1
|
Fatima S, Shahid H, Zafar S, Arooj I, Ijaz S, Elahi A. Ocimum basilicum seed-mediated green synthesis of silver nanoparticles: characterization and evaluation of biological properties. DISCOVER NANO 2024; 19:172. [PMID: 39466512 PMCID: PMC11519253 DOI: 10.1186/s11671-024-04130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles synthesized from green sources have attracted great recognition in the present times, which can be ascribed to their distinctive attributes and diversified applicability. Therefore, the present study employed Ocimum basilicum seed extract to synthesize silver nanoparticles. UV-vis spectrophotometry revealed strenuous peaks for different concentrations of silver nanoparticles ranging between 400 and 430 nm. The average crystal size calculated using X-ray diffraction analysis was 6.7 nm. Energy-dispersive X-ray analysis clearly displayed the presence of silver ions in the elemental structure of the synthesized nanoparticles. The morphology of synthesized nanoparticles revealed by scanning electron microscopy was documented in terms of spherical shape surrounded by an organic layer and nanoparticle size was estimated to be in between 10 and 80 nm. The nanoparticles exhibited substantial antibacterial activity against 46 foodborne bacterial isolates and 15 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zones measuring 24 and 13 mm, respectively. Minimum inhibitory concentration values ranged between 500 and 800 µl/ml for various isolates. The antibacterial effect of all antibiotics revealed considerable enhancement when combined with nanoparticles. The calculated fractional inhibitory concentration index values were < 1 validating excellent synergism between nanoparticles and all antibiotics except ciprofloxacin against the majority of bacterial isolates. Interestingly, the biogenic nanoparticles showed significant antioxidant potential with IC50 value of 165 µg/ml as well as anti-inflammatory activity with an IC50 value of 82 µg/ml. Conclusively, the seed extract of Ocimum basilicum can be prospected for the development of antibacterial silver nanoparticles against pathogenic bacteria.
Collapse
Affiliation(s)
- Seerat Fatima
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Hamna Shahid
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Saba Zafar
- Department of Biochemistry & Biotechnology, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Iqra Arooj
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan.
| | - Saadia Ijaz
- Department of Microbiology & Molecular Genetics, Faculty of Life Sciences, The Women University, Multan, 66000, Pakistan
| | - Amina Elahi
- Institute of Microbiology & Molecular Genetics, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Sánchez Reyna PA, Olea Mejía OF, González-Pedroza MG, Montiel-Bastida NM, Rebollo-Plata B, Morales-Luckie RA. Inhibition of the Growth of Escherichia coli and Staphylococcus aureus Microorganisms in Aesthetic Orthodontic Brackets through the In Situ Synthesis of Ag, TiO 2 and Ag/TiO 2 Nanoparticles. Microorganisms 2024; 12:1583. [PMID: 39203425 PMCID: PMC11356132 DOI: 10.3390/microorganisms12081583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Plaque control is especially important during orthodontic treatment because areas of the teeth near brackets and wires are difficult to clean with a toothbrush, resulting in debris buildup of food or dental plaque, thus causing caries and periodontal disease. The objective of this study was to evaluate the antimicrobial properties of silver nanoparticles (AgNPs), titanium dioxide nanoparticles (TiO2NPs), and silver/titanium dioxide nanoparticles (Ag/TiO2NPs), synthesized on the surface of α-alumina ceramic brackets. The AgNPs and TiO2NPs were synthesized by a simple chemical method, and these were characterized by XRD, SEM, and XPS TEM; the antimicrobial activity was tested against Staphylococcus aureus and Escherichia coli by diffusion test. The results of this study demonstrated that by this simple chemical method, silver and titanium dioxide nanoparticles can be synthesized on the surface of α-alumina esthetic brackets, and these NPs possess good antimicrobial activity and the possibility of reducing dental caries, periodontal disease, and white spot generated during orthodontic treatment.
Collapse
Affiliation(s)
- Paola Ariselda Sánchez Reyna
- Center for Advanced Studies and Research on Dentistry, Autonomous University of the State of Mexico (UAEMex), Toluca 50200, Mexico; (P.A.S.R.); (N.M.M.-B.)
| | - Oscar Fernando Olea Mejía
- Department of Materials Science, Center for Research in Sustainable Chemistry (CCIQS), Autonomous University of the State of Mexico (UAEMex), Km 14.5, Carr. Toluca-Atlacomulco, Toluca 50200, Mexico;
| | - María G. González-Pedroza
- Department of Biotechnology, Faculty of Sciences, Autonomous University of the State of Mexico (UAEMex), Km 14.5, Carr. Toluca-Atlacomulco, Toluca 50200, Mexico;
| | - Norma M. Montiel-Bastida
- Center for Advanced Studies and Research on Dentistry, Autonomous University of the State of Mexico (UAEMex), Toluca 50200, Mexico; (P.A.S.R.); (N.M.M.-B.)
| | - Bernabe Rebollo-Plata
- Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato, Carr. Irapuato-Silao Km 12.5, Irapuato 36821, Mexico;
| | - Raúl A. Morales-Luckie
- Department of Materials Science, Center for Research in Sustainable Chemistry (CCIQS), Autonomous University of the State of Mexico (UAEMex), Km 14.5, Carr. Toluca-Atlacomulco, Toluca 50200, Mexico;
| |
Collapse
|
3
|
Velusamy S, Kandasamy K, Kuppusamy MR, Eswaramoorthy D, Shanmugam M, Murugesan M. Green-synthesized CuO and ZnO nanoparticles derived from Calotropis gigantea (Apple of Sodom): enhancing plant growth, efficient dye removal, and potent antibacterial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44995-45010. [PMID: 38958855 DOI: 10.1007/s11356-024-34053-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Nanoparticles, owing to their unique physicochemical properties, have garnered significant attention in various scientific disciplines, including materials science, chemistry, biology, and environmental engineering. In recent years, the synthesis of metal oxide nanoparticles, such as NiO, Fe2O3, ZnO, SnO2, and CuO via green routes, has gained attraction due to their diverse applications in fields ranging from catalysis and electronics to medicine and environmental remediation. This study focuses on the green synthesis of copper oxide (CuO) and zinc oxide (ZnO) nanoparticles using Calotropis gigantea (Apple of Sodom) leaf extract as a reducing agent and stabilizer, with zinc nitrate (ZnNO3.6H2O) and copper nitrate (CuNO3.3H2O) as precursors. The hexagonal phase of ZnO and monoclinic plan structure of CuO with high crystallinity was confirmed by XRD and elemental composition by EDX analysis. With the help of an SEM image, particle size measured for CuO and ZnO using ImageJ software was found to be 56.08 nm and 46.49 nm, respectively. This study investigates the efficacy of nanoparticles in wastewater treatment, particularly focusing on methylene blue dye decolorization using the statistical processing of response surface methodology (RSM) using the Box-Behnken method. Additionally, it explores the impact of synthesized nanoparticles on seed growth enhancement, using Vigna radiata (green gram) seeds immersed in various doses of nanoparticles (0, 0.5, 1, 1.5, 2 mg/30 mL). Furthermore, the antibacterial activity of the nanoparticles against both gram-positive and gram-negative bacteria is evaluated. The results confirm the effectiveness of the materials for methylene blue dye removal, achieving 80.53% with CuO and 78.25% with ZnO. Significant seed growth was observed with a low nanoparticle dosage of 1.5 mg/30 mL, resulting in the highest seedling vigour index and germination percentage. This reduces the need for fertilizers and lessens environmental impact.
Collapse
Affiliation(s)
- Sangeetha Velusamy
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, 638 060, Tamil Nadu, India.
| | - Kannan Kandasamy
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, 638 060, Tamil Nadu, India
| | - Manjula Rani Kuppusamy
- Department of Chemistry, Kongu Engineering College, Perundurai, 638 060, Tamil Nadu, India
| | - Deepika Eswaramoorthy
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, 638 060, Tamil Nadu, India
| | - Megavarshini Shanmugam
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, 638 060, Tamil Nadu, India
| | - Muraliprasath Murugesan
- Department of Chemical Engineering, Kongu Engineering College, Perundurai, 638 060, Tamil Nadu, India
| |
Collapse
|
4
|
Alshahateet SF, Altarawneh RM, Al-Tawarh WM, Al-Trawneh SA, Al-Taweel S, Azzaoui K, Merzouki M, Sabbahi R, Hammouti B, Hanbali G, Jodeh S. Catalytic green synthesis of Tin(IV) oxide nanoparticles for phenolic compounds removal and molecular docking with EGFR tyrosine kinase. Sci Rep 2024; 14:6519. [PMID: 38499602 PMCID: PMC10948867 DOI: 10.1038/s41598-024-55460-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
In this study, tin dioxide nanoparticles (SnO2 NPs) were successfully synthesized through an eco-friendly method using basil leaves extract. The fabricated SnO2 NPs demonstrated significant adsorption capabilities for phenol (PHE), p-nitrophenol (P-NP), and p-methoxyphenol (P-MP) from water matrices. Optimal conditions for maximum removal efficiency was determined for each phenolic compound, with PHE showing a remarkable 95% removal at a 3 ppm, 0.20 g of SnO2 NPs, pH 8, and 30 min of agitation at 35 °C. Molecular docking studies unveiled a potential anticancer mechanism, indicating the ability of SnO2 NPs to interact with the epidermal growth factor receptor tyrosine kinase domain and inhibit its activity. The adsorption processes followed pseudo-second order kinetics and Temkin isotherm model, revealing spontaneous, exothermic, and chemisorption-controlled mechanisms. This eco-friendly approach utilizing plant extracts was considered as a valuable tool for nano-sorbent production. The SnO2 NPs not only exhibit promise in water treatment and also demonstrate potential applications in cancer therapy. Characterization techniques including scanning electron microscopy, UV-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy (XRD), and energy-dispersive X-ray spectroscopy (EDAX) provided comprehensive insights into the results.
Collapse
Affiliation(s)
- S F Alshahateet
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan.
| | - R M Altarawneh
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - W M Al-Tawarh
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - S A Al-Trawneh
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - S Al-Taweel
- Department of Chemistry, Faculty of Science, Mutah University, Al-Karak, Jordan
| | - K Azzaoui
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
- Euro-Mediterranean University of Fes, BP 15, 30070, Fez, Morocco
| | - M Merzouki
- Morocco Laboratory of Applied Chemistry and Environment (LCAE) Team (ECOMP), Mohamed 1er University, Oujda, Morocco
| | - R Sabbahi
- Euro-Mediterranean University of Fes, BP 15, 30070, Fez, Morocco
- Higher School of Technology, Ibn Zohr University, P.O. Box 3007, Laayoune, Morocco
| | - B Hammouti
- Euro-Mediterranean University of Fes, BP 15, 30070, Fez, Morocco
| | - G Hanbali
- Department of Chemistry, An-Najah National University, Nablus, Palestine
| | - S Jodeh
- Department of Chemistry, An-Najah National University, Nablus, Palestine.
| |
Collapse
|
5
|
Akhi A, Hasan A, Saha N, Howlader S, Bhattacharjee S, Dey K, Atique Ullah AKM, Bhuiyan FR, Chakraborty AK, Akhtar US, Shaikh MAA, Dey BK, Bhattacharjee S, Ganguli S. Ophiorrhiza mungos-Mediated Silver Nanoparticles as Effective and Reusable Adsorbents for the Removal of Methylene Blue from Water. ACS OMEGA 2024; 9:4324-4338. [PMID: 38313493 PMCID: PMC10831830 DOI: 10.1021/acsomega.3c05992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
Green synthesis of silver nanoparticles (AgNPs) using a plant extract has attracted significant attention in recent years. It is found as an alternative for other physicochemical approaches because of its simplicity, low cost, and eco-friendly rapid steps. In the present study, Ophiorrhiza mungos (Om)-mediated AgNPs have been shown to be effective bioadsorbents for methylene blue (MB) dye removal (88.1 ± 1.74%) just after 1 h at room temperature in the dark from an aqueous medium for the first time. Langmuir and Freundlich isotherms fit the experimental results having the correlation coefficient constants R2 = 0.9956 and R2 = 0.9838, respectively. From the Langmuir fittings, the maximum adsorption capacity and adsorption intensity were found to be 80.451 mg/g and 0.041, respectively, indicating the excellent performance and spontaneity of the process. Taking both models under consideration, interestingly, our findings indicated a fairly cooperative multilayer adsorption that might have been governed by chemisorption and physisorption, whereas the adsorption kinetics followed the pseudo-second-order kinetics mechanism. The positive and low values of enthalpy (ΔH0 = 4.91 kJ/mol) confirmed that adsorption is endothermic and physical in nature; however, the negative free energy and positive entropy value (ΔS0 = 53.69 J/mol K) suggested that the adsorption is spontaneous. The biosynthesized adsorbent was successfully reused up to the fifth cycle. A proposed reaction mechanism for the adsorption process of MB dye onto Om-AgNPs is suggested. The present study may offer a novel finding such as an effective and sustainable approach for the removal of MB dye from water using biosynthesized Om-AgNPs as reusable adsorbents at a comparatively faster rate at a low dose for industrial applications.
Collapse
Affiliation(s)
- Aklima
A Akhi
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Abid Hasan
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Nakshi Saha
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabbir Howlader
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - Sabonty Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Kamol Dey
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| | - A. K. M. Atique Ullah
- Nanoscience
and Technology Research Laboratory, Atomic Energy Center, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Farhana Rumzum Bhuiyan
- Laboratory
of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chattogram 4331, Bangladesh
| | - Ashok Kumar Chakraborty
- Department
of Applied Chemistry and Chemical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Umme Sarmeen Akhtar
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Bangladesh
Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Benu Kumar Dey
- Department
of Chemistry and Pro-Vice-Chancellor (Academic), University of Chittagong, Chattogram 4331, Bangladesh
| | - Samiran Bhattacharjee
- Centre
for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka 1000, Bangladesh
| | - Sumon Ganguli
- Department
of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram 4331, Bangladesh
- Biomaterials
Research Laboratory (BRL), Department of Applied Chemistry and Chemical
Engineering, University of Chittagong, Chattogram 4331, Bangladesh
| |
Collapse
|
6
|
Mir RH, Maqbool M, Mir PA, Hussain MS, Din Wani SU, Pottoo FH, Mohi-Ud-Din R. Green Synthesis of Silver Nanoparticles and their Potential Applications in Mitigating Cancer. Curr Pharm Des 2024; 30:2445-2467. [PMID: 38726783 DOI: 10.2174/0113816128291705240428060456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 09/05/2024]
Abstract
In recent years, the field of nanotechnology has brought about significant advancements that have transformed the landscape of disease diagnosis, prevention, and treatment, particularly in the realm of medical science. Among the various approaches to nanoparticle synthesis, the green synthesis method has garnered increasing attention. Silver nanoparticles (AgNPs) have emerged as particularly noteworthy nanomaterials within the spectrum of metallic nanoparticles employed for biomedical applications. AgNPs possess several key attributes that make them highly valuable in the biomedical field. They are biocompatible, cost-effective, and environmentally friendly, rendering them suitable for various bioengineering and biomedical applications. Notably, AgNPs have found a prominent role in the domain of cancer diagnosis. Research investigations have provided evidence of AgNPs' anticancer activity, which involves mechanisms such as DNA damage, cell cycle arrest, induction of apoptosis, and the regulation of specific cytokine genes. The synthesis of AgNPs primarily involves the reduction of silver ions by reducing agents. Interestingly, natural products and living organisms have proven to be effective sources for the generation of precursor materials used in AgNP synthesis. This comprehensive review aims to summarize the key aspects of AgNPs, including their characterization, properties, and recent advancements in the field of biogenic AgNP synthesis. Furthermore, the review highlights the potential applications of these nanoparticles in combating cancer.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, Kashmir, India
| | - Mudasir Maqbool
- Pharmacy Practice Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Prince Ahad Mir
- Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, G.T. Road, Amritsar, Punjab 143001, India
| | - Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, Rajasthan, India
| | - Shahid Ud Din Wani
- Pharmaceutics Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar 190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Roohi Mohi-Ud-Din
- Department of General Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir 190001, India
| |
Collapse
|
7
|
Aljeddani GS, Alghanmi RM, Hamouda RA. Study on the Isotherms, Kinetics, and Thermodynamics of Adsorption of Crystal Violet Dye Using Ag-NPs-Loaded Cellulose Derived from Peanut-Husk Agro-Waste. Polymers (Basel) 2023; 15:4394. [PMID: 38006118 PMCID: PMC10674550 DOI: 10.3390/polym15224394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
A huge amount of textile dyes are released as industrial waste into the environment each year, which alters the water's natural appearance and causes toxicity and carcinogenicity in the human body. Peanut husk is considered an agro-waste and contains many valuable compounds, such as cellulose. Different concentrations of cellulose were extracted from peanut husk and then loaded with bio-silver nanoparticles, which were fabricated using neem leaves (Azadirachta indica) as a reducing agent to form Ag-cellulose nanocomposites (Ag-Cell-NCMs). Different devices were used to characterize Ag-Cell-NCMs. The TEM images displayed that the size of Ag-Cell-NCMs ranged between 13.4 and 17.4 nm after dye adsorption. The Ag-Cell-NCMs were used to adsorb toxic dyes such as crystal violet (CV). Different parameters were applied, such as the ratio of cellulose to Ag-NPs, pH, contact time, adsorbent dose, dye concentration, and the temperature required to reach the optimization conditions to remove CV dye from the aqueous solution. Different kinetics and isotherm models were applied to the experimental data to explain the mechanism of the adsorption process. The adsorption of CV on Ag-Cell-NCMs follows the pseudo-second order, and the best-fit isotherm was the Langmuir isotherm. The new composite was tested for the possibility of dye desorption and ability to be reused several times, and we found that the new nanocomposite can be reused for multiple adsorptions and there is a possibility of dye desorption.
Collapse
Affiliation(s)
- Ghalia Saleem Aljeddani
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Reem Mohammad Alghanmi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ragaa A. Hamouda
- Biology Department, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| |
Collapse
|
8
|
Bao J, Guo S, Fan D, Cheng J, Zhang Y, Pang X. Sonoactivated Nanomaterials: A potent armament for wastewater treatment. ULTRASONICS SONOCHEMISTRY 2023; 99:106569. [PMID: 37657369 PMCID: PMC10495678 DOI: 10.1016/j.ultsonch.2023.106569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The world is currently facing a critical issue of water pollution, with wastewater being a major contributor. It comes from different types of pollutants, including industrial, medical, agricultural, and domestic. Effective treatment of wastewater requires efficient degradation of pollutants and carcinogens prior to discharge. Commonly used methods for wastewater treatment include filtration, adsorption, biodegradation, advanced oxidation processes, and Fenton oxidation, among others.The sonochemical effect refers to the decomposition, oxidation, reduction, and other reactions of pollutant molecules in wastewater upon ultrasound activation, achieving pollutants removal. Furthermore, the micro-flow effect generated by ultrasonic waves creates tiny bubbles and eddies. This significantly increases the contact area and exchange speed of pollutants and dissolved oxygen, thereby accelerating pollutant degradation. Currently, ultrasonic-assisted technology has emerged as a promising approach due to its strong oxidation ability, simple and cheap equipments, and minimal secondary pollution. However, the use of ultrasound in wastewater treatment has some limitations, such as high energy consumption, lengthy treatment time, limited water treatment capacity, stringent water quality requirements, and unstable treatment effects. To address these issues, the combination of enhanced ultrasound with nanotechnology is proposed and has shown great potential in wastewater treatment. Such a combination can greatly improve the efficiency of ultrasonic oxidation, resulting in an improved performance of wastewater purification. This article presents recent progress in the development of sonoactivated nanomaterials for enhanced wastewater disposal. Such nanomaterials are systematically classified and discussed. Potential challenges and future prospects of this emerging technology are also highlighted.
Collapse
Affiliation(s)
- Jianfeng Bao
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Shuangshaung Guo
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Dandan Fan
- School of Basic Medical Sciences, Academy of Medical Sciences, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jingliang Cheng
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Yong Zhang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Xin Pang
- Functional Magnetic Resonance and Molecular Imaging Key Laboratory of Henan Province, Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|
9
|
Tahir H, Saad M, Attala OA, El-Saoud WA, Attia KA, Jabeen S, Zeb J. Sustainable Synthesis of Iron-Zinc Nanocomposites by Azadirachta indica Leaves Extract for RSM-Optimized Sono-Adsorptive Removal of Crystal Violet Dye. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031023. [PMID: 36770029 PMCID: PMC9918168 DOI: 10.3390/ma16031023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2023] [Accepted: 01/19/2023] [Indexed: 06/12/2023]
Abstract
Environmental pollution has exacerbated the availability of clean water to mankind. In this study, Azadirachta indica leaf extract was used for sustainable synthesis of Fe-Zn nanocomposites (IZNC). The instrumental techniques of Fourier transformed infrared (FTIR) spectroscopy, energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) were used to determine the structural and chemical composition. The overall surface was mildly acidic in nature, as the pHPZC was observed to be 6.00. The ultrasonicated adsorption experiments were designed by central composite design (CCD). The best responses, which proposed a contaminants removal of 80.39%, were assessed using the response surface methodology (RSM). By repeating experimental runs at the expected optimum operating parameters (OOP), the method was experimentally affirmed with the %mean error and %RSD9 being 2.695% and 1.648%, respectively. The interaction of CV dye and the nanocomposite showed tremendous adsorption efficiency towards crystal violet (CV) dye, as revealed by isotherm studies. Fitting kinetics and isotherm models were affirmed by root mean square error (RMSE), χ2, and a Pearson regression coefficient. Thermodynamic studies proved spontaneity of the CV dye adsorption over the nanocomposites. The values for ΔGo, ΔHo, and ΔSo were observed to be -1.089 kJ/mol, 28.59 kJ/mol, and -3.546 kJ/mol, respectively. Recovery of CV dye was carried out in a variety of media, including NaOH, NaCl, and CH3COOH. The maximum CV recovery was achieved in an acidic media. The robustness of adsorption was affirmed by the interference of various matrix ions, including KCl, LiCl, NaCl, and MgCl2, which did not significantly affect the adsorption process. The maximum adsorption capacity was obtained at a low concentration of LiCl. The results show that a green synthesis approach for nanocomposite synthesis might be an effective and economical way to remove organic contaminants from wastewater. Moreover, it is also effective for effluent treatment plants (ETP) for waste management purposes, in which it may be coupled with chlorine as a disinfectant to purify water that can be used for domestic and irrigation purposes.
Collapse
Affiliation(s)
- Hajira Tahir
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Saad
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Osama A. Attala
- Department of Environmental and Health Research, The Custodian of the Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Waleed A. El-Saoud
- Natural Hazards Research Unit, Department of Environmental and Health Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Kamal A. Attia
- Biology Department, Al-Jammoum University College, Umm-Alqura University, Makkah 24381, Saudi Arabia
| | - Shaista Jabeen
- Department of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Jahan Zeb
- Department of Environmental and Health Research, The Custodian of the Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
10
|
Ali A, Siddique M, Chen W, Han Z, Khan R, Bilal M, Waheed U, Shahzadi I. Promising Low-Cost Adsorbent from Waste Green Tea Leaves for Phenol Removal in Aqueous Solution. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116396. [PMID: 35681981 PMCID: PMC9180375 DOI: 10.3390/ijerph19116396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Phenol is the most common organic pollutant in many industrial wastewaters that may pose a health risk to humans due to its widespread application as industrial ingredients and additives. In this study, waste green tea leaves (WGTLs) were modified through chemical activation/carbonization and used as an adsorbent in the presence of ultrasound (cavitation) to eliminate phenol in the aqueous solution. Different treatments, such as cavitation, adsorption, and sono-adsorption were investigated to remove the phenol. The scanning electron microscope (SEM) morphology of the adsorbent revealed that the structure of WGTLs was porous before phenol was adsorbed. A Fourier Transform Infrared (FTIR) analysis showed an open chain of carboxylic acids after the sono-adsorption process. The results revealed that the sono-adsorption process is more efficient with enhanced removal percentages than individual processes. A maximum phenol removal of 92% was obtained using the sono-adsorption process under an optimal set of operating parameters, such as pH 3.5, 25 mg L−1 phenol concentration, 800 mg L−1 adsorbent dosage, 60 min time interval, 30 ± 2 °C temperature, and 80 W cavitation power. Removal of chemical oxygen demand (COD) and total organic carbon (TOC) reached 85% and 53%. The Freundlich isotherm model with a larger correlation coefficient (R2, 0.972) was better fitted for nonlinear regression than the Langmuir model, and the sono-adsorption process confirmed the pseudo-second-order reaction kinetics. The findings indicated that WGTLs in the presence of a cavitation effect prove to be a promising candidate for reducing phenol from the aqueous environment.
Collapse
Affiliation(s)
- Asmat Ali
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
| | - Maria Siddique
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China;
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Hubei Key Laboratory of Environmental Water Science in the Yangtze River Basin, China University of Geosciences, Wuhan 430078, China
- Correspondence: (M.S.); (W.C.); Tel.: +92-992-383592 (M.S.); +86-13006374077 (W.C.); Fax: +92-992-383441 (M.S.)
| | - Zhixin Han
- Geological Exploration Institute of Shandong Zhengyuan, China Metallurgical Geology Bureau, Tai’an 271000, China;
| | - Romana Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (R.K.); (M.B.)
| | - Ummara Waheed
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 59300, Pakistan;
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| |
Collapse
|