1
|
Barrientos-Salcedo C, Soriano-Correa C, Hernández-Laguna A, Sainz-Díaz CI. Structure and Intercalation of Cysteine-Asparagine-Serine Peptide into Montmorillonite as an Anti-Inflammatory Agent Preparation-A DFT Study. Molecules 2024; 29:4250. [PMID: 39275099 PMCID: PMC11396832 DOI: 10.3390/molecules29174250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Peptides are receiving significant attention in pharmaceutical sciences due to their applications as anti-inflammatory drugs; however, many aspects of their interactions and mechanisms at the molecular level are not well-known. This work explores the molecular structure of two peptides-(i) cysteine (Cys)-asparagine (Asn)-serine (Ser) (CNS) as a molecule in the gas phase and solvated in water in zwitterion form, and (ii) the crystal structure of the dipeptide serine-asparagine (SN), a reliable peptide indication whose experimental cell parameters are well known. A search was performed by means of atomistic calculations based on density functional theory (DFT). These calculations matched the experimental crystal structure of SN, validating the CNS results and useful for assignments of our experimental spectroscopic IR bands. Our calculations also explore the intercalation of CNS into the interlayer space of montmorillonite (MNT). Our quantum mechanical calculations show that the conformations of these peptides change significantly during intercalation into the confined interlayer space of MNT. This intercalation is energetically favorable, indicating that this process can be a useful preparation for therapeutic anti-inflammatory applications and showing high stability and controlled release processes.
Collapse
Affiliation(s)
| | - Catalina Soriano-Correa
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain
- Unidad de Química Computacional, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Mexico City C.P. 09230, Mexico
| | - Alfonso Hernández-Laguna
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain
| | - Claro Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, Consejo Superior de Investigaciones Científicas, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain
| |
Collapse
|
2
|
Sadok I, Grochowicz M, Krzyszczak-Turczyn A. 4-Vinylpyridine copolymers for improved LC-MS tryptophan and kynurenine determination in human serum. Sci Rep 2024; 14:18622. [PMID: 39128928 PMCID: PMC11317505 DOI: 10.1038/s41598-024-69491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
Tryptophan (an essential amino acid) and its clinically important metabolite-kynurenine contribute to several fundamental biological processes and methods that allow their determination in biological samples are in demand. The novelty of the work was a demonstration of the utility of two polymers: 4-vinylpyridine crosslinked with trimethylolpropane trimethacrylate (poly(4VP-co-TRIM)) or 1,4-dimethacryloyloxybenzene (poly(4VP-co-14DMB))-in terms of human serum clean-up for simultaneous LC-MS determination of tryptophan and kynurenine. The goal was to achieve a reduction of the matrix effect, which is responsible for signal suppression, with minimal capture of analytes. The adsorption properties of the polymeric beads were studied by evaluating the adsorption kinetics and isotherms in model matrices. Therefore, the adsorption capacities of both molecules were not efficient, the tested 4-vinylpyridine-based copolymers have shown great promise (especially poly(4VP-co-TRIM)) as sorbents for serum clean-up. In the model human serum matrix, poly(4VP-co-TRIM) provided good recoveries of tryptophan and kynurenine (76% and 87%, respectively) and allowed for the reduction of the matrix effect. Performances of both copolymers were compared to those of commercially available sorbents (octadecylsilane, activated charcoal, and primary secondary amine).
Collapse
Affiliation(s)
- Ilona Sadok
- Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, the John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland.
| | - Marta Grochowicz
- Department of Polymer Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33, 20-614, Lublin, Poland
| | - Agnieszka Krzyszczak-Turczyn
- Department of Chemistry, Institute of Biological Sciences, Faculty of Medicine, the John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708, Lublin, Poland
| |
Collapse
|
3
|
Matić J, Piotrowski P, Vrban L, Kobetić R, Vianello R, Jurić I, Fabijanić I, Pernar Kovač M, Brozovic A, Piantanida I, Schmuck C, Radić Stojković M. Distinctive Nucleic Acid Recognition by Lysine-Embedded Phenanthridine Peptides. Int J Mol Sci 2024; 25:4866. [PMID: 38732083 PMCID: PMC11084427 DOI: 10.3390/ijms25094866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Three new phenanthridine peptide derivatives (19, 22, and 23) were synthesized to explore their potential as spectrophotometric probes for DNA and RNA. UV/Vis and circular dichroism (CD) spectra, mass spectroscopy, and computational analysis confirmed the presence of intramolecular interactions in all three compounds. Computational analysis revealed that compounds alternate between bent and open conformations, highlighting the latter's crucial influence on successful polynucleotide recognition. Substituting one glycine with lysine in two regioisomers (22, 23) resulted in stronger binding interactions with DNA and RNA than for a compound containing two glycines (19), thus emphasizing the importance of lysine. The regioisomer with lysine closer to the phenanthridine ring (23) exhibited a dual and selective fluorimetric response with non-alternating AT and ATT polynucleotides and induction of triplex formation from the AT duplex. The best binding constant (K) with a value of 2.5 × 107 M-1 was obtained for the interaction with AT and ATT polynucleotides. Furthermore, apart from distinguishing between different types of ds-DNA and ds-RNA, the same compound could recognize GC-rich DNA through distinct induced CD signals.
Collapse
Affiliation(s)
- Josipa Matić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Patryciusz Piotrowski
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Lucija Vrban
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Renata Kobetić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (L.V.); (R.V.)
| | - Ivona Jurić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Ivana Fabijanić
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Margareta Pernar Kovač
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (M.P.K.); (A.B.)
| | - Ivo Piantanida
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| | - Carsten Schmuck
- Institute for Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany; (P.P.)
| | - Marijana Radić Stojković
- Laboratory for Biomolecular Interactions and Spectroscopy, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (J.M.); (R.K.); (I.J.); (I.F.); (I.P.)
| |
Collapse
|
4
|
Feng F, Zhang Y, Zhang X, Mu B, Qu W, Wang P. Natural Nano-Minerals (NNMs): Conception, Classification and Their Biomedical Composites. ACS OMEGA 2024; 9:17760-17783. [PMID: 38680370 PMCID: PMC11044256 DOI: 10.1021/acsomega.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
Natural nano-minerals (NNMs) are minerals that are derived from nature with a size of less than 100 nm in at least one dimension in size. NNMs have a number of excellent properties due to their unique nanostructure and have been applied in various fields in recent years. They are rising stars in various disciplines, such as materials, biomedicine, and chemistry, taking advantage of their huge surface area, multiple active sites, excellent adsorption capacity, large quantity, low cost, and nontoxicity, etc. To provide a more comprehensive overview of NNMs and the biomedical applications of NNMs-based nanocomposites, this review classifies NNMs into three types by dimension, lists the structure and properties of typical NNMs, and illustrates their biomedical applications. Furthermore, a novel concept of natural nanomineral medical materials (NNMMs) is proposed, focusing on the medical value of NNMs. In addition, this review attempts to address the current challenges and delineate future directions for the advancement of NNMs. With the deepening of biomedical applications, it is believed that NNMMMs will inevitably play an important role in the field of human health and contribute to its promotion.
Collapse
Affiliation(s)
- Feng Feng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Yihe Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Xiao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Bin Mu
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenjie Qu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing100083, China
| | - Peixia Wang
- National Anti-Drug Laboratory Beijing Regional Center, Beijing, 100164, China
- Beijing Narcotics Control Technology Center, Beijing, 100164, China
| |
Collapse
|
5
|
Efficient treatment of the starch wastewater by enhanced flocculation–coagulation of environmentally benign materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|