1
|
Stoyanova-Ivanova A, Petrov V, Martins JNR, Andreeva L, Georgiev V. Multi-Force Bio-Active™ Archwires and Various Contemporary NiTi Multi-Force Archwires: Properties and Characteristics-A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2603. [PMID: 38893867 PMCID: PMC11174049 DOI: 10.3390/ma17112603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
The manufacturing of orthodontic archwires made from NiTi alloy has undergone numerous changes from the second half of the last century to modern times. Initially, superelastic-active austenitic NiTi alloys were predominant, followed by thermodynamic-active martensitic NiTi alloys, and, finally, the most recent development was graded thermodynamic alloys. These advancements have been the subject of extensive investigation in numerous studies, as they necessitated a deeper understanding of their properties. Furthermore, it is imperative that we validate the information provided by manufacturers regarding these archwires through independent studies. This review evaluates existing studies on the subject with a specific focus on the Bio-active multi-force NiTi archwire, by examining its mechanical, thermal, and physicochemical properties before and after clinical use. This archwire consists primarily of Ni and Ti, with traces of Fe and Cr, which release graduated, biologically tolerable forces which increase in a front-to-back direction and are affected by the temperature of the environment they are in. The review provides information to practicing orthodontists, facilitating informed decisions regarding the selection and use of Bio-active™ archwires for individual patient treatments.
Collapse
Affiliation(s)
- Angelina Stoyanova-Ivanova
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria; (A.S.-I.); (V.G.)
| | - Valeri Petrov
- Faculty of Dental Medicine, Medical University of Sofia, St. G. Sofiiski Blvd., 1431 Sofia, Bulgaria; (V.P.); (L.A.)
| | - Jorge N. R. Martins
- Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
- LIBPhys-FCT UID/FIS/04559/2013, 1600-277 Lisboa, Portugal
- Grupo de Investigação em Bioquimica e Biologia Oral (GIBBO), Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), 1600-277 Lisboa, Portugal
- Centro de Estudos de Medicina Dentária Baseada na Evidência (CEMDBE), 1600-277 Lisboa, Portugal
| | - Laura Andreeva
- Faculty of Dental Medicine, Medical University of Sofia, St. G. Sofiiski Blvd., 1431 Sofia, Bulgaria; (V.P.); (L.A.)
| | - Velizar Georgiev
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria; (A.S.-I.); (V.G.)
| |
Collapse
|
2
|
Kuo CC, Liang HX, Huang SH. Characterization of the Polyetheretherketone Weldment Fabricated via Rotary Friction Welding. Polymers (Basel) 2023; 15:4552. [PMID: 38231989 PMCID: PMC10708331 DOI: 10.3390/polym15234552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
Polyether ether ketone (PEEK) is frequently employed in biomedical engineering due to its biocompatibility. Traditionally, PEEK manufacturing methods involve injection molding, compression molding, additive manufacturing, or incremental sheet forming. Few studies have focused on rotational friction welding (RFW) with PEEK plastics. Based on years of RFW practical experience, the mechanical properties of the weldment are related to the burn-off length. However, few studies have focused on this issue. Therefore, the main objective of this study is to assess the effects of burn-off length on the mechanical properties of the welded parts using PEEK polymer rods. The welding pressure can be determined by the rotational speed according to the proposed prediction equation. The burn-off length of 1.6 mm seems to be an optimal burn-off length for RFW. For the rotational speed of 1000 rpm, the average bending strength of the welded parts was increased from 108 MPa to 160 Mpa, when the burn-off length was increased from 1 mm to 1.6 mm and the cycle time of RFW was reduced from 80 s to 76 s. A saving in the cycle time of RFW of about 5% can be obtained. The bending strength of the welded part using laser welding is lower than that using RFW, because only the peripheral material of the PEEK cylinder was melted by the laser.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City 33302, Taiwan
- Center of Reliability Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
| | - Hua-Xhin Liang
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 24301, Taiwan
| | - Song-Hua Huang
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 24301, Taiwan
| |
Collapse
|
3
|
Kuo CC, Chen HW, Huang SH. Rotary Friction Welding of Dissimilar Polymer Rods Containing Metal Powder. Polymers (Basel) 2023; 15:4354. [PMID: 38006079 PMCID: PMC10675412 DOI: 10.3390/polym15224354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Three-dimensional printing is widely used for manufacturing a variety of functional components. However, the 3D printing machine substantially limits the size of the functional components. Rotary friction welding (RFW) is a possible solution to this problem. In addition, there is a notable scarcity of research directed toward the domain knowledge of RFW involving dissimilar polymer rods containing metal powder. In this study, two welding specimens fabricated by polylactic acid (PLA)-containing copper powder and PLA-containing aluminum powder were joined using a turning machine. After RFW, a bending test and a Shore A surface hardness test were performed to investigate the weld quality. It was found that the bending strength of the welded parts fabricated by RFW of PLA and PLA-containing Al powder rods can be enhanced by about 57.5% when the welded part is placed at 45 °C. Surface hardness test results showed that the surface hardness of the weld interface is better than that of the 3D printed parts, and the average surface hardness of the weld interface from RFW of PLA and PLA is the highest. The surface hardness of the weld joint is about 3% higher than that of the base material. The surface hardness of the heat-affected zone is about 3% lower than that of the base material. The average peak temperature of the welded joint is the highest in the RFW of PLA-containing Al powder and PLA-containing Al powder rods. The average peak temperature of the weld joint can be as high as 160 °C. The average peak temperature of the welded joint is the highest in the RFW of PLA-containing Cu powder and PLA-containing Cu powder rods. The average peak temperature of the welded joint can be as high as 144 °C. A technical database was built for the selection of ambient temperatures used for the RFW of dissimilar polymer rods containing metal powder and three base materials.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan;
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
- Center for Reliability Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
| | - Hong-Wei Chen
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan;
| | - Song-Hua Huang
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 24101, Taiwan
| |
Collapse
|
4
|
Kuo CC, Gurumurthy N, Huang SH. Effects of Ambient Temperature on the Mechanical Properties of Frictionally Welded Components of Polycarbonate and Acrylonitrile Butadiene Styrene Dissimilar Polymer Rods. Polymers (Basel) 2023; 15:3637. [PMID: 37688263 PMCID: PMC10490424 DOI: 10.3390/polym15173637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Rotary friction welding (RFW) has no electric arc and the energy consumption during welding can be reduced as compared with conventional arc welding since it is a solid-phase welding process. The RFW is a sustainable manufacturing process because it provides low environmental pollution and energy consumption. However, few works focus on the reliability of dissimilar polymer rods fabricated via RFW. The reliability of the frictionally welded components is also related to the ambient temperatures. This work aims to investigate the effects of ambient temperature on the mechanical properties of frictionally welded components of polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) dissimilar polymer rods. It was found that the heat-affected zone width increases with increasing rotational speeds due to peak welding temperature. The Shore A surface hardness of ABS/PC weld joint does not change with the increased rotational speeds. The Shore A surface hardness in the weld joint of RFW of the ABS/PC is about Shore A 70. The bending strength was increased by about 53% when the welded parts were placed at 60-70 °C compared with bending strength at room temperature. The remarkable finding is that the bending fracture position of the weldment occurs on the ABS side. It should be pointed out that the bending strength can be determined by the placed ambient temperature according to the proposed prediction equation. The impact energy was decreased by about 33% when the welded parts were placed at 65-70 °C compared with the impact energy at room temperature. The impact energy (y) can be determined by the placed ambient temperature according to the proposed prediction equation. The peak temperature in the weld interface can be predicted by the rotational speed based on the proposed equation.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No. 259, Wenhua 1st Road, Guishan District, Taoyuan City 33302, Taiwan
- Center of Reliability Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
| | - Naruboyana Gurumurthy
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, Taishan District, New Taipei City 24301, Taiwan
- Department of Mechanical Engineering, Presidency University, Rajankunte, Near Yelhanka, Bangalore 700073, India
| | - Song-Hua Huang
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 24101, Taiwan
| |
Collapse
|
5
|
Battaglia M, Sellitto A, Giamundo A, Visone M, Riccio A. Shape Memory Alloys Applied to Automotive Adaptive Aerodynamics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4832. [PMID: 37445146 DOI: 10.3390/ma16134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Shape memory alloys (SMAs) are gaining popularity in the fields of automotive and aerospace engineering due to their unique thermomechanical properties. This paper proposes a numerical implementation of a comprehensive constitutive model for simulating the thermomechanical behavior of shape memory alloys, with temperature and strain as control variables to adjust the shape memory effect and super elasticity effect of the material. By implementing this model as a user subroutine in the FE code Abaqus/Standard, it becomes possible to account for variations in material properties in complex components made of shape memory alloys. To demonstrate the potential of the proposed model, a skid plate system design is presented. The system uses bistable actuators with shape memory alloy springs to trigger plate movement. The kinematics and dynamics of the system are simulated, and effective loads are generated by the shape memory alloy state change due to the real temperature distribution in the material, which depends on the springs' geometrical parameters. Finally, the performance of the actuator in switching between different configurations and maintaining stability in a specific configuration is assessed. The study highlights the promising potential of shape memory alloys in engineering applications and demonstrates the ability to use them in complex systems with accurate simulations.
Collapse
Affiliation(s)
- Miriam Battaglia
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Andrea Sellitto
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Angela Giamundo
- BLUE Engineering S.r.l., Via Ex Aeroporto 30/32, 80038 Pomigliano d'Arco, Italy
| | - Michele Visone
- BLUE Engineering S.r.l., Via Ex Aeroporto 30/32, 80038 Pomigliano d'Arco, Italy
| | - Aniello Riccio
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| |
Collapse
|
6
|
Stoyanova-Ivanova A, Georgieva M, Petrov V, Martins JNR, Andreeva L, Petkov A, Petrova N, Georgiev V. Thermal Behavior Changes of As-Received and Retrieved Bio-Active ® (BA) and TriTanium ® (TR) Multiforce Nickel-Titanium Orthodontic Archwires. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103776. [PMID: 37241402 DOI: 10.3390/ma16103776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Multiforce nickel-titanium (NiTi) orthodontic archwires release progressively increasing forces in a front-to-back direction along their length. The properties of NiTi orthodontic archwires depend on the correlation and characteristics of their microstructural phases (austenite, martensite and the intermediate R-phase). From a clinical and manufacturing point of view, the determination of the austenite finish (Af) temperature is of the greatest importance, as in the austenitic phase, the alloy is most stable and exhibits the final workable form. The main purpose of using multiforce orthodontic archwires is to decrease the intensity of the applied forces to the teeth with a small root surface area, such as the lower central incisors, and also provide forces high enough to move the molars. With the optimally dosed forces of multiforce orthodontic archwires in the frontal, premolar and molar segments, the feeling of pain can be reduced. This will contribute to the greater cooperation of the patient, which is of utmost importance to achieve optimal results. The aim of this research was to determine the Af temperature at each segment of as-received and retrieved Bio-Active® and TriTanium® archwires with dimensions of 0.016 × 0.022 inches, investigated by the differential scanning calorimetry (DSC) method. A classical Kruskal-Wallis one-way ANOVA test and multi-variance comparison based on the ANOVA test statistic using the Bonferroni corrected Mann-Whitney test for multiple comparisons were used. The incisor, premolar and molar segments have different Af temperatures, and they decrease from the anterior to posterior so that the posterior segment has the lowest Af. Bio-Active® and TriTanium® with dimensions of 0.016 × 0.022 inches can be used as first leveling archwires by additional cooling and are not recommended for use on patients with mouth breathing.
Collapse
Affiliation(s)
- Angelina Stoyanova-Ivanova
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria
| | - Mirela Georgieva
- Faculty of Dental Medicine, Medical University of Sofia, St. G. Sofiiski Blvd., 1431 Sofia, Bulgaria
| | - Valeri Petrov
- Faculty of Dental Medicine, Medical University of Sofia, St. G. Sofiiski Blvd., 1431 Sofia, Bulgaria
| | - Jorge N R Martins
- Department of Endodontics, Faculdade de Medicina Dentária, Universidade de Lisboa, Rua Professora Teresa Ambrósio, 1600-277 Lisboa, Portugal
- Grupo de Investigação em Bioquimica e Biologia Oral, Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), 1600-277 Lisboa, Portugal
- Centro de Estudo de Medicina Dentária Baseada na Evidência (CEMDBE), 1600-277 Lisboa, Portugal
| | - Laura Andreeva
- Faculty of Dental Medicine, Medical University of Sofia, St. G. Sofiiski Blvd., 1431 Sofia, Bulgaria
| | - Alexander Petkov
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
| | - Nadia Petrova
- Institute of Mineralogy and Crystallography "Acad. Ivan Kostov", Bulgarian Academy of Sciences, "Acad. Georgi Bonchev" Str. 107, 1113 Sofia, Bulgaria
| | - Velizar Georgiev
- G. Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia, Bulgaria
| |
Collapse
|
7
|
Kuo CC, Gurumurthy N, Chen HW, Hunag SH. Mechanical Performance and Microstructural Evolution of Rotary Friction Welding of Acrylonitrile Butadiene Styrene and Polycarbonate Rods. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093295. [PMID: 37176175 PMCID: PMC10179590 DOI: 10.3390/ma16093295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Rotary friction welding (RFW) is a green manufacturing technology with environmental pollution in the field of joining methods. In practice, the welding quality of the friction-welded parts was affected by the peak temperature in the weld joint during the RFW of dissimilar plastic rods. In industry, polycarbonate (PC) and acrylonitrile butadiene styrene (ABS) are two commonly used plastics in consumer products. In this study, the COMSOL multiphysics software was employed to estimate the peak temperature in the weld joint during the RFW of PC and ABS rods. After RFW, the mechanical performance and microstructural evolution of friction-welded parts were investigated experimentally. The average Shore A surface hardness, flexural strength, and impact energy are directly proportional to the rotation speed of the RFW. The quality of RFW is excellent, since the welding strength in the weld joint is better than that of the ABS base materials. The fracture occurs in the ABS rods since their brittleness is higher than that of the PC rods. The average percentage error of predicting the peak temperature using COMSOL software using a mesh element count of 875,688 for five different rotation speeds is about 16.6%. The differential scanning calorimetry curve for the friction-welded parts welded at a rotation speed of 1350 rpm shows an endothermic peak between 400 to 440 °C and an exothermic peak between 600 to 700 °C, showing that the friction-welded parts have better mechanical properties.
Collapse
Affiliation(s)
- Chil-Chyuan Kuo
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
- Department of Mechanical Engineering, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan
| | - Naruboyana Gurumurthy
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
- Department of Mechanical Engineering, Presidency University, Rajankunte, Near Yelhanka, Bangalore 700073, India
| | - Hong-Wei Chen
- Department of Mechanical Engineering, Ming Chi University of Technology, No. 84, Gungjuan Road, New Taipei City 243, Taiwan
| | - Song-Hua Hunag
- Li-Yin Technology Co., Ltd., No. 37, Lane 151, Section 1, Zhongxing Road, Wugu District, New Taipei City 241, Taiwan
| |
Collapse
|