1
|
Truong TT, Mondal S, Doan VHM, Tak S, Choi J, Oh H, Nguyen TD, Misra M, Lee B, Oh J. Precision-engineered metal and metal-oxide nanoparticles for biomedical imaging and healthcare applications. Adv Colloid Interface Sci 2024; 332:103263. [PMID: 39121830 DOI: 10.1016/j.cis.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024]
Abstract
The growing field of nanotechnology has witnessed numerous advancements over the past few years, particularly in the development of engineered nanoparticles. Compared with bulk materials, metal nanoparticles possess more favorable properties, such as increased chemical activity and toxicity, owing to their smaller size and larger surface area. Metal nanoparticles exhibit exceptional stability, specificity, sensitivity, and effectiveness, making them highly useful in the biomedical field. Metal nanoparticles are in high demand in biomedical nanotechnology, including Au, Ag, Pt, Cu, Zn, Co, Gd, Eu, and Er. These particles exhibit excellent physicochemical properties, including amenable functionalization, non-corrosiveness, and varying optical and electronic properties based on their size and shape. Metal nanoparticles can be modified with different targeting agents such as antibodies, liposomes, transferrin, folic acid, and carbohydrates. Thus, metal nanoparticles hold great promise for various biomedical applications such as photoacoustic imaging, magnetic resonance imaging, computed tomography (CT), photothermal, and photodynamic therapy (PDT). Despite their potential, safety considerations, and regulatory hurdles must be addressed for safe clinical applications. This review highlights advancements in metal nanoparticle surface engineering and explores their integration with emerging technologies such as bioimaging, cancer therapeutics and nanomedicine. By offering valuable insights, this comprehensive review offers a deep understanding of the potential of metal nanoparticles in biomedical research.
Collapse
Affiliation(s)
- Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Soonhyuk Tak
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Hanmin Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Tan Dung Nguyen
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University, Jaipur, India
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea; Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea; Smart Gym-Based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea; Ohlabs Corp., Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Jongrungsomran S, Pissuwan D, Yavirach A, Rungsiyakull C, Rungsiyakull P. The Integration of Gold Nanoparticles into Dental Biomaterials as a Novel Approach for Clinical Advancement: A Narrative Review. J Funct Biomater 2024; 15:291. [PMID: 39452589 PMCID: PMC11508227 DOI: 10.3390/jfb15100291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Gold nanoparticles (AuNPs) have gained significant attention in the biomedical field owing to their versatile properties. AuNPs can be customized by modifying their size, shape and surface characteristics. In recent years, extensive research has explored the integration of AuNPs into various dental materials, including titanium, polymethylmethacrylate (PMMA) and resin composites. This review aims to summarize the advancements in the application of modified AuNPs in dental materials and to assess their effects on related cellular processes in the dental field. Relevant articles published in English on AuNPs in association with dental materials were identified through a systematic search of the PubMed/MEDLINE, Embase, Scopus and ScienceDirect databases from January 2014 to April 2024. Future prospects for the utilization of AuNPs in the field of dentistry are surveyed.
Collapse
Affiliation(s)
- Saharat Jongrungsomran
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| | - Dakrong Pissuwan
- Nanobiotechnology and Nanobiomaterials Research Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Apichai Yavirach
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| | - Chaiy Rungsiyakull
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimduen Rungsiyakull
- Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand; (S.J.); (A.Y.)
| |
Collapse
|
3
|
Pedrosa TDL, de Oliveira GMF, Pereira ACMV, Crispim MJBDS, da Silva LA, da Silva MS, de Souza IA, Melo AMMDA, Gomes ASL, de Araujo RE. Tailoring Plasmonic Nanoheaters Size for Enhanced Theranostic Agent Performance. Bioengineering (Basel) 2024; 11:934. [PMID: 39329676 PMCID: PMC11428745 DOI: 10.3390/bioengineering11090934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The introduction of optimized nanoheaters, which function as theranostic agents integrating both diagnostic and therapeutic processes, holds significant promise in the medical field. Therefore, developing strategies for selecting and utilizing optimized plasmonic nanoheaters is crucial for the effective use of nanostructured biomedical agents. This work elucidates the use of the Joule number (Jo) as a figure of merit to identify high-performance plasmonic theranostic agents. A framework for optimizing metallic nanoparticles for heat generation was established, uncovering the size dependence of plasmonic nanoparticles optical heating. Gold nanospheres (AuNSs) with a diameter of 50 nm and gold nanorods (AuNRs) with dimensions of 41×10 nm were identified as effective nanoheaters for visible (530 nm) and infrared (808 nm) excitation. Notably, AuNRs achieve higher Jo values than AuNSs, even when accounting for the possible orientations of the nanorods. Theoretical results estimate that 41×10 nm gold nanorods have an average Joule number of 80, which is significantly higher compared to larger rods. The photothermal performance of optimal and suboptimal nanostructures was evaluated using photoacoustic imaging and photothermal therapy procedures. The photoacoustic images indicate that, despite having larger absorption cross-sections, the large nanoparticle volume of bigger particles leads to less efficient conversion of light into heat, which suggests that the use of optimized nanoparticles promotes higher contrast, benefiting photoacoustic-based procedures in diagnostic applications. The photothermal therapy procedure was performed on S180-bearing mice inoculated with 41×10 nm and 90×25 nm PEGylated AuNRs. Five minutes of laser irradiation of tumor tissue with 41×10 nm produced an approximately 9.5% greater temperature rise than using 90×25 AuNRs in the therapy trials. Optimizing metallic nanoparticles for heat generation may reduce the concentration of the nanoheaters used or decrease the light fluence for bioscience applications, paving the way for the development of more economical theranostic agents.
Collapse
Affiliation(s)
- Túlio de L Pedrosa
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Gabrielli M F de Oliveira
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Arthur C M V Pereira
- Department of Physics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Mariana J B da S Crispim
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| | - Luzia A da Silva
- Graduate Program in Biological Sciences, Federal University of Pernambuco, Recife 50670-420, Brazil
| | - Marcilene S da Silva
- Laboratory of Pharmacology and Experimental Cancerology, Federal University of Pernambuco, Recife 50740-521, Brazil
| | - Ivone A de Souza
- Laboratory of Pharmacology and Experimental Cancerology, Federal University of Pernambuco, Recife 50740-521, Brazil
| | - Ana M M de A Melo
- Department of Biophysics and Radiobiology, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Anderson S L Gomes
- Department of Physics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Renato E de Araujo
- Laboratory of Biomedical Optics and Imaging, Federal University of Pernambuco, Recife 50740-540, Brazil
| |
Collapse
|
4
|
Zheng Y, Luo S, Xu M, He Q, Xie J, Wu J, Huang Y. Transepithelial transport of nanoparticles in oral drug delivery: From the perspective of surface and holistic property modulation. Acta Pharm Sin B 2024; 14:3876-3900. [PMID: 39309496 PMCID: PMC11413706 DOI: 10.1016/j.apsb.2024.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/25/2024] [Indexed: 09/25/2024] Open
Abstract
Despite the promising prospects of nanoparticles in oral drug delivery, the process of oral administration involves a complex transportation pathway that includes cellular uptake, intracellular trafficking, and exocytosis by intestinal epithelial cells, which are necessary steps for nanoparticles to enter the bloodstream and exert therapeutic effects. Current researchers have identified several crucial factors that regulate the interaction between nanoparticles and intestinal epithelial cells, including surface properties such as ligand modification, surface charge, hydrophilicity/hydrophobicity, intestinal protein corona formation, as well as holistic properties like particle size, shape, and rigidity. Understanding these properties is essential for enhancing transepithelial transport efficiency and designing effective oral drug delivery systems. Therefore, this review provides a comprehensive overview of the surface and holistic properties that influence the transepithelial transport of nanoparticles, elucidating the underlying principles governing their impact on transepithelial transport. The review also outlines the chosen of parameters to be considered for the subsequent design of oral drug delivery systems.
Collapse
Affiliation(s)
- Yaxian Zheng
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Shiqin Luo
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Min Xu
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin He
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiang Xie
- Department of Pharmacy, the Third People's Hospital of Chengdu, the Affiliated Hospital of Southwest Jiaotong University, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiawei Wu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Lai J, Luo Z, Liu J, Hu H, Jiang H, Liu P, He L, Cheng W, Ren W, Wu Y, Piao JG, Wu Z. Charged Gold Nanoparticles for Target Identification-Alignment and Automatic Segmentation of CT Image-Guided Adaptive Radiotherapy in Small Hepatocellular Carcinoma. NANO LETTERS 2024; 24:10614-10623. [PMID: 39046153 PMCID: PMC11363118 DOI: 10.1021/acs.nanolett.4c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
Because of the challenges posed by anatomical uncertainties and the low resolution of plain computed tomography (CT) scans, implementing adaptive radiotherapy (ART) for small hepatocellular carcinoma (sHCC) using artificial intelligence (AI) faces obstacles in tumor identification-alignment and automatic segmentation. The current study aims to improve sHCC imaging for ART using a gold nanoparticle (Au NP)-based CT contrast agent to enhance AI-driven automated image processing. The synthesized charged Au NPs demonstrated notable in vitro aggregation, low cytotoxicity, and minimal organ toxicity. Over time, an in situ sHCC mouse model was established for in vivo CT imaging at multiple time points. The enhanced CT images processed using 3D U-Net and 3D Trans U-Net AI models demonstrated high geometric and dosimetric accuracy. Therefore, charged Au NPs enable accurate and automatic sHCC segmentation in CT images using classical AI models, potentially addressing the technical challenges related to tumor identification, alignment, and automatic segmentation in CT-guided online ART.
Collapse
Affiliation(s)
- Jianjun Lai
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
- Instiute
of Intelligent Control and Robotics, Hangzhou
Dianzi University, Hangzhou 310018, China
| | - Zhizeng Luo
- Instiute
of Intelligent Control and Robotics, Hangzhou
Dianzi University, Hangzhou 310018, China
| | - Jiping Liu
- Department
of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Haili Hu
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
| | - Hao Jiang
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
| | - Pengyuan Liu
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
| | - Li He
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Weiyi Cheng
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Weiye Ren
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Yajun Wu
- Department
of Pharmacy, Zhejiang Hospital, Hangzhou 310013, China
| | - Ji-Gang Piao
- School
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou 310053, China
| | - Zhibing Wu
- Department
of Radiation Oncology, Zhejiang Hospital, Hangzhou 310013, China
- Department
of Radiation Oncology, Affiliated Zhejiang
Hospital, Zhejiang University School of Medicine, Hangzhou 310013, China
| |
Collapse
|
6
|
Zhang S, Yu S, Sun J, Huang T, Lin H, Li Z, Xiao Z, Lu W. Au@CuS Nanoshells for Surface-Enhanced Raman Scattering Image-Guided Tumor Photothermal Therapy with Accelerated Hepatobiliary Excretion. Pharmaceutics 2024; 16:1089. [PMID: 39204434 PMCID: PMC11360001 DOI: 10.3390/pharmaceutics16081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
Gold-based nanoparticles for surface-enhanced Raman scattering (SERS) imaging show great potential for precise tumor detection and photothermal therapy (PTT). However, the metabolizability of gold nanoparticles (Au NPs) raises big concerns. Herein, we designed a core-shelled nanostructure of copper sulfide (CuS)-coated Au NPs with surface pegylation (PEG-Au@CuS NSs). The excreted Au in the gallbladders at 1 h and 4 h in mice injected with PEG-Au@CuS NSs was 8.2- and 19.1-fold of that with the pegylated Au NPs (PEG-AuNPs) of the same Au particle size, respectively. By loading the Raman reporter 3,3'-Diethylthiatricarbocyanine iodide (DTTC) in the core-shell junction of PEG-Au@CuS NSs, the PEG-Au-DTTC@CuS NSs exhibited the Raman signal-to-noise (S/N) ratio of 4.01 after 24 h of intravenous (IV) injection in the mice bearing an orthotopic CT26-Luc colon tumor. By contrast, the DTTC-coated PEG-AuNPs (PEG-Au-DTTC NPs) achieved an S/N ratio of 2.71. Moreover, PEG-Au-DTTC@CuS NSs exhibited an increased photothermal conversion effect compared with PEG-Au-DTTC NPs excited with an 808-nm laser. PEG-Au-DTTC@CuS NSs enabled intraoperative SERS image-guided photothermal therapy for a complete cure of the colon tumor-bearing mice. Our data demonstrated that the PEG-Au-DTTC@CuS NSs are promising intraoperative Raman image-guided theranostic nanoplatform with enhanced hepatobiliary excretion.
Collapse
Affiliation(s)
- Sihang Zhang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Sheng Yu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jingwen Sun
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Teng Huang
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Hongzheng Lin
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Zeyu Xiao
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Wei Lu
- School of Pharmacy & Minhang Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Quzhou Fudan Institute, 108 Minjiang Avenue, Quzhou 324002, China
| |
Collapse
|
7
|
Lu YT, Zeng YX, Tsai WX, Huang HC, Tsai MY, Diao Y, Hung WH. Study of Highly Efficient Au/Pt Nanoparticles for Rapid Screening of Clostridium difficile. ACS OMEGA 2024; 9:24593-24600. [PMID: 38882078 PMCID: PMC11170621 DOI: 10.1021/acsomega.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024]
Abstract
This study synthesized core/shell gold-platinum nanoparticles and characterized their colorimetric properties; ultraviolet-visible spectroscopy revealed that the synthesized nanoparticles exhibited distinct colors from conventional gold nanoparticles. Furthermore, the nanoparticles were subjected to lateral flow assays using Protein A, and the results revealed that they outperformed conventional spherical gold nanoparticles in terms of color development. This improvement can be attributed to the distinct core/shell structures of our nanoparticles. Further evaluation revealed that these nanoparticles could facilitate the detection of Clostridium difficile Toxin B visually at an extremely low concentration (1 ng/mL) without the requirement for advanced instrumentation. This substantial improvement in sensitivity can be attributed to the meticulous design and nanoscale engineering of the structure of the nanoparticles.
Collapse
Affiliation(s)
- Ying-Tsang Lu
- School of Medicine, Huaqiao University, No. 269 Chenghua North Rd ,Quanzhou ,Fujian 362021, China
- Strong Biotech Corporation, 7f., No. 32, Sec. 1, Chenggong Rd., Nangang District ,Taipei City 11570, Taiwan (R.O.C.)
| | - Yu-Xlang Zeng
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
| | - Wu-Xiong Tsai
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
| | - Hsin-Chang Huang
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
- Tripod Nano Technology Corporation, No. 3, Gongye 12th Rd., Pingzhen District ,Taoyuan City 324403, Taiwan (R.O.C.)
| | - Ming-Yuan Tsai
- Tripod Nano Technology Corporation, No. 3, Gongye 12th Rd., Pingzhen District ,Taoyuan City 324403, Taiwan (R.O.C.)
| | - Yong Diao
- School of Medicine, Huaqiao University, No. 269 Chenghua North Rd ,Quanzhou ,Fujian 362021, China
| | - Wei-Hsuan Hung
- Institute of Material Science and Engineering, National Central University, No. 300, Zhong-da Rd. Zhongli District ,Taoyuan City 32001, Taiwan (R.O.C.)
| |
Collapse
|
8
|
Saidi D, Obeidat M, Alsotari S, Ibrahim AA, Al-Buqain R, Wehaibi S, Alqudah DA, Nsairat H, Alshaer W, Alkilany AM. Formulation optimization of lyophilized aptamer-gold nanoparticles: Maintained colloidal stability and cellular uptake. Heliyon 2024; 10:e30743. [PMID: 38774322 PMCID: PMC11107208 DOI: 10.1016/j.heliyon.2024.e30743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/24/2024] Open
Abstract
Anti-nucleolin (NCL) aptamer AS1411 is the first anticancer aptamer tested in clinical trials. Gold nanoparticles (AuNP) have been widely exploited for various biomedical applications due to their unique functional properties. In this study, we evaluated the colloidal stability and targeting capacity of AS1411-funtionalized AuNP (AuNP/NCL-Apt) against MCF-7 breast cancer cell line before and after lyophilization. Trehalose, mannitol, and sucrose at various concentrations were evaluated to determine their cryoprotection effects. Our results indicate that sucrose at 10 % (w/v) exhibits the best cryoprotection effect and minimal AuNP/NCL-Apt aggregation as confirmed by UV-Vis spectroscopy and dynamic light scattering (DLS) measurements. Moreover, the lyophilized AuNP/NCL-Apt at optimized formulation maintained its targeting and cytotoxic functionality against MCF-7 cells as proven by the cellular uptake assays utilizing flow cytometry and confocal laser scanning microscopy (CLSM). Quantitative PCR (qPCR) analysis of nucleolin-target gene expression also confirmed the effectiveness of AuNP/NCL-Apt. This study highlights the importance of selecting the proper type and concentration of cryoprotectant in the typical nanoparticle lyophilization process and contributes to our understanding of the physical and biological properties of functionalized nanoparticles upon lyophilization.
Collapse
Affiliation(s)
- Dalya Saidi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Marya Obeidat
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Shrouq Alsotari
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Abed-Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E. Gate City Blvd, Greensboro, NC, 27401, USA
| | - Rula Al-Buqain
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Suha Wehaibi
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Dana A. Alqudah
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| | | |
Collapse
|
9
|
Petrovic S, Bita B, Barbinta-Patrascu ME. Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives. Int J Mol Sci 2024; 25:5842. [PMID: 38892030 PMCID: PMC11172476 DOI: 10.3390/ijms25115842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the "green" design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section.
Collapse
Affiliation(s)
- Sanja Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia;
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Magurele, Romania;
| |
Collapse
|
10
|
Zhang N, Yu L, Zhang NN, Liu K, Lu ZY. Programmable Colloids with Analogous Hypercoordination Complex Architectures. J Phys Chem Lett 2024:5159-5164. [PMID: 38713012 DOI: 10.1021/acs.jpclett.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Colloidal molecule clusters (CMCs) are promising building blocks with molecule-like symmetry, offering exceptional synergistic properties for applications in plasmonics and catalysis. Traditional CMC fabrication has been limited to simple molecule-like structures utilizing isotropic particles. Here, we employ molecular dynamics simulation to investigate the co-assembly of anisotropic nanorods (NRs) and the stimulus-responsive polymer (SRP) via reversible adsorption. The results of the simulation show that it is possible to fabricate hypercoordination complex structures with high symmetry from the co-assembly of NRs and the SRP, even in analogy to the Th(BH4)4 structure. The coordination number of these CMCs can be precisely programmed by adjusting the shape and size of the ends of the NRs and the SRP cohesion energy. Furthermore, a finite-difference time-domain simulation indicates these hypercoordination structures exhibit significantly enhanced optical activity and plasmonic coupling effects. These findings introduce a new design approach for complex molecule-like structures utilizing anisotropic nanoparticles and may expand the applications of CMCs in photonics.
Collapse
Affiliation(s)
- Niboqia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Linxiuzi Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
11
|
Chaudhari R, Patel V, Kumar A. Cutting-edge approaches for targeted drug delivery in breast cancer: beyond conventional therapies. NANOSCALE ADVANCES 2024; 6:2270-2286. [PMID: 38694472 PMCID: PMC11059480 DOI: 10.1039/d4na00086b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
Breast cancer is a global health challenge with staggering statistics underscoring its pervasive impact. The burden of this disease is measured in terms of its prevalence and the challenges it poses to healthcare systems, necessitating a closer look at its epidemiology and impact. Current breast cancer treatments, including surgery, chemotherapy, radiation therapy, and targeted therapies, have made significant strides in improving patient outcomes. However, they are not without limitations, often leading to adverse effects and the development of drug resistance. This comprehensive review delves into the complex landscape of breast cancer, including its incidence, current treatment modalities, and the inherent limitations of existing therapeutic approaches. It also sheds light on the promising role of nanotechnology, encompassing both inorganic and organic nanoparticles equipped with the ability to selectively deliver therapeutic agents to tumor sites, in the battle against breast cancer. The review also addresses the emerging therapies, their associated challenges, and the future prospects of targeted drug delivery in breast cancer management.
Collapse
Affiliation(s)
- Ramesh Chaudhari
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University Central Campus, Navrangpura Ahmedabad 380009 Gujarat India
| | - Vishva Patel
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University Central Campus, Navrangpura Ahmedabad 380009 Gujarat India
| | - Ashutosh Kumar
- Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University Central Campus, Navrangpura Ahmedabad 380009 Gujarat India
| |
Collapse
|
12
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
13
|
Kumar Y, Thomas T, Pérez-Tijerina E, Bogireddy NKR, Agarwal V. Exfoliated MXene-AuNPs hybrid in sensing and multiple catalytic hydrogenation reactions. NANOTECHNOLOGY 2024; 35:205703. [PMID: 38320322 DOI: 10.1088/1361-6528/ad26da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/06/2024] [Indexed: 02/08/2024]
Abstract
The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.
Collapse
Affiliation(s)
- Yogesh Kumar
- Investigation Center for Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca 62209 Mor., Mexico
- Faculty of Physics and Mathematics (FCFM-UANL), Autonomous University of Nuevo Leon, Cd. Universitaria, San Nicolás de los Garza, N.L. 66451, Mexico
| | - Tijin Thomas
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - E Pérez-Tijerina
- Faculty of Physics and Mathematics (FCFM-UANL), Autonomous University of Nuevo Leon, Cd. Universitaria, San Nicolás de los Garza, N.L. 66451, Mexico
| | - N K R Bogireddy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, C.P 62210 Cuernavaca, Morelos, Mexico
| | - V Agarwal
- Investigation Center for Engineering and Applied Sciences (CIICAp-IICBA), Autonomous State University of Morelos (UAEM), Av. Univ. 1001, Col. Chamilpa, Cuernavaca 62209 Mor., Mexico
| |
Collapse
|
14
|
Chiang MC, Yang YP, Nicol CJB, Wang CJ. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int J Mol Sci 2024; 25:2360. [PMID: 38397037 PMCID: PMC10888679 DOI: 10.3390/ijms25042360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This review explores the diverse applications of gold nanoparticles (AuNPs) in neurological diseases, with a specific focus on Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. The introduction highlights the pivotal role of neuroinflammation in these disorders and introduces the unique properties of AuNPs. The review's core examines the mechanisms by which AuNPs exert neuroprotection and anti-neuro-inflammatory effects, elucidating various pathways through which they manifest these properties. The potential therapeutic applications of AuNPs in AD are discussed, shedding light on promising avenues for therapy. This review also explores the prospects of utilizing AuNPs in PD interventions, presenting a hopeful outlook for future treatments. Additionally, the review delves into the potential of AuNPs in providing neuroprotection after strokes, emphasizing their significance in mitigating cerebrovascular accidents' aftermath. Experimental findings from cellular and animal models are consolidated to provide a comprehensive overview of AuNPs' effectiveness, offering insights into their impact at both the cellular and in vivo levels. This review enhances our understanding of AuNPs' applications in neurological diseases and lays the groundwork for innovative therapeutic strategies in neurology.
Collapse
Affiliation(s)
- Ming-Chang Chiang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yu-Ping Yang
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Christopher J. B. Nicol
- Departments of Pathology & Molecular Medicine and Biomedical & Molecular Sciences, Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, ON K7L 3N6, Canada;
| | - Chieh-Ju Wang
- Department of Life Science, College of Science and Engineering, Fu Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
15
|
Talarska P, Błaszkiewicz P, Kostrzewa A, Wirstlein P, Cegłowski M, Nowaczyk G, Dudkowiak A, Grabarek BO, Głowacka-Stalmach P, Szarpak A, Żurawski J. Effects of Spherical and Rod-like Gold Nanoparticles on the Reactivity of Human Peripheral Blood Leukocytes. Antioxidants (Basel) 2024; 13:157. [PMID: 38397755 PMCID: PMC10885998 DOI: 10.3390/antiox13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Gold nanoparticles (GNPs) are widely used in the technological and biomedical industries, which is a major driver of research on these nanoparticles. The main goal of this study was to determine the influence of GNPs (at 20, 100, and 200 μg/mL concentrations) on the reactivity of human peripheral blood leukocytes. Flow cytometry was used to evaluate the respiratory burst activity and pyroptosis in monocytes and granulocytes following incubation with GNPs for 30 and 60 min. Furthermore, the concentration of interleukin-1β (IL-1β) in human blood samples was assessed using enzyme-linked immunosorbent assay (ELISA) after their incubation with GNPs for 24 h. Under the conditions tested in the study, the GNPs did not significantly affect the production of reactive oxygen species in the granulocytes and monocytes that were not stimulated using phorbol 12-myristate 13-acetate (PMA) in comparison to the samples exposed to PMA (p < 0.05). Compared to the control sample, the greatest significant increase in the mean fluorescence intensity of the granulocytes occurred in the samples incubated with CGNPs = 100 and 200 µg/mL for tinc = 30 and 60 min (p < 0.05). From our results, we conclude that the physicochemical properties of the nanoparticles, chemical composition, and the type of nanoparticles used in the unit, along with the unit and incubation time, influence the induced toxicity.
Collapse
Affiliation(s)
- Patrycja Talarska
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.K.); (J.Ż.)
| | - Paulina Błaszkiewicz
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland; (P.B.); (A.D.)
| | - Artur Kostrzewa
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.K.); (J.Ż.)
| | - Przemysław Wirstlein
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University Poznań, 61-614 Poznan, Poland;
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, 61-614 Poznan, Poland;
| | - Alina Dudkowiak
- Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznan, Poland; (P.B.); (A.D.)
| | | | | | - Agnieszka Szarpak
- Faculty of Medicine, Uczelnia Medyczna im. Marii Skłodowskiej-Curie, 00-136 Warszawa, Poland;
| | - Jakub Żurawski
- Department of Immunobiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (A.K.); (J.Ż.)
| |
Collapse
|
16
|
Gupta D, Roy P, Sharma R, Kasana R, Rathore P, Gupta TK. Recent nanotheranostic approaches in cancer research. Clin Exp Med 2024; 24:8. [PMID: 38240834 PMCID: PMC10799106 DOI: 10.1007/s10238-023-01262-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024]
Abstract
Humanity is suffering from cancer which has become a root cause of untimely deaths of individuals around the globe in the recent past. Nanotheranostics integrates therapeutics and diagnostics to monitor treatment response and enhance drug efficacy and safety. We hereby propose to discuss all recent cancer imaging and diagnostic tools, the mechanism of targeting tumor cells, and current nanotheranostic platforms available for cancer. This review discusses various nanotheranostic agents and novel molecular imaging tools like MRI, CT, PET, SPEC, and PAT used for cancer diagnostics. Emphasis is given to gold nanoparticles, silica, liposomes, dendrimers, and metal-based agents. We also highlight the mechanism of targeting the tumor cells, and the limitations of different nanotheranostic agents in the field of research for cancer treatment. Due to the complexity in this area, multifunctional and hybrid nanoparticles functionalized with targeted moieties or anti-cancer drugs show the best feature for theranostics that enables them to work on carrying and delivering active materials to the desired area of the requirement for early detection and diagnosis. Non-invasive imaging techniques have a specificity of receptor binding and internalization processes of the nanosystems within the cancer cells. Nanotheranostics may provide the appropriate medicine at the appropriate dose to the appropriate patient at the appropriate time.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Priyanka Roy
- Department of Chemistry, Jamia Hamdard University, New Delhi, 110062, India
| | - Rishabh Sharma
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Richa Kasana
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Pragati Rathore
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Tejendra Kumar Gupta
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Sector-125, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
17
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
18
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
19
|
Farhana A, Alsrhani A, Rasheed N, Rasheed Z. Gold nanoparticles attenuate the interferon-γ induced SOCS1 expression and activation of NF-κB p65/50 activity via modulation of microRNA-155-5p in triple-negative breast cancer cells. Front Immunol 2023; 14:1228458. [PMID: 37720228 PMCID: PMC10500308 DOI: 10.3389/fimmu.2023.1228458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 09/19/2023] Open
Abstract
Objective Triple-negative breast cancer (TNBC) is a very aggressive form of cancer that grows and spreads very fast and generally relapses. Therapeutic options of TNBC are limited and still need to be explored completely. Gold nanoparticles conjugated with citrate (citrate-AuNPs) are reported to have anticancer potential; however, their role in regulating microRNAs (miRNAs) in TNBC has never been investigated. This study investigated the potential of citrate-AuNPs against tumorigenic inflammation via modulation of miRNAs in TNBC cells. Methods Gold nanoparticles were chemically synthesized using the trisodium-citrate method and were characterized by UV-Vis spectrophotometry and dynamic light scattering studies. Targetscan bioinformatics was used to analyze miRNA target genes. Levels of miRNA and mRNA were quantified using TaqMan assays. The pairing of miRNA in 3'untranslated region (3'UTR) of mRNA was validated by luciferase reporter clone, containing the entire 3'UTR of mRNA, and findings were further re-validated via transfection with miRNA inhibitors. Results Newly synthesized citrate-AuNPs were highly stable, with a mean size was 28.3 nm. The data determined that hsa-miR155-5p is a direct regulator of SOCS1 (suppressor-of-cytokine-signaling) expression and citrate-AuNPs inhibits SOCS1 mRNA/protein expression via modulating hsa-miR155-5p expression. Transfection of TNBC MDA-MB-231 cells with anti-miR155-5p markedly increased SOCS1 expression (p<0.001), while citrate-AuNPs treatment significantly inhibited anti-miR155-5p transfection-induced SOCS1 expression (p<0.05). These findings were validated by IFN-γ-stimulated MDA-MB-231 cells. Moreover, the data also determined that citrate-AuNPs also inhibit IFN-γ-induced NF-κB p65/p50 activation in MDA-MB-231 cells transfected with anti-hsa-miR155-5p. Conclusion Newly generated citrate-AuNPs were stable and non-toxic to TNBC cells. Citrate-AuNPs inhibit IFN-γ-induced SOCS1 mRNA/protein expression and deactivate NF-κB p65/50 activity via negative regulation of hsa-miR155-5p. These novel pharmacological actions of citrate-AuNPs on IFN-γ-stimulated TNBC cells provide insights that AuNPs inhibit IFN-γ induced inflammation in TNBC cells by modulating the expression of microRNAs.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Aljouf, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Consultant, Calamvale, QLD, Australia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
20
|
Liu P, Wu Y, Xu X, Fan X, Sun C, Chen X, Xia J, Bai S, Qu L, Lu H, Wu J, Chen J, Piao JG, Wu Z. Microwave triggered multifunctional nanoplatform for targeted photothermal-chemotherapy in castration-resistant prostate cancer. NANO RESEARCH 2023; 16:9688-9700. [DOI: 10.1007/s12274-023-5541-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 11/11/2023]
|
21
|
Bazsefidpar S, Serrano-Pertierra E, Gutiérrez G, Calvo AS, Matos M, Blanco-López MC. Rapid and sensitive detection of E. coli O157:H7 by lateral flow immunoassay and silver enhancement. Mikrochim Acta 2023; 190:264. [PMID: 37336818 DOI: 10.1007/s00604-023-05834-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/15/2023] [Indexed: 06/21/2023]
Abstract
The aim of this study was to develop a sensitive lateral flow immunoassay (LFIA) for the rapid detection of Escherichia coli (E. coli) O157:H7, a pathogen contributor to diseases and fatalities worldwide. Au nanoparticles with high stability, uniform size, and shape were synthesized and coated with heterobifunctional PEG polymer with carboxyl groups, and they were bioconjugated to be used as label in sandwich-LFIA. Then, a silver enhancement strategy was developed as an accessible, rapid, and cost-effective approach for signal amplification to reduce the limit of detection (LOD). The optimal results were achieved when a solution of silver nitrate and hydroquinone/citrate buffer was added to the strips for 4 min. This led to a decrease in the visual LOD from 2 × 106 (CFU mL-1) to 2 × 103 (CFU mL-1), resulting in a threefold improvement in sensitivity compared to the conventional LFIA system. The specificity of the system was evaluated by using non-target bacteria (E. coli BL21 and E. coli T515) and its reliability was determined by testing commercial food samples (milk, tap water, and orange juice), demonstrating its effectiveness for quickly detecting pathogenic bacteria in food products.
Collapse
Affiliation(s)
- Shayesteh Bazsefidpar
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Alberto Sánchez Calvo
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering & Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
22
|
Das G, Patra JK. Evaluation of Antibacterial Mechanism of Action, Tyrosinase Inhibition, and Photocatalytic Degradation Potential of Sericin-Based Gold Nanoparticles. Int J Mol Sci 2023; 24:ijms24119477. [PMID: 37298428 DOI: 10.3390/ijms24119477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In recent times, numerous natural materials have been used for the fabrication of gold nanoparticles (AuNPs). Natural resources used for the synthesis of AuNPs are more environment friendly than chemical resources. Sericin is a silk protein that is discarded during the degumming process for obtaining silk. The current research used sericin silk protein waste materials as the reducing agent for the manufacture of gold nanoparticles (SGNPs) by a one-pot green synthesis method. Further, the antibacterial effect and antibacterial mechanism of action, tyrosinase inhibition, and photocatalytic degradation potential of these SGNPs were evaluated. The SGNPs displayed positive antibacterial activity (8.45-9.58 mm zone of inhibition at 50 μg/disc) against all six tested foodborne pathogenic bacteria, namely, Enterococcus feacium DB01, Staphylococcus aureus ATCC 13565, Listeria monocytogenes ATCC 33090, Escherichia coli O157:H7 ATCC 23514, Aeromonas hydrophila ATCC 7966, and Pseudomonas aeruginosa ATCC 27583. The SGNPs also exhibited promising tyrosinase inhibition potential, with 32.83% inhibition at 100 μg/mL concentration as compared to 52.4% by Kojic acid, taken as a reference standard compound. The SGNPs also displayed significant photocatalytic degradation effects, with 44.87% methylene blue dye degradation after 5 h of incubation. Moreover, the antibacterial mode of action of the SGNPs was also investigated against E. coli and E. feacium, and the results show that due to the small size of the nanomaterials, they could have adhered to the surface of the bacterial pathogens, and could have released more ions and dispersed in the bacterial cell wall surrounding environment, thereby disrupting the cell membrane and ROS production, and subsequently penetrating the bacterial cells, resulting in lysis or damage to the cell by the process of structural damage to the membrane, oxidative stress, and damage to the DNA and bacterial proteins. The overall outcome of the current investigation concludes the positive effects of the obtained SGNPs and their prospective applications as a natural antibacterial agent in cosmetics, environmental, and foodstuff industries, and for the management of environmental contagion.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyangsi 10326, Republic of Korea
| |
Collapse
|
23
|
Singpanna K, Pornpitchanarong C, Patrojanasophon P, Rojanarata T, Ngawhirunpat T, Kevin Li S, Opanasopit P. Chitosan capped-gold nanoparticles as skin penetration enhancer for small molecules: A study in porcine skin. Int J Pharm 2023; 640:123034. [PMID: 37172630 DOI: 10.1016/j.ijpharm.2023.123034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Skin is considered one of the most convenient sites for drug administration. The present study evaluated the effect of gold nanoparticles stabilized by chitosan (CS-AuNPs) and citrate ions (Ci-AuNPs) on skin permeation of sodium fluorescein (NaFI) and rhodamine b base (RhB) as small model hydrophilic and lipophilic permeants, respectively. CS-AuNPs and Ci-AuNPs were characterized by transmitted electron microscopy (TEM) and dynamic light scattering (DLS). Skin permeation was investigated using porcine skin with diffusion cells and confocal laser scanning microscopy (CLSM). The CS-AuNPs and Ci-AuNPs were spherical-shaped nanosized particles (38.4±0.7 and 32.2±0.7 nm, respectively). The zeta potential of CS-AuNPs was positive (+30.7±1.2 mV) whereas that of Ci-AuNPs was negative (-60.2±0.4 mV). The skin permeation study revealed that CS-AuNPs could enhance the permeation of NaFI with enhancement ratio (ER) of 38.2±7.5, and the effect was superior to that of Ci-AuNPs. CLSM visualization suggested that skin permeation was enhanced by improving the delivery through the transepidermal pathway. However, the permeability of RhB, a lipophilic molecule, was not significantly affected by CS-AuNPs and Ci-AuNPs. Moreover, CS-AuNPs had no cytotoxic toward human skin fibroblast cells. Therefore, CS-AuNPs are a promising skin permeation enhancer of small polar compounds.
Collapse
Affiliation(s)
- Kanokwan Singpanna
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - S Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, OH 45267, USA
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
24
|
Włodarczyk J, Krajewska J, Szeleszczuk Ł, Szałwińska P, Gurba A, Lipiec S, Taciak P, Szczepaniak R, Mlynarczuk-Bialy I, Fichna J. A New Gold(III) Complex, TGS 703, Shows Potent Anti-Inflammatory Activity in Colitis via the Enzymatic and Non-Enzymatic Antioxidant System-An In Vitro, In Silico, and In Vivo Study. Int J Mol Sci 2023; 24:ijms24087025. [PMID: 37108188 PMCID: PMC10138903 DOI: 10.3390/ijms24087025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel diseases (IBD) and their main representatives, Crohn's disease and ulcerative colitis, are worldwide health-care problems with constantly increasing frequency and still not fully understood pathogenesis. IBD treatment involves drugs such as corticosteroids, derivatives of 5-aminosalicylic acid, thiopurines, and others, with the goal to achieve and maintain remission of the disease. Nowadays, as our knowledge about IBD is continually growing, more specific and effective therapies at the molecular level are wanted. In our study, we tested novel gold complexes and their potential effect on inflammation and IBD in vitro, in silico, and in vivo. A series of new gold(III) complexes (TGS 404, 512, 701, 702, and 703) were designed and screened in the in vitro inflammation studies. In silico modeling was used to study the gold complexes' structure vs. their activity and stability. Dextran sulphate sodium (DSS)-induced mouse model of colitis was employed to characterize the anti-inflammatory activity in vivo. Lipopolysaccharide (LPS)-stimulated RAW264.7 cell experiments proved the anti-inflammatory potential of all tested complexes. Selected on the bases of in vitro and in silico analyses, TGS 703 significantly alleviated inflammation in the DSS-induced mouse model of colitis, which was confirmed by a statistically significant decrease in the macro- and microscopic score of inflammation. The mechanism of action of TGS 703 was linked to the enzymatic and non-enzymatic antioxidant systems. TGS 703 and other gold(III) complexes present anti-inflammatory potential and may be applied therapeutically in the treatment of IBD.
Collapse
Affiliation(s)
- Jakub Włodarczyk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
- Department of General and Oncological Surgery, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Julia Krajewska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-093 Warsaw, Poland
| | - Patrycja Szałwińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| | - Agata Gurba
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Szymon Lipiec
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Przemysław Taciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | | | - Izabela Mlynarczuk-Bialy
- Department for Histology and Embryology, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|
25
|
Musielak M, Boś-Liedke A, Piwocka O, Kowalska K, Markiewicz R, Szymkowiak B, Bakun P, Suchorska WM. The Role of Functionalization and Size of Gold Nanoparticles in the Response of MCF-7 Breast Cancer Cells to Ionizing Radiation Comparing 2D and 3D In Vitro Models. Pharmaceutics 2023; 15:pharmaceutics15030862. [PMID: 36986725 PMCID: PMC10057027 DOI: 10.3390/pharmaceutics15030862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Gold nanoparticles (AuNPs), as an agent enhancing radiosensitivity, play a key role in the potential treatment of breast cancer (BC). Assessing and understanding the kinetics of modern drug delivery systems is a crucial element that allows the implementation of AuNPs in clinical treatment. The main objective of the study was to assess the role of the properties of gold nanoparticles in the response of BC cells to ionizing radiation by comparing 2D and 3D models. In this research, four kinds of AuNPs, different in size and PEG length, were used to sensitize cells to ionizing radiation. The in vitro viability, uptake, and reactive oxygen species generation in cells were investigated in a time- and concentration-dependent manner using 2D and 3D models. Next, after the previous incubation with AuNPs, cells were irradiated with 2 Gy. The assessment of the radiation effect in combination with AuNPs was analyzed using the clonogenic assay and γH2AX level. The study highlights the role of the PEG chain in the efficiency of AuNPs in the process of sensitizing cells to ionizing radiation. The results obtained imply that AuNPs are a promising solution for combined treatment with radiotherapy.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Paweł Bakun
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| | - Wiktoria M Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
26
|
Mansour A, Romani M, Acharya AB, Rahman B, Verron E, Badran Z. Drug Delivery Systems in Regenerative Medicine: An Updated Review. Pharmaceutics 2023; 15:pharmaceutics15020695. [PMID: 36840018 PMCID: PMC9967372 DOI: 10.3390/pharmaceutics15020695] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Modern drug discovery methods led to evolving new agents with significant therapeutic potential. However, their properties, such as solubility and administration-related challenges, may hinder their benefits. Moreover, advances in biotechnology resulted in the development of a new generation of molecules with a short half-life that necessitates frequent administration. In this context, controlled release systems are required to enhance treatment efficacy and improve patient compliance. Innovative drug delivery systems are promising tools that protect therapeutic proteins and peptides against proteolytic degradation where controlled delivery is achievable. The present review provides an overview of different approaches used for drug delivery.
Collapse
Affiliation(s)
- Alaa Mansour
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Maya Romani
- Department of Family Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | | | - Betul Rahman
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence:
| | - Elise Verron
- CNRS, CEISAM, UMR 6230, Nantes Université, F-44000 Nantes, France
| | - Zahi Badran
- Periodontology Unit, College of Dental Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
27
|
Matias M, Santos AO, Silvestre S, Alves G. Fighting Epilepsy with Nanomedicines-Is This the Right Weapon? Pharmaceutics 2023; 15:pharmaceutics15020306. [PMID: 36839629 PMCID: PMC9959131 DOI: 10.3390/pharmaceutics15020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Epilepsy is a chronic and complex condition and is one of the most common neurological diseases, affecting about 50 million people worldwide. Pharmacological therapy has been, and is likely to remain, the main treatment approach for this disease. Although a large number of new antiseizure drugs (ASDs) has been introduced into the market in the last few years, many patients suffer from uncontrolled seizures, demanding the development of more effective therapies. Nanomedicines have emerged as a promising approach to deliver drugs to the brain, potentiating their therapeutic index. Moreover, nanomedicine has applied the knowledge of nanoscience, not only in disease treatment but also in prevention and diagnosis. In the current review, the general features and therapeutic management of epilepsy will be addressed, as well as the main barriers to overcome to obtain better antiseizure therapies. Furthermore, the role of nanomedicines as a valuable tool to selectively deliver drugs will be discussed, considering the ability of nanocarriers to deal with the less favourable physical-chemical properties of some ASDs, enhance their brain penetration, reduce the adverse effects, and circumvent the concerning drug resistance.
Collapse
Affiliation(s)
- Mariana Matias
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Adriana O. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: (M.M.); (A.O.S.); Tel.: +351-275-329-002 (M.M.); +351-275-329-079 (A.O.S.)
| | - Samuel Silvestre
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- CNC—Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
28
|
Biological Response of Human Cancer Cells to Ionizing Radiation in Combination with Gold Nanoparticles. Cancers (Basel) 2022; 14:cancers14205086. [PMID: 36291870 PMCID: PMC9600885 DOI: 10.3390/cancers14205086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Various types of metallic nanoparticles and especially gold nanoparticles (AuNPs) have been utilized in radiation studies to enhance the radiosensitization of cancer cells while minimizing detrimental effects in normal tissue. The aim of our study was to investigate the biological responses of various human cancer cells to gold-nanoparticle-induced radiosensitization. This was accomplished by using different AuNPs and several techniques in order to provide valuable insights regarding the multiple adverse biological effects, following ionizing radiation (IR) in combination with AuNPs. Insightful methodologies such as transmission electron microscopy were employed to identify comprehensively the complexity of the biological damage occurrence. Our findings confirm that AuNP radiosensitization may occur due to extensive and/or complex DNA damage, cell death, or cellular senescence. This multiparameter study aims to further elucidate the biological mechanisms and at the same time provide new information regarding the use of AuNPs as radiosensitizers in cancer treatment. Abstract In the context of improving radiation therapy, high-atomic number (Z) metallic nanoparticles and, more importantly, gold-based nanostructures are developed as radiation enhancers/radiosensitizers. Due to the diversity of cell lines, nanoparticles, as well as radiation types or doses, the resulting biological effects may differ and remain obscure. In this multiparameter study, we aim to shed light on these effects and investigate them further by employing X-irradiation and three human cancer cell lines (PC3, A549, and U2OS cells) treated by multiple techniques. TEM experiments on PC3 cells showed that citrate-capped AuNPs were found to be located mostly in membranous structures/vesicles or autophagosomes, but also, in the case of PEG-capped AuNPs, inside the nucleus as well. The colony-forming capability of cancer cells radiosensitized by AuNPs decreased significantly and the DNA damage detected by cytogenetics, γH2AX immunostaining, and by single (γH2AX) or double (γH2AX and OGG1) immunolocalization via transmission electron microscopy (TEM) was in many cases higher and/or persistent after combination with AuNPs than upon individual exposure to ionizing radiation (IR). Moreover, different cell cycle distribution was evident in PC3 but not A549 cells after treatment with AuNPs and/or irradiation. Finally, cellular senescence was investigated by using a newly established staining procedure for lipofuscin, based on a Sudan Black-B analogue (GL13) which showed that based on the AuNPs’ concentration, an increased number of senescent cells might be observed after exposure to IR. Even though different cell lines or different types and concentrations of AuNPs may alter the levels of radiosensitization, our results imply that the complexity of damage might also be an important factor of AuNP-induced radiosensitization.
Collapse
|
29
|
Khan SS, Ullah I, Zada S, Ahmad A, Ahmad W, Xu H, Ullah S, Liu L. Functionalization of Se-Te Nanorods with Au Nanoparticles for Enhanced Anti-Bacterial and Anti-Cancer Activities. MATERIALS 2022; 15:ma15144813. [PMID: 35888280 PMCID: PMC9316951 DOI: 10.3390/ma15144813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
The use of medical devices for therapeutic and diagnostic purpose is globally increasing; however, bacterial colonization on therapeutic devices can occur, causing severe infections in the human body. It has become an issue for public health. It is necessary to develop a nanomaterial based on photothermal treatment to kill toxic bacterial strains. Appropriately, high photothermal conversion and low-cost powerful photothermal agents have been investigated. Recently, gold nanocomposites have attracted great interest in biological applications. Here, we prepared rod-shaped Se-Te@Au nanocomposites of about 200 nm with uniform shape and surface-coated with gold nanoparticles for the first time showing high anti-bacterial and anti-cancer activities. Se-Te@Au showed proper structural consistency and natural resistance to bacterial and cancer cells. The strong absorption and high photothermal conversion efficacy made it a good photothermal agent material for the photothermal treatment of bacterial and cancer cells. The Se-Te@Au rod showed excellent anti-bacterial efficacy against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, with highest recorded inhibition zones of 25 ± 2 mm and 22 ± 2 mm, respectively. More than 99% of both types of strains were killed after 5 min with a near-infrared (NIR) laser at the very low concentration of 48 µg/mL. The Se-Te@Au rod’s explosion in HeLa cells was extensively repressed and demonstrated high toxicity at 100 µg/mL for 5 min when subjected to an NIR laser. As a result of its high photothermal characteristics, the exceptional anti-bacterial and anti-cancer effects of the Se-Te@Au rod are considerably better than those of other methods previously published in articles. This study could open a new framework for sterilization applications on the industrial level.
Collapse
Affiliation(s)
- Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Irfan Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Aftab Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Waqar Ahmad
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Haijun Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
| | - Sadeeq Ullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
- Correspondence: (S.U.); (L.L.)
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; (S.S.K.); (I.U.); (A.A.); (W.A.); (H.X.)
- Correspondence: (S.U.); (L.L.)
| |
Collapse
|