1
|
Lesz S, Karolus M, Hrapkowicz B, Gaweł T, Bielejewski M, Babilas R, Warski T, Popis J. Characteristics of Mg-Zn-Ca-Pr Alloy Synthesized by Mechanical Alloying. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5336. [PMID: 39517600 PMCID: PMC11547335 DOI: 10.3390/ma17215336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Magnesium-based materials are an interesting solution in terms of medical applications. Alloys that are hard to obtain via standard means may be manufactured via mechanical alloying (MA), which allows the production of materials with complex a chemical composition and non-equilibrium structures. This work aimed to investigate materials obtained by the MA process for 5, 8, 13, and 20 h in terms of their phase composition and changes during heating. The results of thermal XRD analysis were in the temperature range between 25 and 360 °C, which revealed MgZn2, PrZn11, Ca2Mg5Zn13, and Ca phases as well as α-Mg and α-Zn solid solution. The structural analysis features the powder morphology of the analyzed samples, showing cold-welding and fracturing processes leading to their homogenization, which is supported by the EDS results. The base Mg-Zn-Ca alloy was modified by different additions, but a thorough analysis of the influence of praseodymium on its thermal properties has not yet been performed. We chose to focus on Pr addition because it belongs to low-toxicity rare earth metals, which is an essential feature of biomaterials. Also, the Ca2Mg5Zn13 phase is not fully known, as there are no crystallographic data (hkl). Therefore, the investigation is important and scientifically justified.
Collapse
Affiliation(s)
- Sabina Lesz
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland (T.G.); (R.B.); (J.P.)
| | - Małgorzata Karolus
- Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A Street, 41-500 Chorzów, Poland
| | - Bartłomiej Hrapkowicz
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland (T.G.); (R.B.); (J.P.)
| | - Tomasz Gaweł
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland (T.G.); (R.B.); (J.P.)
| | - Michał Bielejewski
- Institute of Molecular Physics, Polish Academy of Sciences, 17 Smoluchowskiego Street, 60-179 Poznań, Poland;
| | - Rafał Babilas
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland (T.G.); (R.B.); (J.P.)
| | - Tymon Warski
- Łukasiewicz Research Network, Institute of Non-Ferrous Metals (Ł-IMN), 5 Generała Józefa Sowińskiego Street, 44-121 Gliwice, Poland;
| | - Julia Popis
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland (T.G.); (R.B.); (J.P.)
| |
Collapse
|
2
|
Nasiri-Tabrizi B, Basirun WJ, Walvekar R, Yeong CH, Phang SW. Exploring the potential of intermetallic alloys as implantable biomaterials: A comprehensive review. BIOMATERIALS ADVANCES 2024; 161:213854. [PMID: 38703541 DOI: 10.1016/j.bioadv.2024.213854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
This review delves into the utilization of intermetallic alloys (IMAs) as advanced biomaterials for medical implants, scrutinizing their conceptual framework, fabrication challenges, and diverse manufacturing techniques such as casting, powder metallurgy, and additive manufacturing. Manufacturing techniques such as casting, powder metallurgy, additive manufacturing, and injection molding are discussed, with specific emphasis on achieving optimal grain sizes, surface roughness, and mechanical properties. Post-treatment methods aimed at refining surface quality, dimensional precision, and mechanical properties of IMAs are explored, including the use of heat treatments to enhance biocompatibility and corrosion resistance. The review presents an in-depth examination of IMAs-based implantable biomaterials, covering lab-scale developments and commercial-scale implants. Specific IMAs such as Nickel Titanium, Titanium Aluminides, Iron Aluminides, Magnesium-based IMAs, Zirconium-based IMAs, and High-entropy alloys (HEAs) are highlighted, with detailed discussions on their mechanical properties, including strength, elastic modulus, and corrosion resistance. Future directions are outlined, with an emphasis on the anticipated growth in the orthopedic devices market and the role of IMAs in meeting this demand. The potential of porous IMAs in orthopedics is explored, with emphasis on achieving optimal pore sizes and distributions for enhanced osseointegration. The review concludes by highlighting the ongoing need for research and development efforts in IMAs technologies, including advancements in design and fabrication techniques.
Collapse
Affiliation(s)
- Bahman Nasiri-Tabrizi
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, No.1 Jalan Taylor's, Taylor's University Malaysia, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rashmi Walvekar
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, No.1 Jalan Taylor's, Taylor's University Malaysia, 47500 Subang Jaya, Selangor, Malaysia; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Siew Wei Phang
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, No.1 Jalan Taylor's, Taylor's University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Zheng Y, Huang C, Li Y, Gao J, Yang Y, Zhao S, Che H, Yang Y, Yao S, Li W, Zhou J, Zadpoor AA, Wang L. Mimicking the mechanical properties of cortical bone with an additively manufactured biodegradable Zn-3Mg alloy. Acta Biomater 2024; 182:139-155. [PMID: 38750914 DOI: 10.1016/j.actbio.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Additively manufactured (AM) biodegradable zinc (Zn) alloys have recently emerged as promising porous bone-substituting materials, due to their moderate degradation rates, good biocompatibility, geometrically ordered microarchitectures, and bone-mimicking mechanical properties. While AM Zn alloy porous scaffolds mimicking the mechanical properties of trabecular bone have been previously reported, mimicking the mechanical properties of cortical bone remains a formidable challenge. To overcome this challenge, we developed the AM Zn-3Mg alloy. We used laser powder bed fusion to process Zn-3Mg and compared it with pure Zn. The AM Zn-3Mg alloy exhibited significantly refined grains and a unique microstructure with interlaced α-Zn/Mg2Zn11 phases. The compressive properties of the solid Zn-3Mg specimens greatly exceeded their tensile properties, with a compressive yield strength of up to 601 MPa and an ultimate strain of >60 %. We then designed and fabricated functionally graded porous structures with a solid core and achieved cortical bone-mimicking mechanical properties, including a compressive yield strength of >120 MPa and an elastic modulus of ≈20 GPa. The biodegradation rates of the Zn-3Mg specimens were lower than those of pure Zn and could be adjusted by tuning the AM process parameters. The Zn-3Mg specimens also exhibited improved biocompatibility as compared to pure Zn, including higher metabolic activity and enhanced osteogenic behavior of MC3T3 cells cultured with the extracts from the Zn-3Mg alloy specimens. Altogether, these results marked major progress in developing AM porous biodegradable metallic bone substitutes, which paved the way toward clinical adoption of Zn-based scaffolds for the treatment of load-bearing bony defects. STATEMENT OF SIGNIFICANCE: Our study presents a significant advancement in the realm of biodegradable metallic bone substitutes through the development of an additively manufactured Zn-3Mg alloy. This novel alloy showcases refined grains and a distinctive microstructure, enabling the fabrication of functionally graded porous structures with mechanical properties resembling cortical bone. The achieved compressive yield strength and elastic modulus signify a critical leap toward mimicking the mechanical behavior of load-bearing bone. Moreover, our findings reveal tunable biodegradation rates and enhanced biocompatibility compared to pure Zn, emphasizing the potential clinical utility of Zn-based scaffolds for treating load-bearing bony defects. This breakthrough opens doors for the wider adoption of zinc-based materials in regenerative orthopedics.
Collapse
Affiliation(s)
- Yuzhe Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Chengcong Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| | - Jiaqi Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Shangyan Zhao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Haodong Che
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yabin Yang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shenglian Yao
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, No. 49 NorthGarden Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Spinal Disease Research, Beijing, 100191, China; Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, 100191, China
| | - Jie Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, the Netherlands
| | - Luning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, China.
| |
Collapse
|
4
|
Li P, Dai J, Li Y, Alexander D, Čapek J, Geis-Gerstorfer J, Wan G, Han J, Yu Z, Li A. Zinc based biodegradable metals for bone repair and regeneration: Bioactivity and molecular mechanisms. Mater Today Bio 2024; 25:100932. [PMID: 38298560 PMCID: PMC10826336 DOI: 10.1016/j.mtbio.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024] Open
Abstract
Bone fractures and critical-size bone defects are significant public health issues, and clinical treatment outcomes are closely related to the intrinsic properties of the utilized implant materials. Zinc (Zn)-based biodegradable metals (BMs) have emerged as promising bioactive materials because of their exceptional biocompatibility, appropriate mechanical properties, and controllable biodegradation. This review summarizes the state of the art in terms of Zn-based metals for bone repair and regeneration, focusing on bridging the gap between biological mechanism and required bioactivity. The molecular mechanism underlying the release of Zn ions from Zn-based BMs in the improvement of bone repair and regeneration is elucidated. By integrating clinical considerations and the specific bioactivity required for implant materials, this review summarizes the current research status of Zn-based internal fixation materials for promoting fracture healing, Zn-based scaffolds for regenerating critical-size bone defects, and Zn-based barrier membranes for reconstituting alveolar bone defects. Considering the significant progress made in the research on Zn-based BMs for potential clinical applications, the challenges and promising research directions are proposed and discussed.
Collapse
Affiliation(s)
- Ping Li
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
- Department of Prosthodontics, School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Yageng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Jaroslav Čapek
- FZU – the Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, Prague 8, 18200, Czech Republic
| | - Jürgen Geis-Gerstorfer
- Section Medical Materials Science and Technology, University Hospital Tübingen, Osianderstrasse 2-8, Tübingen 72076, Germany
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianmin Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road 366, Guangzhou 510280, China
| |
Collapse
|
5
|
Jablonská E, Mrázková L, Kubásek J, Vojtěch D, Paulin I, Ruml T, Lipov J. Characterization of hFOB 1.19 Cell Line for Studying Zn-Based Degradable Metallic Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:915. [PMID: 38399166 PMCID: PMC10890055 DOI: 10.3390/ma17040915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
In vitro testing is the first important step in the development of new biomaterials. The human fetal osteoblast cell line hFOB 1.19 is a very promising cell model; however, there are vast discrepancies in cultivation protocols, especially in the cultivation temperature and the presence of the selection reagent, geneticin (G418). We intended to use hFOB 1.19 for the testing of Zn-based degradable metallic materials. However, the sensitivity of hFOB 1.19 to zinc ions has not yet been studied. Therefore, we compared the toxicity of zinc towards hFOB 1.19 under different conditions and compared it with that of the L929 mouse fibroblast cell line. We also tested the cytotoxicity of three types of Zn-based biomaterials in two types of media. The presence of G418 used as a selection reagent decreased the sensitivity of hFOB 1.19 to Zn2+. hFOB 1.19 cell line was more sensitive to Zn2+ at elevated (restrictive) temperatures. hFOB 1.19 cell line was less sensitive to Zn2+ than L929 cell line (both as ZnCl2 and extracts of alloys). Therefore, the appropriate cultivation conditions of hFOB 1.19 during biomaterial testing should be chosen with caution.
Collapse
Affiliation(s)
- Eva Jablonská
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Lucie Mrázková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (J.K.); (D.V.)
| | - Dalibor Vojtěch
- Department of Metals and Corrosion Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (J.K.); (D.V.)
| | - Irena Paulin
- Institute of Metals and Technology, Ljubljana, Lepi pot 11, SI-1000 Ljubljana, Slovenia;
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| | - Jan Lipov
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic; (L.M.); (T.R.); (J.L.)
| |
Collapse
|
6
|
Nečas D, Voňavková I, Pinc J, Dvorský D, Kubásek J. Nanograined Zinc Alloys with Improved Mechanical Properties Prepared by Powder Metallurgy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:169-170. [PMID: 37613271 DOI: 10.1093/micmic/ozad067.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- D Nečas
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Dejvice, Czech Republic
| | - Ilona Voňavková
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Dejvice, Czech Republic
| | - Jan Pinc
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Drahomír Dvorský
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - J Kubásek
- University of Chemistry and Technology Prague, Faculty of Chemical Technology, Department of Metals and Corrosion Engineering, Dejvice, Czech Republic
| |
Collapse
|
7
|
Al-Sayaad Y, Nadeem M, Achou L, Almamari K, Altabeeb M, Doghmane A. Analytical study to effects on reflection coefficient of Ti-Mn alloys at increasing concentration Mn element in the dental implants application. J Mech Behav Biomed Mater 2023; 143:105920. [PMID: 37229921 DOI: 10.1016/j.jmbbm.2023.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Manganese (Mn) is one of the trace elements in the human body, The titanium-manganese (TiMn) alloys have been used in some applications as well. The TiMn alloys with various manganese contents ranging from 2 to 12 wt % were prepared by using mechanical alloying and spark plasma sintering (SPS) techniques (Sibum, 2003). This paper investigated the effects of increasing manganese content in the Ti. Concentrations of Mn (2 wt % to 12 wt %) in titanium influence the reflection coefficients and acoustic signatures of Ti-Mn alloys by Scanning Acoustic Microscopy (SAM) technique, was determined by The oscillatory behavior, The spectral treatment of these signatures, via fast Fourier transform. Correspond to longitudinal and Rayleigh relations depend on Mn Concentrations, was Concluded that Mn Concentrations (from 2 wt % To 12 wt %) increase with increasing Bulk physical properties and Acoustic wave velocities (AWV) as Young's Modulus, Shear Modulus, Bulk modulus, Longitudinal Velocity, Transverse Velocity, and Rayleigh Velocity were (from 105 To 122)Gpa, (from 39.6 To 45.9)Gpa, (from 103 To 119.6)Gpa, (from 4862 To 6183) ms1, (from 2450 To 3115)ms-1and (from 1658 To 2064)ms-1 respectively.
Collapse
Affiliation(s)
- Y Al-Sayaad
- Department of Physics and Mathematics, Zabid- Hodeidah, Hodeidah University, Al-Hudaydah, Yemen, 4113 Doryhemi Street, Yemen.
| | - M Nadeem
- School of Mathematics and Statistics, Qujing Normal University, 655011, Qujing, China.
| | - L Achou
- Département de Matériaux et Composant, Faculté de Physique, Université des Science et de La Technolgie Houari- Boumediene (USTHB), B.P. 32 El Alia, Bab Ezzouar, 16111, Algies, Algeria
| | - K Almamari
- Department of Chemistry, Faculty of Education Hodeidah, Hodeidah University Al Ḩudaydah, Yemen
| | - M Altabeeb
- Faculty of Dentistry Hodeidah, Hodeidah University Al Ḩudaydah, Yemen
| | - A Doghmane
- Laboratoire des Semi-Conductors, Département de Physique, Faculté des Sciences, Université Badji-Mokhtar, BP 12, Annaba, DZ-23000, Algeria
| |
Collapse
|
8
|
Nečas D, Kubásek J, Pinc J, Marek I, Donik Č, Paulin I, Vojtěch D. Ultrafine-Grained Zn-Mg-Sr Alloy Synthesized by Mechanical Alloying and Spark Plasma Sintering. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8379. [PMID: 36499874 PMCID: PMC9736596 DOI: 10.3390/ma15238379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Zinc materials are considered promising candidates for bioabsorbable medical devices used for the fixation of broken bones or stents. Materials for these applications must meet high mechanical property requirements. One of the ways to fulfil these demands is related to microstructure refinement, particularly the decrease in grain size. In the present work, we combine two powder metallurgy techniques (mechanical alloying-MA, and spark plasma sintering-SPS) to prepare Zn-1Mg-0.5Sr nanograin material. The microstructure of compacted material consisted of Zn grains and particles of Mg2Zn11 intermetallic phases from 100 to 500 nm in size, which resulted in high values of hardness and a compressive strength equal to 86 HV1 and 327 MPa, respectively. In this relation, the combination of the suggested techniques provides an innovative way to form extremely fine microstructures without significant coarsening during powder compaction at increased temperatures.
Collapse
Affiliation(s)
- David Nečas
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5, 166 28 Prague, Czech Republic
| | - Jiří Kubásek
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5, 166 28 Prague, Czech Republic
| | - Jan Pinc
- Department of Functional Materials, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Prague, Czech Republic
| | - Ivo Marek
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5, 166 28 Prague, Czech Republic
| | - Črtomir Donik
- Department Physics and Chemistry of Materials, Institute of Metals and Technology, University of Ljubljana, Lepi pot 11, SI-1000 Ljubljana, Slovenia
| | - Irena Paulin
- Department Physics and Chemistry of Materials, Institute of Metals and Technology, University of Ljubljana, Lepi pot 11, SI-1000 Ljubljana, Slovenia
| | - Dalibor Vojtěch
- Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Prague Technická 5, 166 28 Prague, Czech Republic
| |
Collapse
|
9
|
Wang Z, Wang W, Zhang X, Cao F, Zhang T, Bhakta Pokharel D, Chen D, Li J, Yang J, Xiao C, Ren Y, Qin G, Zhao D. Modulation of Osteogenesis and Angiogenesis Activities Based on Ionic Release from Zn-Mg Alloys. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15207117. [PMID: 36295204 PMCID: PMC9608845 DOI: 10.3390/ma15207117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 05/12/2023]
Abstract
The enhancement of osteogenesis and angiogenesis remains a great challenge for the successful regeneration of engineered tissue. Biodegradable Mg and Zn alloys have received increasing interest as potential biodegradable metallic materials, partially due to the biological functions of Mg2+ and Zn2+ with regard to osteogenesis and angiogenesis, respectively. In the present study, novel biodegradable Zn-xMg (x = 0.2, 0.5, 1.0 wt.%) alloys were designed and fabricated, and the effects of adding different amounts of Mg to the Zn matrix were investigated. The osteogenesis and angiogenesis beneficial effects of Zn2+ and Mg2+ release during the biodegradation were characterized, demonstrating coordination with the bone regeneration process in a dose-dependent manner. The results show that increased Mg content leads to a higher amount of released Mg2+ while decreasing the Zn2+ concentration in the extract. The osteogenesis of pre-osteoblasts was promoted in Zn-0.5Mg and Zn-1Mg due to the higher concentration of Mg2+. Moreover, pure Zn extract presented the highest activity in angiogenesis, owing to the highest concentration of Zn2+ release (6.415 μg/mL); the proliferation of osteoblast cells was, however, inhibited under such a high Zn2+ concentration. Although the concentration of Zn ion was decreased in Zn-0.5Mg and Zn-1Mg compared with pure Zn, the angiogenesis was not influenced when the concentration of Mg in the extract was sufficiently increased. Hence, Mg2+ and Zn2+ in Zn-Mg alloys show a dual modulation effect. The Zn-0.5Mg alloy was indicated to be a promising implant candidate due to demonstrating the appropriate activity in regulating osteogenesis and angiogenesis. The present work evaluates the effect of the Mg content in Zn-based alloys on biological activities, and the results provide guidance regarding the Zn-Mg composition in designs for orthopedic application.
Collapse
Affiliation(s)
- Ziming Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Weidan Wang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiuzhi Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Correspondence: (X.Z.); (D.Z.)
| | - Fang Cao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianwei Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Durga Bhakta Pokharel
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Di Chen
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Junlei Li
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Jiahui Yang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Chi Xiao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yuping Ren
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Gaowu Qin
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Dewei Zhao
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
- Correspondence: (X.Z.); (D.Z.)
| |
Collapse
|