is pruned sequentially is employed to further enhance the speed of model detection. More importantly, both the coarse- and fine-grained location techniques are designed in the Inductive Modeling (IM) to accurately delineate the flame root region for effective fire control. Additionally, the Temporal Consistency-based Detection (TCD) contributes to improving the robustness of model detection by leveraging the temporal information presented in consecutive frames of a video sequence. Compared with the classical deep learning method, the experimental results on the custom flame dataset demonstrate that the AP0.5 value is improved by 4.4%, while parameters and FLOPs are reduced by 25.3% and 25.9%, respectively. The framework of this research extends applicability to a variety of flame detection scenarios, including industrial safety and combustion process control.
Collapse
Affiliation(s)
- Hongkang Tao
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
| | - Guhong Wang
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
| | - Jiansheng Liu
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
- Research Center of Manufacturing Industry Information Engineering Technology of Jiangxi Province, Nanchang, China
| | - Zan Yang
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
- Jiangxi Tellhow Military Industry Group Co., Ltd., Nanchang, China
| |
Collapse
|
4
|
Serbezeanu D, Hamciuc C, Vlad-Bubulac T, Onofrei MD, Bargan A, Rusu D, Suflet DM, Lisa G. Electrospun Nanofibers Based on Polymer Blends with Tunable High-Performance Properties for Innovative Fire-Resistant Materials. Polymers (Basel) 2022; 14:polym14245501. [PMID: 36559867 PMCID: PMC9785993 DOI: 10.3390/polym14245501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The main concern of materials designed for firefighting protective clothing applications is heat protection, which can be experienced from any uncomfortably hot objects or inner spaces, as well as direct contact with flame. While textile fibers are one of the most important components of clothing, there is a constant need for the development of innovative fire-retardant textile fibers with improved thermal characteristics. Lately, inherently fire-resistant fibers have become very popular to provide better protection for firefighters. In the current study, the electrospinning technique was applied as a versatile method to produce micro-/nano-scaled non-woven fibrous membranes based on various ratios of a poly(ether-ether-ketone) (PEEK) and a phosphorus-containing polyimide. Rheological measurements have been performed on solutions of certain ratios of these components in order to optimize the electrospinning process. FTIR spectroscopy and scanning electron microscopy were used to investigate the chemical structure and morphology of electrospun nanofiber membranes, while thermogravimetric analysis, heat transfer measurements and differential scanning calorimetry were used to determine their thermal properties. The water vapor sorption behavior and mechanical properties of the optimized electrospun nanofiber membranes were also evaluated.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
- Correspondence: (D.S.); (C.H.)
| | - Corneliu Hamciuc
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
- Correspondence: (D.S.); (C.H.)
| | - Tăchiță Vlad-Bubulac
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Mihaela-Dorina Onofrei
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Alexandra Bargan
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Daniela Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Dana Mihaela Suflet
- “Petru Poni” Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania
| | - Gabriela Lisa
- Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania
| |
Collapse
|
5
|
Rabajczyk A, Zielecka M, Gniazdowska J. Application of Nanotechnology in Extinguishing Agents. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8876. [PMID: 36556682 PMCID: PMC9783549 DOI: 10.3390/ma15248876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Extinguishing agents are a very important tool in the field of security, both in terms of private and social aspects. Depending on the type of burning substance and place of fire, appropriately prepared and developed solutions should be used. We can distinguish, among others, materials, powders or foaming agents. Modifications introduced into them, including ones based on the achievements in the field of nanotechnology, can improve their safety of use and extend their service life. Such amendments also reduce the costs of production and neutralization of the area after a fire, and increase the fire extinguishing effectiveness. The introduction of nanoparticles allows, e.g., shortening of the fire extinguishing time, reduction of the risk of smoke emission and the toxic substances contained in it, and an increase in the specific surface of particles and thus increasing the sorption of pollutants. The elaborations use metal nanoparticles, e.g., NP-Ag, metal oxides such as NP-SiO2, as well as particles of substances already present in extinguishing agents but treated and reduced to nanosize. It should be noted, however, that all changes must lead to obtaining a tool that meets the relevant legal requirements and has appropriate approvals.
Collapse
|
6
|
Rajawat AS, Singh S, Gangil B, Ranakoti L, Sharma S, Asyraf MRM, Razman MR. Effect of Marble Dust on the Mechanical, Morphological, and Wear Performance of Basalt Fibre-Reinforced Epoxy Composites for Structural Applications. Polymers (Basel) 2022; 14:1325. [PMID: 35406199 PMCID: PMC9002972 DOI: 10.3390/polym14071325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
The reinforcement of natural fibre and fillers in polymer resin is the latest trend followed by research groups and industries for the development of sustainable composites. Basalt fibre and waste marble powder are naturally occurring substances used to enhanced polymer properties. The present research examined the effect of both basalt fibre and waste marble powder in epoxy resin. The hand lay-up method was employed to fabricate the composite and test for mechanical and wear behaviour. The tensile, flexural, and impact energy were enhanced up to 7.5 wt. % of WMP, and the Vickers hardness of epoxy enhanced every state of reinforcement of WMP. The specific wear rate was observed to be increased with the addition of WMP until 7.5 wt. %. Scanning electron microscopy was performed to examine the nature of fractured surface wear phenomena.
Collapse
Affiliation(s)
- Abhinay Singh Rajawat
- Department of Mechanical Engineering, Maharana Pratap College of Technology, Gwalior 474406, Madhya Pradesh, India; (A.S.R.); (S.S.)
| | - Sanjeev Singh
- Department of Mechanical Engineering, Maharana Pratap College of Technology, Gwalior 474406, Madhya Pradesh, India; (A.S.R.); (S.S.)
| | - Brijesh Gangil
- Mechanical Engineering Department, H.N.B. Garhwal University, Srinagar-Garhwal 246174, Uttarakhand, India;
| | - Lalit Ranakoti
- Mechanical Engineering Department, Graphic Era Deemed to be University, Dehradun 248003, Uttarakhand, India;
| | - Shubham Sharma
- University Center for Research & Development, Mechanical Engineering Department, Chandigarh University, Mohali 140413, Punjab, India
- Department of Mechanical Engineering, Main Campus-Kapurthala, IK Gujral Punjab Technical University, Kapurthala 144603, Punjab, India
| | | | - Muhammad Rizal Razman
- Research Centre for Sustainability Science and Governance (S.G.K.), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (U.K.M.), Bangi 43600, Selangor, Malaysia
| |
Collapse
|