1
|
Gibreel M, Perea-Lowery L, Garoushi S, Wada J, Lassila L, Vallittu P. Effect of different surface treatments on shear bond strength of autopolymerizing repair resin to denture base materials processed with different technologies. J Prosthodont Res 2024; 68:549-557. [PMID: 38296526 DOI: 10.2186/jpr.jpr_d_23_00149] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
PURPOSE To evaluate the effect of chemical, mechanical, and combination surface treatments on the shear bond strength (SBS) of autopolymerizing repair resin to conventional heat-cured, computer aided design (CAD)-computer aided manufacturing (CAM) milled, and three-dimensionally (3D) printed denture base materials. METHODS Specimens were fabricated and divided according to the surface treatment as follows: no surface treatment (control group), monomer treatment (monomer group), resin remover treatment (resin remover group), roughening with 180 FEPA grit abrasive paper followed by monomer treatment (180-grit plus monomer group), and air particle abrasion (air abrasion group). Autopolymerizing resin cylinders were attached before accelerated aging of the specimens in water at 100 °C for 16 h. The SBS was tested using a universal testing machine. Surface roughness was evaluated using a 3D optical profilometer. Scanning electron microscopy (SEM) and stereomicroscopy were used for surface analysis. Data was collected and analyzed using analysis of variance (ANOVA) and Kruskall-Wallis tests (α = 0.05). RESULTS The denture base material and surface treatment significantly affected the SBS. The milled Temp Basic Tissue demonstrated the highest SBS values across all surface treatments, whereas the two 3D-printed denture base materials exhibited the lowest SBS values. CONCLUSIONS The bond strength of CAD-CAM-milled denture base resins to autopolymerizing repair resin is comparable to that of heat-cured resins. Surface roughening using air particle abrasion or 180-grit carbide paper can enhance the bond strength of the autopolymerizing repair resin to 3D-printed denture base materials.
Collapse
Affiliation(s)
- Mona Gibreel
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Leila Perea-Lowery
- Department of Biomaterials Science, Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Sufyan Garoushi
- Department of Biomaterials Science, Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Junichiro Wada
- Department of Advanced Prosthodontics, Tokyo Medical and Dental University -TMDU, Tokyo, Japan
| | - Lippo Lassila
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
| | - Pekka Vallittu
- Department of Biomaterials Science and Turku Clinical Biomaterials Centre-TCBC, Institute of Dentistry, University of Turku, Turku, Finland
- Wellbeing Services County of South-West Finland, Turku, Finland
| |
Collapse
|
2
|
Htat HL, Prawatvatchara W, Techapiroontong S, Lee JH, Limpuangthip N. Effect of mechanical and chemical surface treatments on the repairing of milled and 3D-printed denture bases. Sci Rep 2024; 14:23413. [PMID: 39379682 PMCID: PMC11461669 DOI: 10.1038/s41598-024-75513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/07/2024] [Indexed: 10/10/2024] Open
Abstract
Ensuring a strong bond between chairside autopolymerized acrylic resin to denture base is essential for denture repair and reline procedures. However, there is no established protocol to enhance bond strength between autopolymerizing resin and computer-aided design and computer-aided manufacturing (CAD-CAM) denture base materials. The purpose of this study was to determine shear bond strength of CAD-CAM denture bases and autopolymerizing acrylic resin after mechanical and chemical surface treatments compared with heat-polymerized acrylic resin. Heat-polymerized, milled, and 3-dimensional (3D) printed denture bases were divided into 4 surface treatment protocols: none (control), airborne-particle abrasion (APA), tetrahydrofuran, and Vitacoll application. Autopolymerizing acrylic resin cylinders were bonded to denture surface. Shear bond strength and failure modes were determined after thermocycling. Denture base surfaces were assessed for surface roughness, surface morphology, and microhardness before and after surface treatment. Data was analyzed using two-way ANOVA and multiple comparison tests. The results showed that APA significantly increased shear bond strength and surface roughness of all denture base materials. Tetrahydrofuran and Vitacoll application improved shear bond strength of heat-polymerized acrylic resin, but did not reach the level achieved by APA. Conversely, tetrahydrofuran application improved bond strength of 3D-printed denture to the level of APA. Tetrahydrofuran and Vitacoll application significantly reduced denture base hardness, compared with control and APA. In conclusion, mechanical surface treatment using APA enhances the adhesion of autopolymerizing acrylic resin to heat-polymerized and CAD-CAM denture bases. Tetrahydrofuran and Vitacoll chemical surface treatment improved adhesion to heat-polymerized acrylic resin, with only tetrahydrofuran enhancing bond strength of 3D-printed denture to the level of APA. Without surface treatment, the highest bond strength was shown in 3D-printed denture base material.
Collapse
Affiliation(s)
- Hein Linn Htat
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Wisarut Prawatvatchara
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Siraphob Techapiroontong
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand
| | - Jae-Hyun Lee
- Department of Prosthodontics and Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-ro, Jongro-gu, Seoul, 03080, Republic of Korea.
| | - Nareudee Limpuangthip
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
3
|
Moussa R, Ellakany P, Fouda SM, El-Din MS. Comparative evaluation of the effects of laser and chemical denture disinfectants on the surface characteristics of CAD-CAM and conventional denture resins: An in vitro experimental study. J Prosthodont 2024. [PMID: 39300670 DOI: 10.1111/jopr.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The purpose of this study was to assess the effect of Ga-Al-Ar diode, Nd:YAG lasers, and chemical disinfectants (NaOCl, vinegar, and Corega) on surface roughness (Ra) and hardness (VHN) of polymethylmethacrylate (PMMA), thermoplastic polyamide, milled and 3D-printed denture base resins. MATERIALS AND METHODS About 432 specimens of PMMA, thermoplastic polyamide, milled, and 3D-printed resins were divided into six subgroups (n = 18): distilled water (control:C), Ga-Al-Ar diode laser (L1), Nd:YAG laser (L2), 1% sodium hypochlorite (NaOCl), vinegar (AA), and Corega (CR). Each specimen's Ra and VHN were measured. Surface topography assessment was done using scanning electron microscopy (SEM). Analysis was done using ANOVA and post hoc Tukey's test (p = 0.05). RESULTS A significant difference was noted in Ra and VHN as affected by denture base materials, surface disinfectants, and their interaction (p < 0.001). Results showed a significant increase in Ra of PMMA with NaOCL (p < 0.001), AA (p = 0.005), and CR (p = 0.009), thermoplastic polyamide with L1 (p = 0.012), L2 (p = 0.015), NaOCL AA, and CR (p < 0.001 each), milled resin with AA NaOCL, and CR (p < 0.001 each), and 3D-printed resin with L1, NaOCl, AA (p < 0.001 each), and CR (p = 0.008). The VHN increased in PMMA with NaOCL (p < 0.001), AA (p = 0.044), and CR (p < 0.001), thermoplastic polyamide with L1 (p = 0.037), milled resin with L1, L2, and CR (p < 0.001 each), and 3D-printed resin with L1, NaOCl (p < 0.001 each), and decreased with CR (p = 0.007). CONCLUSION The tested properties showed variations affected by denture base material and surface disinfectants. Laser treatments induced smoother surfaces than chemical disinfectants. Laser improved the surface hardness of CAD-CAM resins, while chemical immersion improved that of PMMA.
Collapse
Affiliation(s)
- Rania Moussa
- Department of Substitutive Dental Sciences, College of Dentistry, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Passent Ellakany
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shaimaa M Fouda
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mai Salah El-Din
- Department of Prosthodontics, Alexandria University Main Hospital, Alexandria, Egypt
| |
Collapse
|
4
|
Sahin Z, Ozer NE, Akan T, Kılıcarslan MA, Karaagaclıoglu L. The impact of different surface treatments on repair bond strength of conventionally, subtractive-, and additive-manufactured denture bases. J ESTHET RESTOR DENT 2024; 36:1337-1347. [PMID: 38747067 DOI: 10.1111/jerd.13248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/27/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024]
Abstract
OBJECTIVE This study aimed to examine the shear bond strength (SBS) of repair material to conventionally, subtractive-, and additive-manufactured denture bases after different surface treatments. MATERIALS AND METHODS Disk-shaped test specimens (N = 300) were prepared from denture base materials produced by one conventional (Procryla), one subtractive (Yamahachi), and one additive (Curo Denture) method. The test specimens were randomly divided into five groups (n = 10) and exposed to a variety of surface treatments-Group A: no surface treatment; Group B: grinding with silicon carbide paper; Group C: sandblasting; Group D: erbium: yttrium-aluminum-garnet laser; and Group E: plasma. Repair was performed with autopolymerizing acrylic resin (Meliodent). Surface roughness analyses were performed with a profilometer. Scanning electron microscopy was used to examine one specimen from each subgroup. SBS was evaluated on a universal testing machine. Failure types were observed under a stereomicroscope. RESULTS Surface roughness values were significantly higher in all test materials in Group D than in the other groups (p < 0.001). For conventional resin, the SBS values were higher in Group C than in Groups A, D, and E (p < 0.001). For CAD/CAM material, Groups B and C had significantly greater SBS increases compared with Group E (p < 0.001). For 3D material, Group D showed higher SBS than all groups except Group C (p < 0.001). CONCLUSIONS For SBS, sandblasting was most effective in the conventional group, whereas laser treatment was the most effective in the additive-manufactured group. For the subtractive group, surface treatments other than plasma exhibited similar SBS. CLINICAL SIGNIFICANCE In repairing fractured prostheses, any degree of roughening suitable for the material content may provide an SBS benefit.
Collapse
Affiliation(s)
- Zeynep Sahin
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| | - Nazire Esra Ozer
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehmet Ali Kılıcarslan
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Yenimahalle, Ankara, Turkey
| | - Lale Karaagaclıoglu
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Çankaya, Ankara, Turkey
| |
Collapse
|
5
|
Albazroun Z, Alabdullatif A, Aldehaileb S, Alhalimi F, Alshahrani FA, Khan SQ, Fouda SM, AlRumaih HS, Gad MM. Bond Strength of Nanocomposite Hard Liner to CAD-CAM Milled, 3D Printed, and Conventionally Fabricated Denture Base Resins. Dent J (Basel) 2024; 12:275. [PMID: 39329841 PMCID: PMC11430945 DOI: 10.3390/dj12090275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND To investigate the effect of zirconium dioxide nanoparticles (ZrO2NPs) on the shear bond strength (SBS) of hard denture lines bonded to different denture base resins. METHODS Five different denture bases were used in this study: conventional heat-cured resin, IvoCad, AvaDent, NextDent, and FormLabs, in acrylic specimens of 10 × 10 × 2.5 mm3 (N = 150, n = 10). Specimens were centered at the bottom of a silicon mold to create an auto-polymerized holder. Three major groups of reline material were used: no ZrO2NPs (control), 2 wt.%, and 4 wt.% ZrO2NPs. Reline was bonded to the resin surface using a customized jig. After polymerization, specimens were stored in distilled water, and 5000 thermal cycles were performed. Each specimen was fixed to an Instron machine, and SBS was tested using a blade loaded (1 mm/min) at the resin interface until failure. Data was collected and analyzed using two-way ANOVA and post hoc Tukey test (α = 0.05). RESULTS AvaDent showed the highest SBS when compared with other denture base materials (p < 0.001) except for IvoCad. The addition of ZrO2NPs significantly decreased the SBS of AvaDent (p = 0.003) and IvoCad (p = 0.001), while heat polymerized resin, Formlabs, and NextDent showed no significant change in SBS (p > 0.05). CONCLUSION CAD-CAM milled denture base resin showed higher SBS with pure denture reline. The addition of ZrO2NPs decreased the SBS of reline with CAD-CAM milled denture base resins but did not change bond strength with 3D printed and conventional denture base resins.
Collapse
Affiliation(s)
- Zainab Albazroun
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Atheer Alabdullatif
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sarah Aldehaileb
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ferdoos Alhalimi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Faris A Alshahrani
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Shaimaa M Fouda
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Hamad S AlRumaih
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed M Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
6
|
Chladek G, Adeeb S, Pakieła W, Coto NP. Effect of Different Surface Treatments as Methods of Improving the Mechanical Properties after Repairs of PMMA for Dentures. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3254. [PMID: 38998337 PMCID: PMC11242954 DOI: 10.3390/ma17133254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Denture fractures are a common problem in dental practice, and their repair is considered a first option to restore their functional properties. However, the inter-material resistance may become compromised. Typically, the bond between these materials weakens. Therefore, various surface treatment methods may be considered to enhance their mechanical properties. Poly(methyl methacrylate) (PMMA) heat-polymerized resin (HPR) was used as the repaired material, cold-polymerized material (CPR) for the repairs, and different variants of alumina abrasive blasting (AB), methyl methacrylate (M), ethyl acetate (EA), methylene chloride (CH), and isopropyl alcohol (IA) treatments were applied. Finally, combined surface treatments were chosen and analyzed. Surface morphologies after treatments were observed by scanning electron microscopy and the flexural, shear, and impact strengths were tested. AB and chemical treatment with CH, M, and EA was used to improve all mechanical properties, and further improvement of the properties could be achieved by combining both types of treatments. Varied changes in surface morphologies were observed. Treatment with IA yielded less favorable results due to the low impact strength. The best results were achieved for the combination of AB and CH, but during the application of CH it was necessary to strictly control the exposure time.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Sandra Adeeb
- Adeeb Clinic, 73/1 Legionów Polskich Str., 41-300 Dąbrowa Górnicza, Poland
| | - Wojciech Pakieła
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Neide Pena Coto
- Division of Maxillofacial Prosthesis/Sports Dentistry, University of Sao Paulo, Av. Prof. Lineu Prestes 2227, São Paulo 05508-900, Brazil
| |
Collapse
|
7
|
Sahin Z, Ozer NE, Akan T, Kılıcarslan MA, Karaagaclıoglu L. The effect of various surface treatments on the repair bond strength of denture bases produced by digital and conventional methods. Odontology 2024; 112:782-797. [PMID: 38157108 DOI: 10.1007/s10266-023-00881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
There is limited information on the repairability of prostheses produced with digital technology. This study aims to evaluate various surface treatments on flexural bond strength of repaired dentured base resins produced by digital and conventional methods. A total of 360 samples were prepared from one heat-polymerized, one CAD/CAM milled and one 3D printed denture base materials. All of the test samples were subjected to thermocycling (5-55 °C, 5000 cycles) before and after repair with auto-polymerizing acrylic resin. The test samples were divided into five subgroups according to the surface treatment: grinding with silicon carbide (SC), sandblasting with Al2O3 (SB), Er:YAG laser (L), plasma (P) and negative control (NC) group (no treatment). In addition, the positive control (PC) group consisted of intact samples for the flexural strength test. Surface roughness measurements were performed with a profilometer. After repairing the test samples, a universal test device determined the flexural strength values. Both the surface topography and the fractured surfaces of samples were examined by SEM analysis. The elemental composition of the tested samples was analyzed by EDS. Kruskal-Wallis and Mann-Whitney U tests were performed for statistical analysis of data. SB and L surface treatments statistically significantly increased the surface roughness values of all three materials compared to NC subgroups (p < 0.001). The flexural strength values of the PC groups in all three test materials were significantly higher than those of the other groups (p < 0.001). The repair flexural strength values were statistically different between the SC-SB, L-SB, and NC-SB subgroups for the CAD/CAM groups, and the L-SC and L-NC subgroups for the 3D groups (p < 0.001). The surface treatments applied to the CAD/CAM and heat-polymerized groups did not result in a statistically significant difference in the repair flexural strength values compared to the NC groups (p > 0.05). Laser surface treatment has been the most powerful repair method for 3D printing technique. Surface treatments led to similar repair flexural strengths to untreated groups for CAD/CAM milled and heat-polymerized test samples.
Collapse
Affiliation(s)
- Zeynep Sahin
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., Çankaya, 06510, Ankara, Turkey.
| | - Nazire Esra Ozer
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., Çankaya, 06510, Ankara, Turkey
| | - Tamer Akan
- Department of Physics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehmet Ali Kılıcarslan
- Department of Prosthodontics, Faculty of Dentistry, Ankara University, Yenimahalle, Ankara, Turkey
| | - Lale Karaagaclıoglu
- Department of Prosthodontics, Faculty of Dentistry, Lokman Hekim University, Söğütözü. 2179 St., Çankaya, 06510, Ankara, Turkey
| |
Collapse
|
8
|
Özatik Ş, Bural Alan C. Flexural strength of repaired denture base materials manufactured for the CAD-CAM technique. J Oral Sci 2024; 66:120-124. [PMID: 38494704 DOI: 10.2334/josnusd.23-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
PURPOSE To evaluate the flexural properties of repaired poly(methylmethacrylate) (PMMA) denture base materials for computer-aided design/computer-aided manufacturing (CAD-CAM) and to compare them with heat-activated polymerized PMMA. METHODS A total of 288 specimens (65 × 10 × 2.5 mm) were prepared using both CAD-CAM and conventional blocks and repaired using autopolymerizing and visible-light polymerizing (VLC) materials. Microwave energy, water storage and hydroflask polymerization were applied as additional post-polymerization cycles after the repair process. The flexural strength (FS) of the specimens was evaluated using the three-point bending test. Data were evaluated statistically using 2-way ANOVA followed by Bonferroni's correction to determine the significance of differences between the groups (P ≤ 0.05). RESULTS The FS of the denture base materials for CAD-CAM was significantly higher than that for the heat-activated group (P ≤ 0.05). The FS was significantly highest when microwave energy was used for the post-polymerization cycle. The FS values for all groups repaired with VLC resin were significantly lower than for the autopolymerization group (P ≤ 0.05). CONCLUSION The flexural properties of denture base materials for CAD-CAM repaired using autopolymerizing acrylic resins can recover by 50-70%. Additional post-polymerization cycles for autopolymerizing repair resin can be suggested to improve the clinical service properties of repaired dentures.
Collapse
Affiliation(s)
- Şebnem Özatik
- Department of Prosthodontics, Faculty of Dentistry, Istanbul University
| | - Canan Bural Alan
- Department of Prosthodontics, Faculty of Dentistry, Istanbul University
| |
Collapse
|
9
|
Lee CG, Jin G, Lim JH, Liu Y, Afrashtehfar KI, Kim JE. Influence of hydrothermal aging on the shear bond strength of 3D printed denture-base resin to different relining materials. J Mech Behav Biomed Mater 2024; 149:106221. [PMID: 37976994 DOI: 10.1016/j.jmbbm.2023.106221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVES This study evaluated the repairability of three-dimensional printed (3DP) denture bases based on different conventional relining materials and aging. MATERIAL AND METHODS The groups for surface characterization (surface-roughness and contact-angle measurements) were divided based on the denture base and surface treatment. Shear bond strength test and failure-mode analysis were conducted by a combination of three variables: denture base, relining materials, and hydrothermal aging (HA). The initial characterization involved quantifying the surface roughness (n = 10) and contact angle (n = 10) of denture base specimens with and without sandblasting (SB) treatment. Four relining materials (Kooliner [K], Vertex Self-Curing [V], Tokuyama Rebase II (Normal) [T], and Ufi Gel Hard [U]) were applied to 3DP, heat-cured (HC), and self-cured (SC) denture-base resin specimens. Shear bond strength (n = 15) and failure-mode analyses (n = 15) were performed before and after HA, along with evaluations of the fractured surfaces (n = 4). Statistical analyses were performed using a two-way analysis of variance (ANOVA) for surface characterization, and a three-way ANOVA was conducted for shear bond strength. RESULTS The surface roughness peaked in HC groups and increased after SB. The 3DP group displayed significantly lower contact angles, which increased after treatment, similar to the surface roughness. The shear bond strength was significantly lower for 3DP and HC denture bases than for SC denture bases, and peaked for U at 10.65 ± 1.88 MPa (mean ± SD). HA decreased the shear bond strength relative to untreated samples. Furthermore, 3DP, HC, and SC mainly showed mixed or cohesive failures with V, T, and U. K, on the other hand, trended toward adhesive failures when bonded with HC and SC. CONCLUSION This study has validated the repairability of 3DP dentures through relining them with common materials used in clinical practice. The repairability of the 3DP denture base was on par with that of conventional materials, but it decreased after aging. Notably, U, which had a postadhesive application, proved to be the most effective material for repairing 3DP dentures.
Collapse
Affiliation(s)
- Chan-Gyu Lee
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Gan Jin
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Jung-Hwa Lim
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Yunqi Liu
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Kelvin I Afrashtehfar
- Division of Restorative Dental Sciences, College of Dentistry, Ajman University, University Street, Al Jerf 1, 346 Ajman, United Arab Emirates; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland; Department of Operative Dentistry, Periodontology and Preventive Dentistry, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Jong-Eun Kim
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
10
|
Jiang Q, Mei X, Huan N, Su W, Cheng L, He H, Zhang L. In vitro comparative study of red blood cell and VWF damage on 3D printing biomaterials under different blood-contacting conditions. Proc Inst Mech Eng H 2023; 237:1029-1036. [PMID: 37417741 DOI: 10.1177/09544119231186474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Mechanical circulatory support devices (MCSDs) are often associated with hemocompatible complications such as hemolysis and gastrointestinal bleeding when treating patients with end-stage heart failure. Shear stress and exposure time have been identified as the two most important mechanical factors causing blood damage. However, the materials of MCSDs may also induce blood damage when contacting with blood. In this study, the red blood cell and von Willebrand Factor (VWF) damage caused by four 3D printing biomaterials were investigated, including acrylic, PCISO, Somos EvoLVe 128, and stainless steel. A roller pump circulation experimental platform and a rotor blood-shearing experimental platform were constructed to mimic static and dynamic blood-contacting conditions of materials in MCSDs, respectively. Free hemoglobin assay and VWF molecular weight analysis were performed on the experimental blood samples. It indicated that different 3D printing materials and technology could induce different levels of damage to red blood cells and VWF, with acrylic causing the least damage under both static and dynamic conditions. In addition, it was found that blood damage measured for the same material differed on the two platforms. Therefore, a combination of static and dynamic experiments should be used to comprehensively investigate the effects of blood damage caused by the material. It can provide a reference for the design and evaluation of materials in different components of MCSDs.
Collapse
Affiliation(s)
- Qiubo Jiang
- Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Xu Mei
- Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Nana Huan
- Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Wangwang Su
- Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Longhui Cheng
- Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Haidong He
- Robotics and Microsystems Center, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| | - Liudi Zhang
- Artificial Organ Laboratory, Bio-manufacturing Research Centre, School of Mechanical and Electrical Engineering, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|