1
|
Tripathi S, Raheem A, Dash M, Kumar P, Elsebahy A, Singh H, Manivasagam G, Nanda HS. Surface engineering of orthopedic implants for better clinical adoption. J Mater Chem B 2024; 12:11302-11335. [PMID: 39412900 DOI: 10.1039/d4tb01563k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Musculoskeletal disorders are on the rise, and despite advances in alternative materials, treatment for orthopedic conditions still heavily relies on biometal-based implants and scaffolds due to their strength, durability, and biocompatibility in load-bearing applications. Bare metallic implants have been under scrutiny since their introduction, primarily due to their bioinert nature, which results in poor cell-material interaction. This challenge is further intensified by mechanical mismatches that accelerate failure, tribocorrosion-induced material degradation, and bacterial colonization, all contributing to long-term implant failure and posing a significant burden on patient populations. Recent efforts to improve orthopedic medical devices focus on surface engineering strategies that enhance the interaction between cells and materials, creating a biomimetic microenvironment and extending the service life of these implants. This review compiles various physical, chemical, and biological surface engineering approaches currently under research, providing insights into their potential and the challenges associated with their adoption from bench to bedside. Significant emphasis is placed on exploring the future of bioactive coatings, particularly the development of smart coatings like self-healing and drug-eluting coatings, the immunomodulatory effects of functional coatings and biomimetic surfaces to tackle secondary infections, representing the forefront of biomedical surface engineering. The article provides the reader with an overview of the engineering approaches to surface modification of metallic implants, covering both clinical and research perspectives and discussing limitations and future scope.
Collapse
Affiliation(s)
- Shivi Tripathi
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Madhusmita Dash
- School of Minerals, Metallurgical and Materials Engineering, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha 752050, India
| | - Prasoon Kumar
- Biodesign and Medical device laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Ahmad Elsebahy
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Årstadveien 19, Bergen 5009, Norway
| | - Harpreet Singh
- Dr B R Ambedkar National Institute of Technology Jalandhar, Grand Trunk Road, Barnala Amritsar Bypass Rd, Jalandhar, Punjab 14401111, India
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular and Molecular Theranostics & School of Mechanical Engineering, Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| | - Himansu Sekhar Nanda
- Biomaterials and Biomanufacturing Laboratory, Discipline of Mechanical Engineering, PDPM Indian Institute of Information Technology Design and Manufacturing, Jabalpur 482005, MP, India.
- International Centre for Sustainable and Net Zero Technologies, PDPM-Indian Institute of Information Technology Design and Manufacturing Jabalpur, Madhya Pradesh 482005, India
| |
Collapse
|
2
|
Kim SB, Kim CH, Lee SY, Park SJ. Carbon materials and their metal composites for biomedical applications: A short review. NANOSCALE 2024; 16:16313-16328. [PMID: 39110002 DOI: 10.1039/d4nr02059f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Carbon materials and their hybrid metal composites have garnered significant attention in biomedical applications due to their exceptional biocompatibility. This biocompatibility arises from their inherent chemical stability and low toxicity within biological systems. This review offers a comprehensive overview of carbon nanomaterials and their metal composites, emphasizing their biocompatibility-focused applications, including drug delivery, bioimaging, biosensing, and tissue engineering. The paper outlines advancements in surface modifications, coatings, and functionalization techniques designed to enhance the biocompatibility of carbon materials, ensuring minimal adverse effects in biological systems. A comprehensive investigation into hybrid composites integrating carbon nanomaterials is conducted, categorizing them as fullerenes, carbon quantum dots, carbon nanotubes, carbon nanofibers, graphene, and diamond-like carbon. The concluding section addresses regulatory considerations and challenges associated with integrating carbon materials into medical devices. This review culminates by providing insights into current achievements, challenges, and future directions, underscoring the pivotal role of carbon nanomaterials and their metal composites in advancing biocompatible applications.
Collapse
Affiliation(s)
- Su-Bin Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
3
|
Roknić J, Despotović I, Katić J, Petrović Ž. Electrospun PVP Fibers as Carriers of Ca 2+ Ions to Improve the Osteoinductivity of Titanium-Based Dental Implants. Molecules 2024; 29:4181. [PMID: 39275029 PMCID: PMC11397674 DOI: 10.3390/molecules29174181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Although titanium and its alloys are widely used as dental implants, they cannot induce the formation of new bone around the implant, which is a basis for the functional integrity and long-term stability of implants. This study focused on the functionalization of the titanium/titanium oxide surface as the gold standard for dental implants, with electrospun composite fibers consisting of polyvinylpyrrolidone and Ca2+ ions. Polymer fibers as carriers of Ca2+ ions should gradually dissolve, releasing Ca2+ ions into the environment of the implant when it is immersed in a model electrolyte of artificial saliva. Scanning electron microscopy, energy dispersive X-ray spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy confirmed the successful formation of a porous network of composite fibers on the titanium/titanium oxide surface. The mechanism of the formation of the composite fibers was investigated in detail by quantum chemical calculations at the density functional theory level based on the simulation of possible molecular interactions between Ca2+ ions, polymer fibers and titanium substrate. During the 7-day immersion of the functionalized titanium in artificial saliva, the processes on the titanium/titanium oxide/composite fibers/artificial saliva interface were monitored by electrochemical impedance spectroscopy. It can be concluded from all the results that the composite fibers formed on titanium have application potential for the development of osteoinductive and thus more biocompatible dental implants.
Collapse
Affiliation(s)
- Janina Roknić
- Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Ines Despotović
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia
| | - Jozefina Katić
- Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
| | - Željka Petrović
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia
| |
Collapse
|
4
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
5
|
Akay S, Yaghmur A. Recent Advances in Antibacterial Coatings to Combat Orthopedic Implant-Associated Infections. Molecules 2024; 29:1172. [PMID: 38474684 DOI: 10.3390/molecules29051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Implant-associated infections (IAIs) represent a major health burden due to the complex structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In particular, it seems promising to develop materials with anti-biofouling and antibacterial properties for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the development of modified and functionalized implant surfaces for inhibiting bacterial attachment and eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm formation on orthopedic implants. Among the recently introduced approaches for development of efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for preventing and treating IAIs and overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Seref Akay
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anan Yaghmur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Szymczak B, Junkuszew A, Patkowski K, Szponder T, Ngoc DN, Drzewiecka B, Sobczyńska-Rak A, Wessely-Szponder J. The activity of monocyte-derived macrophages after stimulation with platelet-rich and platelet-poor concentrates. Study on an ovine model of insertion of a tibial implant coated with silicon-doped diamond-like carbon. J Vet Res 2024; 68:167-174. [PMID: 38525222 PMCID: PMC10960256 DOI: 10.2478/jvetres-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Macrophages are crucial immune cells that play a role in tissue repair and can exhibit pro- or anti-inflammatory behaviour based on environmental stimulation. Their functional phenotype can be affected by platelet-derived products as determined by those products' composition. When the inflammatory response caused by implantation is excessive, it can lead to rejection of the implant. Therefore, a thorough evaluation of implant haemocompatibility is necessary to minimise undesirable consequences. Material and Methods In an in vitro study, monocyte-derived macrophages (MDMs) were obtained from the whole blood of sheep after a silicon-doped diamond-like carbon-coated implant insertion. These MDMs were then exposed to autologous platelet-derived products for functional marker analysis. Results Platelet-poor plasma (PPP) and pure platelet-rich plasma (P-PRP) stimulation increased arginase-1 activity, while leukocyte-rich PRP stimulation produced a mixed response involving higher O2- (6.49 ± 2.43 nM vs non-stimulated 3.51 ± 1.23 nM, P-value < 0.05) and NO (3.28 ± 1.38 μM vs non-stimulated 2.55 ± 0.32μM, P-value < 0.05) generation. Conclusion Using PPP and P-PRP stimulation in post-implantation procedures may contribute to the polarisation of macrophages towards the M2-like pro-resolving phenotype, thereby accelerating wound healing. This would also prevent implant degradation due to an excessive inflammatory process.
Collapse
Affiliation(s)
- Bartłomiej Szymczak
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Andrzej Junkuszew
- Department of Animal Breeding and Agricultural Consulting, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences, 20-950Lublin, Poland
| | - Krzysztof Patkowski
- Department of Animal Breeding and Agricultural Consulting, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences, 20-950Lublin, Poland
| | - Tomasz Szponder
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, 20-950Lublin, Poland
| | - Dominika Nguyen Ngoc
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Beata Drzewiecka
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| | - Aleksandra Sobczyńska-Rak
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences, 20-950Lublin, Poland
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, University of Life Sciences, 20-950Lublin, Poland
| |
Collapse
|
7
|
Zhi X, Li X, Yuan S, Wang D, Wang K. Influence of Thermal Annealing on Mechanical and Optical Property of SiO 2 Film Produced by ALD. MATERIALS (BASEL, SWITZERLAND) 2024; 17:470. [PMID: 38276409 PMCID: PMC10817477 DOI: 10.3390/ma17020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
The application range of fused silica optical components can be expanded and the cost of fused silica components can be reduced by depositing the same material film on fused silica substrate. However, due to the different manufacturing process, the performance of ALD SiO2 film is lower than that of fused silica substrate, which also limits the use of this process. In this paper, ALD SiO2 film with different thicknesses were deposited, and then the structure and properties were tested. Finally, the ALD SiO2 film was treated via the annealing process. Transmission electron microscopy (TEM) showed that the ALD SiO2 film had good compactness and substrate adhesion. The Raman spectra showed that the ALD SiO2 film and substrate had the same structure, with only slight differences. The XRD pattern showed that ALD-fused silica did not crystallize before or after annealing. The infrared spectra showed that there was an obvious Si-OH defect in the ALD SiO2 film. The laser damage showed that the ALD SiO2 film had a much lower damage threshold than the fused silica substrate. The nanoindentation showed that the mechanical properties of the ALD SiO2 film were much lower than those of the fused silica substrate. After a low-temperature annealing treatment, the ALD SiO2 film Si-OH defect was reduced, the ALD SiO2 film four-member ring content was increased, the elastic modulus of the ALD SiO2 film was increased from 45.025 GPa to 68.025 GPa, the hardness was increased from 5.240 GPa to 9.528 GPa, and the ALD SiO2 film damage threshold was decreased from 5.5 J/cm2 to 1.3 J/cm2.
Collapse
Affiliation(s)
- Xintao Zhi
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.Z.); (S.Y.); (D.W.)
| | - Xiaopeng Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Songmei Yuan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.Z.); (S.Y.); (D.W.)
| | - Dasen Wang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (X.Z.); (S.Y.); (D.W.)
| | - Kehong Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Alfonsi S, Karunathasan P, Mamodaly-Samdjee A, Balathandayutham K, Lefevre S, Miranda A, Gallet O, Seyer D, Hindié M. Fibronectin Conformations after Electrodeposition onto 316L Stainless Steel Substrates Enhanced Early-Stage Osteoblasts' Adhesion but Affected Their Behavior. J Funct Biomater 2023; 15:5. [PMID: 38276478 PMCID: PMC10817067 DOI: 10.3390/jfb15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The implantation of metallic orthopedic prostheses is increasingly common due to an aging population and accidents. There is a real societal need to implement new metal implants that combine durability, good mechanical properties, excellent biocompatibility, as well as affordable costs. Since the functionalization of low-cost 316L stainless steel substrates through the successive electrodeposition of a polypyrrole film (PPy) and a calcium phosphate deposit doped with silicon was previously carried out by our labs, we have also developed a bio-functional coating by electrodepositing or oxidating of fibronectin (Fn) coating. Fn is an extracellular matrix glycoprotein involved in cell adhesion and differentiation. Impacts of either electrodeposition or oxidation on the structure and functionality of Fn were first studied. Thus, electrodeposition is the technique that permits the highest deposition of fibronectin, compared to adsorption or oxidation. Furthermore, electrodeposition seems to strongly modify Fn conformation by the formation of intermingled long fibers, resulting in changes to the accessibility of the molecular probes tested (antibodies directed against Fn whole molecule and Fn cell-binding domain). Then, the effects of either electrodeposited Fn or oxidized Fn were validated by the resulting pre-osteoblast behavior. Electrodeposition reduced pre-osteoblasts' ability to remodel Fn coating on supports because of a partial modification of Fn conformation, which reduced accessibility to the cell-binding domain. Electrodeposited Fn also diminished α5 integrin secretion and clustering along the plasma membrane. However, the N-terminal extremity of Fn was not modified by electrodeposition as demonstrated by Staphylococcus aureus attachment after 3 h of culture on a specific domain localized in this region. Moreover, the number of pre-osteoblasts remains stable after 3 h culture on either adsorbed, oxidized, or electrodeposited Fn deposits. In contrast, mitochondrial activity and cell proliferation were significantly higher on adsorbed Fn compared with electrodeposited Fn after 48 h culture. Hence, electro-deposited Fn seems more favorable to pre-osteoblast early-stage behavior than during a longer culture of 24 h and 48 h. The electrodeposition of matrix proteins could be improved to maintain their bio-activity and to develop this promising, fast technique to bio-functionalize metallic implants.
Collapse
Affiliation(s)
- Séverine Alfonsi
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Pithursan Karunathasan
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Ayann Mamodaly-Samdjee
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Keerthana Balathandayutham
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Sarah Lefevre
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI Lab), CY Cergy Paris University, F-95000 Cergy, France
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Anamar Miranda
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Olivier Gallet
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Damien Seyer
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| | - Mathilde Hindié
- Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe Lab), CY Cergy Paris University, F-95000 Cergy, France
| |
Collapse
|
9
|
Campos-Bijit V, Inostroza NC, Orellana R, Rivera A, Von Marttens A, Cortez C, Covarrubias C. Influence of Topography and Composition of Commercial Titanium Dental Implants on Cell Adhesion of Human Gingiva-Derived Mesenchymal Stem Cells: An In Vitro Study. Int J Mol Sci 2023; 24:16686. [PMID: 38069008 PMCID: PMC10706644 DOI: 10.3390/ijms242316686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was to characterize characterize the topography and composition of commercial titanium dental implants manufactured with different surface treatments (two sandblasted/acid-etched (SLA) (INNO Implants, Busan, Republic of Korea; BioHorizonsTM, Oceanside, CA, USA) and two calcium phosphate (CaP) treated (Biounite®, Berazategui, Argentina; Zimmer Biomet, Inc., Warsaw, IN, USA)) and to investigate their influence on the process of cell adhesion in vitro. A smooth surface implant (Zimmer Biomet, Inc.) was used as a control. For that, high-resolution methodologies such as scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDX), laser scanning confocal microscopy (LSCM), and atomic force microscopy (AFM) were employed. Protein adsorption and retromolar gingival mesenchymal stem cells (GMSCs) adhesion to the implant surfaces were evaluated after 48 h. The adherent cells were examined by SEM and LSCM for morphologic and quantitative analyses. ANOVA and Tukey tests (α = 0.05) were employed to determine statistical significance. SEM revealed that INNO, BioHorizonsTM, and Zimmer implants have an irregular surface, whereas Biounite® has a regular topography consisting of an ordered pattern. EDX confirmed a calcium and phosphate layer on the Biounite® and Zimmer surfaces, and AFM exhibited different roughness parameters. Protein adsorption and cell adhesion were detected on all the implant surfaces studied. However, the Biounite® implant with CaP and regular topography showed the highest protein adsorption capacity and density of adherent GMSCs. Although the Zimmer implant also had a CaP treatment, protein and cell adhesion levels were lower than those observed with Biounite®. Our findings indicated that the surface regularity of the implants is a more determinant factor in the cell adhesion process than the CaP treatment. A regular, nanostructured, hydrophilic, and moderately rough topography generates a higher protein adsorption capacity and thus promotes more efficient cell adhesion.
Collapse
Affiliation(s)
- Vanessa Campos-Bijit
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Nicolás Cohn Inostroza
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| | - Rocío Orellana
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| | - Alejandro Rivera
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universidad de los Andes, Santiago 8150513, Chile;
| | - Alfredo Von Marttens
- Department of Prosthesis, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile;
| | - Cristian Cortez
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| |
Collapse
|
10
|
Abaszadeh F, Ashoub MH, Khajouie G, Amiri M. Nanotechnology development in surgical applications: recent trends and developments. Eur J Med Res 2023; 28:537. [PMID: 38001554 PMCID: PMC10668503 DOI: 10.1186/s40001-023-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/03/2023] [Indexed: 11/26/2023] Open
Abstract
This paper gives a detailed analysis of nanotechnology's rising involvement in numerous surgical fields. We investigate the use of nanotechnology in orthopedic surgery, neurosurgery, plastic surgery, surgical oncology, heart surgery, vascular surgery, ophthalmic surgery, thoracic surgery, and minimally invasive surgery. The paper details how nanotechnology helps with arthroplasty, chondrogenesis, tissue regeneration, wound healing, and more. It also discusses the employment of nanomaterials in implant surfaces, bone grafting, and breast implants, among other things. The article also explores various nanotechnology uses, including stem cell-incorporated nano scaffolds, nano-surgery, hemostasis, nerve healing, nanorobots, and diagnostic applications. The ethical and safety implications of using nanotechnology in surgery are also addressed. The future possibilities of nanotechnology are investigated, pointing to a possible route for improved patient outcomes. The essay finishes with a comment on nanotechnology's transformational influence in surgical applications and its promise for future breakthroughs.
Collapse
Affiliation(s)
- Farzad Abaszadeh
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Muhammad Hossein Ashoub
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ghazal Khajouie
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | - Mahnaz Amiri
- Student Research Committee, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
11
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
12
|
Zapico P, Meana V, Cuesta E, Mateos S. Optical Characterization of Materials for Precision Reference Spheres for Use with Structured Light Sensors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5443. [PMID: 37570147 PMCID: PMC10420192 DOI: 10.3390/ma16155443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Traditionally, 3D digitizing sensors have been based on contact measurement. Given the disadvantages of this type of measurement, non-contact sensors such as structured light sensors have gained the attention of many sectors in recent years. The fact that their metrological performance is affected by the optical properties of the digitized material, together with the lack of standards, makes it necessary to develop characterization work to validate materials and calibration artifacts for the qualification and calibration of these sensors. This work compares and optically characterizes different materials and surface finishes of reference spheres used in the calibration of two structured light sensors with different fields of application, with the aim to determine the most suitable sphere material-sensor combination in each case. The contact measurement system of a CMM is used as a reference and, for the processing of the information from the sensors, the application of two different filters is analyzed. The results achieved point to sandblasted stainless steel spheres as the best choice for calibrating or qualifying these sensors, as well as for use as registration targets in digitizing. Tungsten carbide spheres and zirconium are unsuitable for this purpose.
Collapse
Affiliation(s)
| | - Victor Meana
- Department of Construction and Manufacturing Engineering, Campus of Gijon, University of Oviedo, 33204 Gijon, Spain; (P.Z.); (E.C.); (S.M.)
| | | | | |
Collapse
|