1
|
Roato I, Genova T, Duraccio D, Ruffinatti FA, Zanin Venturini D, Di Maro M, Mosca Balma A, Pedraza R, Petrillo S, Chinigò G, Munaron L, Malucelli G, Faga MG, Mussano F. Mechanical and Biological Characterization of PMMA/Al 2O 3 Composites for Dental Implant Abutments. Polymers (Basel) 2023; 15:3186. [PMID: 37571080 PMCID: PMC10421041 DOI: 10.3390/polym15153186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The mechanical and biological behaviors of PMMA/Al2O3 composites incorporating 30 wt.%, 40 wt.%, and 50 wt.% of Al2O3 were thoroughly characterized as regards to their possible application in implant-supported prostheses. The Al2O3 particles accounted for an increase in the flexural modulus of PMMA. The highest value was recorded for the composite containing 40 wt.% Al2O3 (4.50 GPa), which was about 18% higher than that of its unfilled counterpart (3.86 GPa). The Al2O3 particles caused a decrease in the flexural strength of the composites, due to the presence of filler aggregates and voids, though it was still satisfactory for the intended application. The roughness (Ra) and water contact angle had the same trend, ranging from 1.94 µm and 77.2° for unfilled PMMA to 2.45 µm and 105.8° for the composite containing the highest alumina loading, respectively, hence influencing both the protein adsorption and cell adhesion. No cytotoxic effects were found, confirming that all the specimens are biocompatible and capable of sustaining cell growth and proliferation, without remarkable differences at 24 and 48 h. Finally, Al2O3 was able to cause strong cell responses (cell orientation), thus guiding the tissue formation in contact with the composite itself and not enhancing its osteoconductive properties, supporting the PMMA composite's usage in the envisaged application.
Collapse
Affiliation(s)
- Ilaria Roato
- CIR Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Torino, Italy; (I.R.); (A.M.B.); (R.P.); (F.M.)
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (D.Z.V.); (G.C.); (L.M.)
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, Strada delle Cacce 73, 10135 Torino, Italy; (M.D.M.); (M.G.F.)
| | - Federico Alessandro Ruffinatti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (D.Z.V.); (G.C.); (L.M.)
| | - Diletta Zanin Venturini
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (D.Z.V.); (G.C.); (L.M.)
| | - Mattia Di Maro
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, Strada delle Cacce 73, 10135 Torino, Italy; (M.D.M.); (M.G.F.)
| | - Alessandro Mosca Balma
- CIR Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Torino, Italy; (I.R.); (A.M.B.); (R.P.); (F.M.)
| | - Riccardo Pedraza
- CIR Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Torino, Italy; (I.R.); (A.M.B.); (R.P.); (F.M.)
| | - Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center (MBC), University of Turin, Via Nizza 52, 10126 Torino, Italy;
| | - Giorgia Chinigò
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (D.Z.V.); (G.C.); (L.M.)
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy; (T.G.); (F.A.R.); (D.Z.V.); (G.C.); (L.M.)
| | - Giulio Malucelli
- Politecnico di Torino, Department of Applied Science and Technology, C.so Duca Degli Abruzzi 24, 10129 Torino, Italy;
| | - Maria Giulia Faga
- Institute of Sciences and Technologies for Sustainable Energy and Mobility, National Council of Research, Strada delle Cacce 73, 10135 Torino, Italy; (M.D.M.); (M.G.F.)
| | - Federico Mussano
- CIR Dental School, Department of Surgical Sciences, University of Turin, Via Nizza 230, 10126 Torino, Italy; (I.R.); (A.M.B.); (R.P.); (F.M.)
| |
Collapse
|
2
|
Padulles-Gaspar E, Padulles-Roig E, Cabanes G, Pérez RA, Gil J, Bosch BM. Effects of Hypochlorous Acid and Hydrogen Peroxide Treatment on Bacterial Disinfection Treatments in Implantoplasty Procedures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2953. [PMID: 37109795 PMCID: PMC10144543 DOI: 10.3390/ma16082953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
One of the main problems in oral implantology today is peri-implantitis, which affects almost 20% of dental implants placed in patients. One of the most commonly used techniques to eliminate bacterial biofilm is the implantoplasty, that consists of the mechanical modification of the implant surface topography followed by treatments with chemical reagents for decontamination. In this study, the main aim is to evaluate the use of two different chemical treatments based on hypochlorous acid (HClO) and hydrogen peroxide (H2O2). For this purpose, 75 titanium grade 3 discs were treated with implantoplasty according to established protocols. Twenty-five discs were used as controls, 25 were treated with concentrated HClO and 25 were treated with concentrated HClO followed by treatment with 6% H2O2. The roughness of the discs was determined using the interferometric process. Cytotoxicity with SaOs-2 osteoblastic cells was quantified at 24 and 72 h, whereas bacteria proliferation using S. gordonii and S. oralis bacteria was quantified at 5 s and 1 min of treatment. The results showed an increase in the roughness values, the control discs had an Ra of 0.33 μm and those treated with HClO and H2O2 reached 0.68 μm. Cytotoxicity was present at 72 h, together with a significant proliferation of bacteria. These biological and microbiological results can be attributed to the roughness produced by the chemical agents that triggered bacterial adsorption while inhibiting osteoblast adhesion. The results indicate that even if this treatment can decontaminate the titanium surface after implantation, the produced topography will generate an environment that will not favor long-term performance.
Collapse
Affiliation(s)
- Esteban Padulles-Gaspar
- Facultad de Odontología, Universitat Internacional de Catalunya, C/Josep Trueta s/n, 08195 Barcelona, Spain
| | - Esteban Padulles-Roig
- Department of Implantology, University of La Salle, Madrid, EDE, C7Gaminedes 11, 28023 Madrid, Spain
| | - Guillermo Cabanes
- Department of Implantology, University of La Salle, Madrid, EDE, C7Gaminedes 11, 28023 Madrid, Spain
| | - Román A. Pérez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
3
|
Herrero-Climent M, Punset M, Molmeneu M, Brizuela A, Gil J. Differences between the Fittings of Dental Prostheses Produced by CAD-CAM and Laser Sintering Processes. J Funct Biomater 2023; 14:jfb14020067. [PMID: 36826866 PMCID: PMC9959825 DOI: 10.3390/jfb14020067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/30/2023] Open
Abstract
Digital dentistry and new techniques for the dental protheses' suprastructure fabrication have undergone a great evolution in recent years, revolutionizing the quality of dental prostheses. The aim of this work is to determine whether the best horizontal marginal fit is provided by the CAD-CAM technique or by laser sintering. These values have been compared with the traditional casting technique. A total of 30 CAD-CAM models, 30 laser sintering models, and 10 casting models (as control) were fabricated. The structures realized with chromium-cobalt (CrCo) have been made by six different companies, always with the same model. Scanning electron microscopy with a high-precision image analysis system was used, and 10,000 measurements were taken for each model on the gingival (external) and palatal (internal) side. Thus, a total of 1,400,000 images were measured. It was determined that the CAD-CAM technique is the one that allows the best adjustments in the manufacturing methods studied. The laser sintering technique presents less adjustment, showing the presence of porosities and volume contraction defects due to solidification processes and heterogeneities in the chemical composition (coring). The technique with the worst adjustments is the casting technique, containing numerous defects in the suprastructure. The statistical analysis of results reflected the presence of statistically significant gap differences between the three manufacturing methods analyzed (p < 0.05), with the samples manufactured by CAD-CAM and by traditional casting processes being the ones that showed lower and higher values, respectively. No statistically significant differences in fit were observed between the palatal and gingival fit values, regardless of the manufacturing method used. No statistically significant differences in adjustment between the different manufacturing centers were found, regardless of the process used.
Collapse
Affiliation(s)
| | - Miquel Punset
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Meritxell Molmeneu
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Edurad Maristany 16, 08019 Barcelona, Spain
- Barcelona Research Centre in Multiscale Science and Engineering, Technical University of Catalonia (UPC), Av. Eduard Maristany, 10-14, 08019 Barcelona, Spain
| | - Aritza Brizuela
- Facultad de Odontología, Universidad Europea Miguel de Cervantes, C/del Padre Julio Chevalier 2., 47012 Valladolid, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Faculty of Medicine and Health Sciences, International University of Catalonia, Josep Trueta s/n, 08195 Barcelona, Spain
- Correspondence:
| |
Collapse
|
4
|
Camps-Font O, Toledano-Serrabona J, Juiz-Camps A, Gil J, Sánchez-Garcés MA, Figueiredo R, Gay-Escoda C, Valmaseda-Castellón E. Effect of Implantoplasty on Roughness, Fatigue and Corrosion Behavior of Narrow Diameter Dental Implants. J Funct Biomater 2023; 14:61. [PMID: 36826860 PMCID: PMC9967762 DOI: 10.3390/jfb14020061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Implantoplasty (IP) is used in dental implants with peri-implantitis and aims to remove threads and polish rough surfaces in order to prevent bacterial colonization. As a result of this procedure, implant strength might be compromised. We tested 20 tapered screw-shaped Ti6Al4V dental implants with a simulated bone loss of 50%. Ten implants underwent IP and 10 served as controls. Surface topography (Sa, Sz, Ssk, and Sdr) was analyzed with a confocal optical microscope. Subsequently, a minimum of four series of cyclic loads were applied with a servo-hydraulic mechanical testing machine (5 × 106 cycles at 15 Hz, between a maximal nominal value-starting at 529 N in the IP group and 735 N in the control group-and 10% of that force). We recorded the number of cycles until failure and the type of failure. Implant failure was analyzed by visual inspection and scanning electron microscopy. Open circuit potential and potenctiodynamic tests were carried out with high precision potentiostat using Hank's solution at 37 °C to evaluate the effect of the implantoplasty on the corrosion resistance. Implantoplasty significantly reduced the surface topography values (median) and interquartile range (IQR); Sa from 1.76 (IQR = 0.11) to 0.49 (IQR = 0.16), Sz from 20.98 (IQR = 8.14) to 8.19 (IQR = 4.16), Ssk from 0.01 (IQR = 0.34) to -0.74 (IQR = 0.53) and Sdr from 18.20 (IQR = 2.26) to 2.67 (IQR = 0.87). The fatigue limits of the control and implantoplasty groups were 551 N and 529 N, respectively. The scanning electron micrographs showed fatigue striations indicating fatigue failure. Besides, the fractographic analysis revealed a typical brittle intergranular fracture mechanism. The infinite life range of the dental implants evaluated was largely above the threshold of usual chewing forces. Implantoplasty seems to render a fairly smooth surface and has a limited impact on fatigue resistance. In addition, implantoplasty produces a decrease in the corrosion resistance of the implant. Corrosion current density from 0.019 μA/cm2 for as-received to 0.069 μA/cm2 in the interface smooth-roughened dental implant. These places between the machining and the rough area of the implant are the most susceptible, with the appearance of pitting.
Collapse
Affiliation(s)
- Octavi Camps-Font
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Jorge Toledano-Serrabona
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Ana Juiz-Camps
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Javier Gil
- Bioengineering Institute of Technology, Facultad de Medicina y Ciencia de la Salud, Universitat Internacional de Catalunya, Sant Cugat del Vallés, 08907 Barcelona, Spain
| | - Maria Angeles Sánchez-Garcés
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Rui Figueiredo
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Cosme Gay-Escoda
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| | - Eduard Valmaseda-Castellón
- Department of Oral Surgery and Implantology, Faculty of Medicine and Health Sciences, University of Barcelona, Campus de Bellvitg, C/Feixa Llarga, s/n, Pavelló Govern, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute, Oral Surgery and Implantology, (IDIBELL), 08907 Barcelona, Spain
| |
Collapse
|
5
|
Saha S, Roy S. Metallic Dental Implants Wear Mechanisms, Materials, and Manufacturing Processes: A Literature Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010161. [PMID: 36614500 PMCID: PMC9821388 DOI: 10.3390/ma16010161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
OBJECTIVES From the treatment of damaged teeth to replacing missing teeth, dental biomaterials cover the scientific interest of many fields. Dental biomaterials are one of the implants whose effective life depends vastly on their material and manufacturing techniques. The purpose of this review is to summarize the important aspects for metallic dental implants from biomedical, mechanical and materials science perspectives. The review article will focus on five major aspects as mentioned below. Tooth anatomy: Maximizing the implant performance depends on proper understanding of human tooth anatomy and the failure behavior of the implants. Major parts from tooth anatomy including saliva characteristics are explored in this section. Wear mechanisms: The prominent wear mechanisms having a high impact on dental wear are abrasive, adhesive, fatigue and corrosion wear. To imitate the physiological working condition of dental implants, reports on the broad range of mastication force and various composition of artificial saliva have been included in this section, which can affect the tribo-corrosion behavior of dental implants. Dental implants classifications: The review paper includes a dedicated discussion on major dental implants types and their details for better understanding their applicability and characteristics. Implant materials: As of today, the most established dental implant materials are SS316L, cobalt chrome alloy and titanium. Detailed discussion on their material properties, microstructures, phase transformations and chemical compositions have been discussed here. Manufacturing techniques: In terms of different production methods, the lost wax casting method as traditional manufacturing is considered. Selective Laser Melting (SLM) and Directed Energy Deposition (DED) as additive manufacturing techniques (AM) have been discussed. For AM, the relationships between process-property-performance details have been explored briefly. The effectiveness of different manufacturing techniques was compared based on porosity distribution, mechanical and biomechanical properties. SUMMARY Despite having substantial research available on dental implants, there is a lack of systematic reviews to present a holistic viewpoint combining state-of-the-art from biomedical, mechanical, materials science and manufacturing perspectives. This review article attempts to combine a wide variety of analyzing approaches from those interdisciplinary fields to deliver deeper insights to researchers both in academia and industry to develop next-generation dental implants.
Collapse
|
6
|
Terranova ML. Key Challenges in Diamond Coating of Titanium Implants: Current Status and Future Prospects. Biomedicines 2022; 10:biomedicines10123149. [PMID: 36551907 PMCID: PMC9775193 DOI: 10.3390/biomedicines10123149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Over past years, the fabrication of Ti-based permanent implants for fracture fixation, joint replacement and bone or tooth substitution, has become a routine task. However, it has been found that some degradation phenomena occurring on the Ti surface limits the life or the efficiency of the artificial constructs. The task of avoiding such adverse effects, to prevent microbial colonization and to accelerate osteointegration, is being faced by a variety of approaches in order to adapt Ti surfaces to the needs of osseous tissues. Among the large set of biocompatible materials proposed as an interface between Ti and the hosting tissue, diamond has been proven to offer bioactive and mechanical properties able to match the specific requirements of osteoblasts. Advances in material science and implant engineering are now enabling us to produce micro- or nano-crystalline diamond coatings on a variety of differently shaped Ti constructs. The aim of this paper is to provide an overview of the research currently ongoing in the field of diamond-coated orthopedic Ti implants and to examine the evolution of the concepts that are accelerating the full transition of such technology from the laboratory to clinical applications.
Collapse
Affiliation(s)
- Maria Letizia Terranova
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy; or
- Centro di Ricerca Interdipartimentale di Medicina Rigenerativa (CIMER), Università di Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Roma, Italy
| |
Collapse
|
7
|
Jornet-García A, Sanchez-Perez A, Montoya-Carralero JM, Moya-Villaescusa MJ. Electrical Potentiometry with Intraoral Applications. MATERIALS 2022; 15:ma15155100. [PMID: 35897533 PMCID: PMC9331720 DOI: 10.3390/ma15155100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
Dental implants currently in use are mainly made of titanium or titanium alloys. As these metallic elements are immersed in an electrolytic medium, galvanic currents are produced between them or with other metals present in the mouth. These bimetallic currents have three potentially harmful effects on the patient: micro-discharges, corrosion, and finally, the dispersion of metal ions or their oxides, all of which have been extensively demonstrated in vitro. In this original work, a system for measuring the potentials generated in vivo is developed. Specifically, it is an electrogalvanic measurements system coupled with a periodontal probe that allows measurement of the potentials in the peri-implant sulcus. This device was tested and verified in vitro to guarantee its applicability in vivo. As a conclusion, this system is able to detect galvanic currents in vitro and it can be considered capable of being employed in vivo, so to assess the effects they may cause on dental implants.
Collapse
|
8
|
The Characterization of Titanium Particles Released from Bone-Level Titanium Dental Implants: Effect of the Size of Particles on the Ion Release and Cytotoxicity Behaviour. MATERIALS 2022; 15:ma15103636. [PMID: 35629663 PMCID: PMC9148149 DOI: 10.3390/ma15103636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Many studies are being carried out on the particles released during the implantoplasty process in the machining of dental implants to remove bacterial biofilms. However, there are no studies on the release of particles produced by the insertion of bone-level dental implants due to the high compressive frictional loads between the rough titanium implant and the bone tissue. This paper aims to characterize the released particles and determine the release of titanium ions into the physiological environment and their cytocompatibility. For this purpose, 90 dental implants with a neck diameter of 4 mm and a torque of 22 Ncm were placed in 7 fresh cow ribs. The placement was carried out according to the established protocols. The implants had a roughness Ra of 1.92 μm. The arrangement of the particles in the bone tissue was studied by micro-CT, and no particle clusters were observed. The different granulometries of 5, 15, and 30 μm were obtained; the specific surface area was determined by laser diffraction; the topography was determined by scanning electron microcopy; and the particles were chemically analysed by X-ray energy microanalysis. The residual stresses of the particles were obtained by X-ray diffraction using the Bragg-Bentano configuration. The release of titanium ions to the physiological medium was performed using ICP-MS at 1, 3, 7, 14, and 21 days. The cytocompatibility of the particles with HFF-1 fibroblast and SAOS-2 osteoblast cultures was characterized. The results showed that the lowest specific surface area (0.2109 m2/g) corresponds to the particles larger than 30 μm being higher than 0.4969 and 0.4802 m2/g of those that are 5 and 15 μm, respectively, observing in all cases that the particles have irregular morphologies without contamination of the drills used in the surgery. The highest residual stresses were found for the small particles, -395 MPa for the 5 μm particles, and -369 for the 15 μm particles, and the lowest residual stresses were found for the 30 μm particles with values of -267 MPa. In all cases, the residual stresses were compressive. The lowest ion release was for the 30 μm samples, as they have the lowest specific surface area. Cytocompatibility studies showed that the particles are cytocompatible, but it is the smallest ones that are lower and very close to the 70% survival limit in both fibroblasts and osteoblasts.
Collapse
|