1
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
2
|
Penfold J, Thomas RK. The Gibbs and Butler Equations and the Surface Activity of Dilute Aqueous Solutions of Strong and Weak Linear Polyelectrolyte-Surfactant Mixtures: The Roles of Surface Composition and Polydispersity. J Phys Chem B 2024; 128:8084-8102. [PMID: 39140373 PMCID: PMC11345831 DOI: 10.1021/acs.jpcb.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In a previous paper, we applied a combination of direct measurements of both surface tension and surface excess in conjunction with the Gibbs equation to explain features of the adsorption and surface tension of mixtures of surfactants and strong linear polyelectrolytes at the air-water interface. This paper extends that model by including (i) the restrictions of the Butler equation for the behavior of the surface tension of mixed systems and (ii) the surface behavior of surfactant and linear weak polyelectrolyte mixtures, for which the inclusion of measurements of the surface excess and composition is shown to be particularly important. In addition, a closer examination of earlier data at higher concentrations provides evidence that the surface layering that is often observed in polyelectrolyte-surfactant systems is also an average equilibrium phenomenon and is driven by particular aggregation patterns that occur in some systems and not in others. Although the successful application of the Gibbs and Butler equations indicates that strong polyelectrolyte-surfactant systems can be described in terms of an average equilibrium over wide ranges of concentration, we have identified two concentration ranges where polydispersity in either polyelectrolyte molecular weight or composition results in significant time dependence of the surface behavior.
Collapse
Affiliation(s)
- Jeffrey Penfold
- Rutherford-Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
3
|
Sussman C, Liberatore RA, Drozdz MM. Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases. Pharmaceutics 2024; 16:535. [PMID: 38675196 PMCID: PMC11053842 DOI: 10.3390/pharmaceutics16040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body's ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future.
Collapse
|
4
|
Fattahi N, Gorgannezhad L, Masoule SF, Babanejad N, Ramazani A, Raoufi M, Sharifikolouei E, Foroumadi A, Khoobi M. PEI-based functional materials: Fabrication techniques, properties, and biomedical applications. Adv Colloid Interface Sci 2024; 325:103119. [PMID: 38447243 DOI: 10.1016/j.cis.2024.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.
Collapse
Affiliation(s)
- Nadia Fattahi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Lena Gorgannezhad
- Queensland Micro- and Nanotechnology Centre, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Shabnam Farkhonde Masoule
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Elham Sharifikolouei
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Turin (TO), Italy
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Khoobi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Li J, Lin Y, Liu B, Zhou X, Chen W, Shen G. Alkylated Sulfonium Modification of Low Molecular Weight Polyethylenimine to Form Lipopolymers as Gene Vectors. ACS OMEGA 2024; 9:2339-2349. [PMID: 38250374 PMCID: PMC10795143 DOI: 10.1021/acsomega.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Hydrophobic modification of low molecular weight polyethylenimine (PEI) is an efficient method to form ideal gene-transfer carriers. Sulfonium-a combination of three different functional groups, was conjugated onto PEI 1.8k at a conjugation ratio of 1:0.1 to form a series of sulfonium PEI (SPs). These SPs were hydrophobically modified and characterized by Fourier transform infrared and HNMR. DNA-condensing abilities of SPs were tested with gel retardation experiment, and their cytotoxicity was evaluated via the MTT assay. The particle size and zeta potential of SP/DNA nanoparticles were measured and evaluated for cellular uptake and transfection ability on HepG2 cell line. The results showed that the sulfonium moiety was attached to PEI 1.8k with a high yield at a conjugation ratio of 1:0.1. SPs containing longer alkyl chains condensed DNA completely at an SP/DNA weight ratio of 2:1. The formed nanoparticle size was in the range of 168-265 nm, and the zeta potential was +16-45 mV. The IC50 values of SPs were 6.5-43.2 μg/mL. The cytotoxicity of SPs increased as the hydrophobic chain got longer. SP/DNA showed much stronger cellular uptakes than PEI 25k; however, pure SPs presented almost no gene transfection on cells. Heparin release experiment showed that SP's strong binding of DNA resulted in low release of DNA and thus hindered the gene transfection process. By mixing SP with PEI 1.8k, the mixture presented adjustable DNA binding and releasing. The mixture formed by 67% SP and 33% PEI 1.8k showed strong gene transfection. In conclusion, sulfonium is an effective linkage to carry hydrophobic groups to adjust cell compatibilities and gene transfection capabilities of PEI.
Collapse
Affiliation(s)
- Jing Li
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| | - Yue Lin
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Bingling Liu
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Xiaodong Zhou
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Wenyang Chen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
| | - Guinan Shen
- College
of Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Heilongjiang
Provincial Key Laboratory of Environmental Microbiology and Recycling
of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- Key
Laboratory of Low-carbon Green Agriculture in Northeastern China,
Ministry of Agriculture and Rural Affairs P. R. China, College of
Life Science and Biotechnology, Heilongjiang
Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
6
|
Khalifeh M, Badiee A, Ramezanian N, Sahebkar A, Farahpour A, Kazemi Oskuee R. Lactosylated lipid calcium phosphate-based nanoparticles: A promising approach for efficient DNA delivery to hepatocytes. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:952-958. [PMID: 38911238 PMCID: PMC11193503 DOI: 10.22038/ijbms.2024.76683.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/16/2024] [Indexed: 06/25/2024]
Abstract
Objectives For safe and effective gene therapy, the ability to deliver the therapeutic nucleic acid to the target sites is crucial. In this study, lactosylated lipid phosphate calcium nanoparticles (lac-LCP) were developed for targeted delivery of pDNA to the hepatocyte cells. The lac-LCP formulation contained lactose-modified cholesterol (CHL), a ligand that binds to the asialoglycoprotein receptor (ASGR) expressed on hepatocytes, and polyethyleneimine (PEI) in the core. Materials and Methods Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (NMR) were used to monitor the chemical modification, and the physicochemical properties of NPs were studied using dynamic light scattering (DLS) and transmission electron microscopy (TEM). To evaluate transfection efficiency, cellular uptake and GFP expression were assessed using fluorescence microscopy and flow cytometry. Results The results revealed that lactose-targeted particles (lac-LCP) had a significant increase in cellular uptake by hepatocytes. The inclusion of a low molecular weight PEI (1.8 KDa) with a low PEI/pDNA ratio of 1 in the core of LCP, elicited high degrees of GFP protein expression (by 5 and 6-fold), which exhibited significantly higher efficiency than PEI 1.8 KDa and Lipofectamine. Conclusion The successful functionalization and nuclear delivery of LCP NPs described here indicate its promise as an efficient delivery vector to hepatocyte nuclei.
Collapse
Affiliation(s)
- Masoomeh Khalifeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Ramezanian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Farahpour
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Gupta R, Salave S, Rana D, Karunakaran B, Butreddy A, Benival D, Kommineni N. Versatility of Liposomes for Antisense Oligonucleotide Delivery: A Special Focus on Various Therapeutic Areas. Pharmaceutics 2023; 15:1435. [PMID: 37242677 PMCID: PMC10222274 DOI: 10.3390/pharmaceutics15051435] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Nucleic acid therapeutics, specifically antisense oligonucleotides (ASOs), can effectively modulate gene expression and protein function, leading to long-lasting curative effects. The hydrophilic nature and large size of oligonucleotides present translational challenges, which have led to the exploration of various chemical modifications and delivery systems. The present review provides insights into the potential role of liposomes as a drug delivery system for ASOs. The potential benefits of liposomes as an ASO carrier, along with their method of preparation, characterization, routes of administration, and stability aspects, have been thoroughly discussed. A novel perspective in terms of therapeutic applications of liposomal ASO delivery in several diseases such as cancer, respiratory disease, ophthalmic delivery, infectious diseases, gastrointestinal disease, neuronal disorders, hematological malignancies, myotonic dystrophy, and neuronal disorders remains the major highlights of this review.
Collapse
Affiliation(s)
- Raghav Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Bharathi Karunakaran
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India
| | | |
Collapse
|
8
|
Debele TA, Chen CK, Yu LY, Lo CL. Lipopolyplex-Mediated Co-Delivery of Doxorubicin and FAK siRNA to Enhance Therapeutic Efficiency of Treating Colorectal Cancer. Pharmaceutics 2023; 15:pharmaceutics15020596. [PMID: 36839918 PMCID: PMC9968081 DOI: 10.3390/pharmaceutics15020596] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Tumor metastasis is a major concern in cancer therapy. In this context, focal adhesion kinase (FAK) gene overexpression, which mediates cancer cell migration and invasion, has been reported in several human tumors and is considered a potential therapeutic target. However, gene-based treatment has certain limitations, including a lack of stability and low transfection ability. In this study, a biocompatible lipopolyplex was synthesized to overcome the aforementioned limitations. First, polyplexes were prepared using poly(2-Hydroxypropyl methacrylamide-co-methylacrylate-hydrazone-pyridoxal) (P(HPMA-co-MA-hyd-VB6)) copolymers, which bore positive charges at low pH value owing to protonation of pyridoxal groups and facilitated electrostatic interactions with negatively charged FAK siRNA. These polyplexes were then encapsulated into methoxy polyethylene glycol (mPEG)-modified liposomes to form lipopolyplexes. Doxorubicin (DOX) was also loaded into lipopolyplexes for combination therapy with siRNA. Experimental results revealed that lipopolyplexes successfully released DOX at low pH to kill cancer cells and induced siRNA out of endosomes to inhibit the translation of FAK proteins. Furthermore, the efficient accumulation of lipopolyplexes in the tumors led to excellent cancer therapeutic efficacy. Overall, the synthesized lipopolyplex is a suitable nanocarrier for the co-delivery of chemotherapeutic agents and genes to treat cancers.
Collapse
Affiliation(s)
- Tilahun Ayane Debele
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Chemical & Environmental Engineering, College of Engineering and Applied Science (CEAS), University of Cincinnati, Cincinnati, OH 452, USA
| | - Chi-Kang Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Lu-Yi Yu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (L.-Y.Y.); (C.-L.L.); Tel.: +886-2-28267000 (ext. 67914) (C.-L.L.)
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (L.-Y.Y.); (C.-L.L.); Tel.: +886-2-28267000 (ext. 67914) (C.-L.L.)
| |
Collapse
|
9
|
A Review of Different Types of Liposomes and Their Advancements as a Form of Gene Therapy Treatment for Breast Cancer. Molecules 2023; 28:molecules28031498. [PMID: 36771161 PMCID: PMC9920768 DOI: 10.3390/molecules28031498] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 02/09/2023] Open
Abstract
Breast cancer incidence and mortality rates have increased exponentially during the last decade, particularly among female patients. Current therapies, including surgery and chemotherapy, have significant negative physical and mental impacts on patients. As a safer alternative, gene therapy utilising a therapeutic gene with the potential to treat various ailments is being considered. Delivery of the gene generally utilises viral vectors. However, immunological reactions and even mortality have been recorded as side effects. As a result, non-viral vectors, such as liposomes, a system composed of lipid bilayers formed into nanoparticles, are being studied. Liposomes have demonstrated tremendous potential due to their limitless ability to combine many functions into a system with desirable characteristics and functionality. This article discusses cationic, anionic, and neutral liposomes with their stability, cytotoxicity, transfection ability, cellular uptake, and limitation as a gene carrier suitable for gene therapy specifically for cancer. Due to the more practical approach of employing electrostatic contact with the negatively charged nucleic acid and the cell membrane for absorption purposes, cationic liposomes appear to be more suited for formulation for gene delivery and therapy for breast cancer treatment. As the other alternatives have numerous complicated additional modifications, attachments need to be made to achieve a functional gene therapy system for breast cancer treatment, which were also discussed in this review. This review aimed to increase understanding and build a viable breast cancer gene therapy treatment strategy.
Collapse
|
10
|
Thakur S, Sinhari A, Jain P, Jadhav HR. A perspective on oligonucleotide therapy: Approaches to patient customization. Front Pharmacol 2022; 13:1006304. [PMID: 36339619 PMCID: PMC9626821 DOI: 10.3389/fphar.2022.1006304] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/05/2022] [Indexed: 09/12/2023] Open
Abstract
It is estimated that the human genome encodes 15% of proteins that are considered to be disease-modifying. Only 2% of these proteins possess a druggable site that the approved clinical candidates target. Due to this disparity, there is an immense need to develop therapeutics that may better mitigate the disease or disorders aroused by non-druggable and druggable proteins or enzymes. The recent surge in approved oligonucleotide therapeutics (OT) indicates the imminent potential of these therapies. Oligonucleotide-based therapeutics are of intermediate size with much-improved selectivity towards the target and fewer off-target effects than small molecules. The OTs include Antisense RNAs, MicroRNA (MIR), small interfering RNA (siRNA), and aptamers, which are currently being explored for their use in neurodegenerative disorders, cancer, and even orphan diseases. The present review is a congregated effort to present the past and present of OTs and the current efforts to make OTs for plausible future therapeutics. The review provides updated literature on the challenges and bottlenecks of OT and recent advancements in OT drug delivery. Further, this review deliberates on a newly emerging approach to personalized treatment for patients with rare and fatal diseases with OT.
Collapse
Affiliation(s)
- Shikha Thakur
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Apurba Sinhari
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Hemant R. Jadhav
- Pharmaceutical Chemistry Laboratory, Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Pilani, RJ, India
| |
Collapse
|
11
|
Yang X, Wei Y, Zheng L, You J, Li H, Gao L, Gong C, Yi C. Polyethyleneimine-based immunoadjuvants for designing cancer vaccines. J Mater Chem B 2022; 10:8166-8180. [PMID: 36217765 DOI: 10.1039/d2tb01358d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite extensive efforts to improve the effectiveness of cancer vaccines, the lack of immunogenicity remains an issue. Adjuvants are required to enhance the immunogenicity of antigens and activate the immune response. However, only a few adjuvants with acceptable toxicity have sufficient potency for use in cancer vaccines, necessitating the discovery of potent adjuvants. The most well-known cationic polymer polyethyleneimine (PEI) acts as a carrier for delivering antigens, and as an immunoadjuvant for enhancing the innate and adaptive immunity. In this review, we have summarized PEI-based adjuvants and discussed how to improve and boost the immune response to vaccines. We further focused on PEI-based adjuvants in cancer vaccines. Finally, we have proposed the potential challenges and future issues of PEI-based adjuvants to elicit the effectiveness of cancer vaccines.
Collapse
Affiliation(s)
- Xi Yang
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuanfeng Wei
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Lingnan Zheng
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jia You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huawei Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling Gao
- Department of Health Ward, The Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changyang Gong
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Cheng Yi
- Division of Radiotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1376. [PMID: 35458084 PMCID: PMC9024560 DOI: 10.3390/nano12081376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Mounting evidence shows that supplementation with vitamin D and K or their analogs induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis. The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based dietary supplements and drugs produced by the food and pharmaceutical industries overcome the issues associated with vitamin administration, such as stability, absorption or low bioavailability. Consequently, there is a continuous interest in optimizing the carriers' systems in order to make them more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparticles for vitamin D and K transportation, and critically address their benefits and disadvantages.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Sovrea
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Aurelian Lucian Masalar
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Brigitta Ifju
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Eugen Linga
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Lidia Neamti
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Zsolt Fekete
- Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| |
Collapse
|