1
|
Graziani G, Ghezzi D, Boi M, Baldini N, Sassoni E, Cappelletti M, Fedrizzi G, Maglio M, Salamanna F, Tschon M, Martini L, Zaffagnini S, Fini M, Sartori M. Ionized jet deposition of silver nanostructured coatings: Assessment of chemico-physical and biological behavior for application in orthopedics. BIOMATERIALS ADVANCES 2024; 159:213815. [PMID: 38447383 DOI: 10.1016/j.bioadv.2024.213815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Infection is one of the main issues connected to implantation of biomedical devices and represents a very difficult issue to tackle, for clinicians and for patients. This study aimed at tackling infection through antibacterial nanostructured silver coatings manufactured by Ionized Jet Deposition (IJD) for application as new and advanced coating systems for medical devices. Films composition and morphology depending on deposition parameters were investigated and their performances evaluated by correlating these properties with the antibacterial and antibiofilm efficacy of the coatings, against Escherichia coli and Staphylococcus aureus strains and with their cytotoxicity towards human cell line fibroblasts. The biocompatibility of the coatings, the nanotoxicity, and the safety of the proposed approach were evaluated, for the first time, in vitro and in vivo by rat subcutaneous implant models. Different deposition times, corresponding to different thicknesses, were selected and compared. All silver coatings exhibited a highly homogeneous surface composed of nanosized spherical aggregates. All coatings having a thickness of 50 nm and above showed high antibacterial efficacy, while none of the tested options caused cytotoxicity when tested in vitro. Indeed, silver films impacted on bacterial strains viability and capability to adhere to the substrate, in a thickness-dependent manner. The nanostructure obtained by IJD permitted to mitigate the toxicity of silver, conferring strong antibacterial and anti-adhesive features, without affecting the coatings biocompatibility. At the explant, the coatings were still present although they showed signs of progressive dissolution, compatible with the release of silver, but no cracking, delamination or in vivo toxicity was observed.
Collapse
Affiliation(s)
- Gabriela Graziani
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Daniele Ghezzi
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Marco Boi
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Nicola Baldini
- BST-NaBi Biomedical Science and Technologies Laboratory and Nanobiotechnology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Massarenti 9, 40128 Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy.
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | - Giorgio Fedrizzi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna (IZSLER), Reparto Chimico degli Alimenti, Via Pietro Fiorini 5, 40127 Bologna, Italy.
| | - Melania Maglio
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Francesca Salamanna
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matilde Tschon
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Lucia Martini
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Stefano Zaffagnini
- II Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, via Pupilli 1, 40136 Bologna, Italy.
| | - Milena Fini
- Scientific Direction, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Maria Sartori
- Surgical Sciences and Technologies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy.
| |
Collapse
|
2
|
Suárez-Vega A, Berriozabal G, Perez de Iriarte J, Lorenzo J, Álvarez N, Dominguez-Meister S, Insausti S, Rujas E, Nieva JL, Brizuela M, Braceras I. On the antimicrobial properties and endurance of eugenol and 2-phenylphenol functionalized sol-gel coatings. Heliyon 2024; 10:e29146. [PMID: 38628759 PMCID: PMC11016974 DOI: 10.1016/j.heliyon.2024.e29146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/04/2024] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Preventing microbiological surface contamination in public spaces is nowadays of high priority. The proliferation of a microbial infection may arise through air, water, or direct contact with infected surfaces. Chemical sanitization is one of the most effective approaches to avoid the proliferation of microorganisms. However, extended contact with chemicals for cleaning purposes such as chlorine, hydrogen peroxide or ethanol may lead to long-term diseases as well as drowsiness or respiratory issues, not to mention environmental issues associated to their use. As a potentially safer alternative, in the present work, the efficacy and endurance of the antimicrobial activity of different sol-gel coatings were studied, where one or two biocides were added to the coating matrix resulting on active groups exposed on the surface. Specifically, the coating formulations were synthesized by the sol-gel method. Using the alkoxide route with acid catalysis a hybrid silica-titania-methacrylate matrix was obtained where aromatic liquid eugenol was added with a double function: as a complexing agent for the chelation of the reaction precursor titanium isopropoxide, and as a biocide. In addition, 2-Phenylphenol, ECHA approved biocide, has also been incorporated to the coating matrix. The antibacterial effect of these coatings was confirmed on Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Additionally, the coatings were non cyto-toxic and displayed virucidal activity. The coating chemical composition was characterized by 29Si NMR, and ATR-FTIR. Furthermore, the thickness and the mechanical properties were characterized by profilometry and nanoindentation, respectively. Finally, the durability of the coatings was studied with tribology tests. Overall, our data support the efficacy of the tested sol-gel coatings and suggest that added features may be required to improve endurance of the antimicrobial effects on operational conditions.
Collapse
Affiliation(s)
- Ana Suárez-Vega
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Gemma Berriozabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Juan Perez de Iriarte
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Jaione Lorenzo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Noelia Álvarez
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Santiago Dominguez-Meister
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Sara Insausti
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Edurne Rujas
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Jose L. Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), PO Box 644, 48080, Bilbao, Spain
| | - Marta Brizuela
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| | - Iñigo Braceras
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastián, Spain
| |
Collapse
|
3
|
Onorato F, Masoni V, Gagliardi L, Comba LC, Rivera F. What to Know about Antimicrobial Coatings in Arthroplasty: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:574. [PMID: 38674220 PMCID: PMC11052078 DOI: 10.3390/medicina60040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Periprosthetic joint infections (PJIs) are one of the most worrying complications orthopedic surgeons could face; thus, methods to prevent them are evolving. Apart from systemic antibiotics, targeted strategies such as local antimicrobial coatings applied to prosthetics have been introduced. This narrative review aims to provide an overview of the main antimicrobial coatings available in arthroplasty orthopedic surgery practice. The search was performed on the PubMed, Web of Science, SCOPUS, and EMBASE databases, focusing on antimicrobial-coated devices used in clinical practice in the arthroplasty world. While silver technology has been widely adopted in the prosthetic oncological field with favorable outcomes, recently, silver associated with hydroxyapatite for cementless fixation, antibiotic-loaded hydrogel coatings, and iodine coatings have all been employed with promising protective results against PJIs. However, challenges persist, with each material having strengths and weaknesses under investigation. Therefore, this narrative review emphasizes that further clinical studies are needed to understand whether antimicrobial coatings can truly revolutionize the field of PJIs.
Collapse
Affiliation(s)
- Francesco Onorato
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
| | - Virginia Masoni
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
| | - Luca Gagliardi
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| | - Luca Costanzo Comba
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| | - Fabrizio Rivera
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| |
Collapse
|
4
|
Näf L, Miescher I, Pfuderer L, Schweizer TA, Brunner D, Dürig J, Gröninger O, Rieber J, Meier-Buergisser G, Spanaus K, Calcagni M, Bosshard PP, Achermann Y, Stark WJ, Buschmann J. Pro-angiogenic and antibacterial copper containing nanoparticles in PLGA/amorphous calcium phosphate bone nanocomposites. Heliyon 2024; 10:e27267. [PMID: 38486752 PMCID: PMC10937708 DOI: 10.1016/j.heliyon.2024.e27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Large bone defects after trauma demand for adequate bone substitutes. Bone void fillers should be antibacterial and pro-angiogenic. One viable option is the use of composite materials like the combination of PLGA and amorphous calcium phosphate (aCaP). Copper stimulates angiogenesis and has antibacterial qualities. Either copper oxide (CuO) nanoparticles (NPs) were therefore added to PLGA/aCaP/CuO in different concentrations (1, 5 and 10 w/w %) or copper-doped tricalcium phosphate NPs (TCP with 2% of copper) were electrospun into PLGA/CuTCP nanocomposites. Bi-layered nanocomposites of PLGA/aCaP with different copper NPs (CuO or TCP) and a second layer of pristine PLGA were fabricated. Two clinical bacterial isolates (Staphylococcus aureus and Staphylococcus epidermidis) were used to assess antibacterial properties of the copper-containing materials. For angiogenesis, the chorioallantoic membrane (CAM) assay of the chicken embryo was performed. The higher the CuO content, the higher were the antibacterial properties, with 10 % CuO reducing bacterial adhesion most effectively. Vessel and cell densities were highest in the 5 % CuO containing scaffolds, while tissue integration was more pronounced at lower CuO content. The PLGA/aCaP/CuO (1 % CuO) behaved similar like PLGA/CuTCP in all angiogenic and antibacterial readouts, based on the same copper fraction. We conclude that CuO NPs or CuTCP NPs are useful components to increase angiogenic properties of nanocomposites and at the same time exhibiting antibacterial characteristics.
Collapse
Affiliation(s)
- Lukas Näf
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Iris Miescher
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Lara Pfuderer
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - David Brunner
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johannes Dürig
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Julia Rieber
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Gabriella Meier-Buergisser
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Katharina Spanaus
- Clinical Chemistry, University Hospital Zurich, 8001, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Philipp P. Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Yvonne Achermann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
5
|
Zidane Y, Laouini SE, Bouafia A, Meneceur S, Tedjani ML, Alshareef SA, Almukhlifi HA, Al-Essa K, Al-Essa EM, Rahman MM, Madkhali O, Menaa F. Green synthesis of multifunctional MgO@AgO/Ag 2O nanocomposite for photocatalytic degradation of methylene blue and toluidine blue. Front Chem 2022; 10:1083596. [PMID: 36590276 PMCID: PMC9798100 DOI: 10.3389/fchem.2022.1083596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction: In this paper, MgO@AgO/Ag2O nanoparticles were greenly synthesized, the current idea is to replace the harmful chemical technique with an ecofriendly synthesis of metal oxide nanoparticles (NPs) utilizing biogenic sources. Methods: The current investigation was conducted to create silver oxide NPs decorated by MgO NPs (namely, MgO@AgO/Ag2O nanocom-posite) using the leaves extract of Purslane (Portulaca Oleracea) as the reducing and capping agent. The nanopowder was investigated by means of X-ray diffraction, scanning electron mi-croscope, BET surface area, Fourier transform infrared, and UV-vis spectrophotom-eter studies. XRD studies reveal the monophasic nature of these highly crystalline silver nano-particles. SEM studies the shape and morphology of the synthesis AgO/Ag2O and MgO@AgO/Ag2O NPs. The presence of magnesium and oxygen was further confirmed by EDS profile. Results and discussion: The surface area was found to be 9.1787 m2/g and 7.7166 m2/g, respectively. FTIR analysis showed the presence of specific functional groups. UV-vis spectrophotometer studies show the absorption band at 450 nm due to surface plasmon resonance. The results have also indicated the high performance of the greenly synthesized AgO/Ag2O NPs and MgO@AgO/Ag2O NPs for photocatalytic activity dye degradation (methylene blue and toluidine blue).
Collapse
Affiliation(s)
- Younes Zidane
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria,Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Salah E. Laouini
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria,Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Abderrhmane Bouafia
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria,Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Souhaila Meneceur
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria,Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued, Algeria
| | - Mohammed L. Tedjani
- Department of Process Engineering, Faculty of Technology, University of El Oued, El-Oued, Algeria,Laboratory of Biotechnology Biomaterial and Condensed Matter, Faculty of Technology, University of El Oued, El-Oued, Algeria,*Correspondence: Mohammed L. Tedjani, ; Farid Menaa,
| | - Sohad A. Alshareef
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Hanadi A. Almukhlifi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Madkhali
- Department of Physics, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), Fluorotronics, Inc.-California Innovations Corporation, San Diego, CA, United States,*Correspondence: Mohammed L. Tedjani, ; Farid Menaa,
| |
Collapse
|
6
|
Phatama KY, Dradjat RS, Mustamsir E, Nurhidayati DY, Santosaningsih D, Utomo DN, Hidayat M. Implant surface modifications as a prevention method for periprosthetic joint infection caused by Staphylococcus aureus: a systematic review and meta-analysis. J Bone Jt Infect 2022; 7:231-239. [DOI: 10.5194/jbji-7-231-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract. Background: Periprosthetic joint infection is the most common infection due to joint replacement. It has been reported that, over a 5-year time span,
3.7 % of cases occurred annually. This statistic has increased to 6.86 %
over 16 years. Thus, an effective method is required to reduce these
complications. Several strategies such as coating methods with various
materials, such as antibiotics, silver, and iodine, have been reported.
However, the best preventive strategy is still undetermined. Therefore, this
systematic review aims to evaluate the outcome of coating methods on joint
arthroplasty as a treatment or preventive management for infection
complications.
Methods: Eligible articles were systematically searched from multiple
electronic databases (PubMed, Cochrane library, and ScienceDirect) up to 2 June 2022. Based on the criterion inclusion, eight articles were selected for this study. The Newcastle–Ottawa scale (NOS) was used to assess the quality
of the study, and the meta-analysis test was conducted with Review Manager 5.4.
Results: The quality of the articles in this study is in the range of
moderate to good. It was found that the application of modified antibiotic coatings significantly reduced the occurrence of periprosthetic joint
infection (PJI) (p 0.03), and silver coating could not significantly (p 0.47) prevent the occurrence of PJI. However, according to the whole aspect of coating modification, the use of antibiotics, silver, and iodine can minimize the occurrence of PJI (p <0.0001).
Conclusion: Coating methods using antibiotics are an effective method that
could significantly prevent the occurrence of PJI. On the other hand,
coating with non-antibiotic materials such as silver could not significantly
prevent the incidence of PJI.
Collapse
|
7
|
Is Silver the New Gold? A Systematic Review of the Preclinical Evidence of Its Use in Bone Substitutes as Antiseptic. Antibiotics (Basel) 2022; 11:antibiotics11080995. [PMID: 35892385 PMCID: PMC9329868 DOI: 10.3390/antibiotics11080995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Antibiotic-laden bone substitutes represent a viable option in the treatment of bone and joint infections with bone defects. In particular, the addition of silver ions or silver nanoparticles to bone substitutes to achieve local antiseptic activity could represent a further contribution, also helping to prevent bacterial resistance to antibiotics. An in-depth search of the main scientific databases was performed regarding the use of silver compounds for bone substitution. The available evidence is still limited to the preclinical level: 22 laboratory studies, 2 animal models, and 3 studies, with both in vitro and in vivo analysis, were found on the topic. Numerous biomaterials have been evaluated. In vitro studies confirmed that silver in bone substitutes retains the antibacterial activity already demonstrated in coatings materials. Cytotoxicity was generally found to be low and only related to silver concentrations higher than those sufficient to achieve antibacterial activity. Instead, there are only a few in vivo studies, which appear to confirm antibacterial efficacy, although there is insufficient evidence on the pharmacokinetics and safety profile of the compounds investigated. In conclusion, research on bone substitutes doped with silver is in its early stages, but the preliminary findings seem promising.
Collapse
|
8
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
9
|
Understanding and optimizing the antibacterial functions of anodized nano-engineered titanium implants. Acta Biomater 2021; 127:80-101. [PMID: 33744499 DOI: 10.1016/j.actbio.2021.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022]
Abstract
Nanoscale surface modification of titanium-based orthopaedic and dental implants is routinely applied to augment bioactivity, however, as is the case with other cells, bacterial adhesion is increased on nano-rough surfaces. Electrochemically anodized Ti implants with titania nanotubes (TNTs) have been proposed as an ideal implant surface with desirable bioactivity and local drug release functions to target various conditions. However, a comprehensive state of the art overview of why and how such TNTs-Ti implants acquire antibacterial functions, and an in-depth knowledge of how topography, chemistry and local elution of potent antibiotic agents influence such functions has not been reported. This review discusses and details the application of nano-engineered Ti implants modified with TNTs for maximum local antibacterial functions, deciphering the interdependence of various characteristics and the fine-tuning of different parameters to minimize cytotoxicity. An ideal implant surface should cater simultaneously to ossoeintegration (and soft-tissue integration for dental implants), immunomodulation and antibacterial functions. We also evaluate the effectiveness and challenges associated with such synergistic functions from modified TNTs-implants. Particular focus is placed on the metallic and semi-metallic modification of TNTs towards enabling bactericidal properties, which is often dose dependent. Additionally, there are concerns over the cytotoxicity of these therapies. In that light, research challenges in this domain and expectations from the next generation of customizable antibacterial TNTs implants towards clinical translation are critically evaluated. STATEMENT OF SIGNIFICANCE: One of the major causes of titanium orthopaedic/dental implant failure is bacterial colonization and infection, which results in complete implant failure and the need for revision surgery and re-implantation. Using advanced nanotechnology, controlled nanotopographies have been fabricated on Ti implants, for instance anodized nanotubes, which can accommodate and locally elute potent antibiotic agents. In this pioneering review, we shine light on the topographical, chemical and therapeutic aspects of antibacterial nanotubes towards achieving desirable tailored antibacterial efficacy without cytotoxicity concerns. This interdisciplinary review will appeal to researchers from the wider scientific community interested in biomaterials science, structure and function, and will provide an improved understanding of controlling bacterial infection around nano-engineered implants, aimed at bridging the gap between research and clinics.
Collapse
|
10
|
Wibowo A, Tajalla GUN, Marsudi MA, Cooper G, Asri LA, Liu F, Ardy H, Bartolo PJ. Green Synthesis of Silver Nanoparticles Using Extract of Cilembu Sweet Potatoes ( Ipomoea batatas L var. Rancing) as Potential Filler for 3D Printed Electroactive and Anti-Infection Scaffolds. Molecules 2021; 26:molecules26072042. [PMID: 33918502 PMCID: PMC8038213 DOI: 10.3390/molecules26072042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/07/2023] Open
Abstract
Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs’ properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10−3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.
Collapse
Affiliation(s)
- Arie Wibowo
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
- Research Center for Nanoscience and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
- Correspondence: (A.W.); (G.C.); (P.J.D.S.B.)
| | - Gusti U. N. Tajalla
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
- Materials and Metallurgy Engineering, Institut Teknologi Kalimantan, Jl. Soekarno Hatta 15, Balikpapan 76127, Indonesia
| | - Maradhana A. Marsudi
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
| | - Glen Cooper
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (A.W.); (G.C.); (P.J.D.S.B.)
| | - Lia A.T.W. Asri
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
| | - Fengyuan Liu
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Husaini Ardy
- Material Science and Engineering Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia; (G.U.N.T.); (M.A.M.); (L.A.T.W.A.); (H.A.)
| | - Paulo J.D.S. Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering, University of Manchester, Manchester M13 9PL, UK;
- Correspondence: (A.W.); (G.C.); (P.J.D.S.B.)
| |
Collapse
|
11
|
Lawson TB, Mäkelä JTA, Klein T, Snyder BD, Grinstaff MW. Nanotechnology and Osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics. J Orthop Res 2021; 39:473-484. [PMID: 32860444 DOI: 10.1002/jor.24842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a multifactorial disease of the entire joint which afflicts 140 million individuals worldwide regardless of economic or social status. Current clinical treatments for OA primarily center on reducing pain and increasing mobility, and there are limited therapeutic interventions to restore degraded cartilage or slow disease pathogenesis. This second installment of a two-part review on nanotechnology and OA focuses on novel treatment strategies. Specifically, Part 2 first discusses current surgical and nonsurgical treatments for OA and then summarizes recent advancements in nanotechnology-based treatments, while Part 1 (10.1002/jor.24817) described advances in imaging and diagnostics. We review nano delivery systems for small molecule drugs, nucleic acids, and proteins followed by nano-based scaffolds for neocartilage formation and osteochondral regeneration, and lastly nanoparticle lubricants. We conclude by identifying opportunities for nanomedicine advances, and prospects for OA treatments.
Collapse
Affiliation(s)
- Taylor B Lawson
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts, USA
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Janne T A Mäkelä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Travis Klein
- Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Mechanical Engineering, Chemistry, and Medicine Boston University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Shevtsov M, Gavrilov D, Yudintceva N, Zemtsova E, Arbenin A, Smirnov V, Voronkina I, Adamova P, Blinova M, Mikhailova N, Galibin O, Akkaoui M, Pitkin M. Protecting the skin-implant interface with transcutaneous silver-coated skin-and-bone-integrated pylon in pig and rabbit dorsum models. J Biomed Mater Res B Appl Biomater 2020; 109:584-595. [PMID: 32935912 DOI: 10.1002/jbm.b.34725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Implant-associated soft tissue infections at the skin-implant interface represent the most frequent complications in reconstructive surgery and lead to implant failures and revisions. Titanium implants with deep porosity, called skin-and-bone-integrated-pylons (SBIP), allow for skin ingrowth in the morphologically natural direction, thus restoring a reliable dermal barrier and reducing the risk of infection. Silver coating of the SBIP implant surface using physical vapor deposition technique offers the possibility of preventing biofilm formation and exerting a direct antimicrobial effect during the wound healing phase. In vivo studies employing pig and rabbit dorsum models for assessment of skin ingrowth into the pores of the pylon demonstrated the safety of transcutaneous implantation of the SBIP system. No postoperative complications were reported at the end of the follow-up period of 6 months. Histological analysis proved skin ingrowth in the minipig model without signs of silver toxicity. Analysis of silver release (using energy dispersive X-ray spectroscopy) in the model of intramedullary-inserted silver-coated SBIP in New Zealand rabbits demonstrated trace amounts of silver after 3 months of in-bone implantation. In conclusion, selected temporary silver coating of the SBIP implant surface is powerful at preventing the periprosthetic infections without imparing skin ingrowth and can be considered for clinical application.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Immuno-Oncology, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum Rechts der Isar, Munich, Germany.,Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Department of Biotechnology, First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia.,Department of Pediatric Neurosurgery, Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, St. Petersburg, Russia.,Laboratory of Biomedical Cell Technologies, Far Eastern Federal University, Vladivostok, Russia
| | - Dmitriy Gavrilov
- Federal State Budgetary Institution "Federal Scientific Center of Rehabilitation of the Disabled named after G.A. Albrecht" of the Ministry of Labour and Social Protection of the Russian Federation, St. Petersburg, Russia
| | - Natalia Yudintceva
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Elena Zemtsova
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | - Andrei Arbenin
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | - Vladimir Smirnov
- Department of Solid State Chemistry, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Polina Adamova
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - Miralda Blinova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Nataliya Mikhailova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Oleg Galibin
- Department of Biotechnology, First Pavlov State Medical University of St.Petersburg, St. Petersburg, Russia
| | | | - Mark Pitkin
- Tufts University, Boston, Massachusetts, USA.,Poly-Orth International, Sharon, Massachusetts, USA
| |
Collapse
|
13
|
Fiore M, Sambri A, Zucchini R, Giannini C, Donati DM, De Paolis M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: a systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 31:201-220. [PMID: 32889672 DOI: 10.1007/s00590-020-02779-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023]
Abstract
AIM Prosthetic joint infection (PJI) is a common complication following orthopedic megaprosthetic implantations (EPR), estimated up to 50%. Silver coatings were introduced in order to reduce the incidence of PJI, by using the antibacterial activity of silver. Three different silver coatings are available: MUTARS® (Implantcast), Agluna® (Accentus Medical), PorAg® (Waldemar Link). The aim of this review is to provide an overview on efficacy and safety of silver-coated EPR both in primary and revision surgery, comparing infection rate according to the type of implant. METHODS Through an electronic systematic search, we reviewed the articles concerning silver-coated EPRs. Infection rate, silver-related complications, local and blood concentrations of the silver were evaluated. Meta-analyses were performed to compare results from each study included. RESULTS Nineteen studies were included. The overall infection rate in patients with silver-coated implants was 17.6% (133/755). Overall infection rate in primary silver-coated EPR was been 9.2% (44/445), compared to 11.2% (57/507) of non-silver-coated implants. The overall infection rate after revisions was 13.7% (25/183) in patients with silver-coated EPR and 29.2% (47/161) when uncoated EPR were used, revealing a strength statistically significative utility of silver coatings in preventing infections in this group (p: 0.019). Generally, the use of MUTARS® EPR had produced an almost constant decrease in the incidence of primary PJI but there are few data on the effectiveness in revisions. The results from the use of Agluna® in both primary and revisions implants are inconstant. Conversely, PorAg® had proven to be effective both in PJI prevention but, especially, when used in PJI revision settings. Local argyria was reported in 8 out of 357 patients (2.2%), while no systemic complications were described. Local and blood concentrations of silver were always reported very far to the threshold of toxicity, with the lowest concentration found using PorAg®. CONCLUSIONS Silver-coated EPRs are safe and effective in reduction in PJI and re-infection rate, in particular when used in higher risk patients and after two-stage revisions to fight PJI.
Collapse
Affiliation(s)
- Michele Fiore
- IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy.
| | - Andrea Sambri
- Azienda ospedaliera Sant'Orsola Malpighi, Bologna, Italy.,Alma mater studiorum - University of Bologna, Bologna, Italy
| | - Riccardo Zucchini
- IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Claudio Giannini
- IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy
| | - Davide Maria Donati
- IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136, Bologna, Italy.,Alma mater studiorum - University of Bologna, Bologna, Italy
| | | |
Collapse
|
14
|
Filipović U, Dahmane RG, Ghannouchi S, Zore A, Bohinc K. Bacterial adhesion on orthopedic implants. Adv Colloid Interface Sci 2020; 283:102228. [PMID: 32858407 DOI: 10.1016/j.cis.2020.102228] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023]
Abstract
Orthopedic implants are routinely used for fixation of fractures, correction of deformities, joint replacements, and soft tissue anchorage. Different biomaterials have been engineered for orthopedic implants. Previously, they were designed merely as mechanical devices, now new strategies to enhance bone healing and implant osteointegration via local delivery of molecules and via implant coatings are being developed. These biological coatings should enhance osteointegration and reduce foreign body response or infection. This article reviews current and future orthopedic implants, materials and surface characteristics, biocompatibility, and mechanisms of bacterial adhesion. Additionally, the review is addressing implant-related infection, the main strategies to prevent it and suggest possible future research that may control implant related-infection.
Collapse
Affiliation(s)
- Urška Filipović
- University Clinical Center of Ljubljana, Department of Traumatology, Zaloska 7, 1000 Ljubljana, Slovenia
| | - Raja Gošnak Dahmane
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Institute of Anatomy, Korytkova 2, 1000 Ljubljana, Slovenia
| | | | - Anamarija Zore
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia
| | - Klemen Bohinc
- University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Bardania H, Mahmoudi R, Bagheri H, Salehpour Z, Fouani MH, Darabian B, Khoramrooz SS, Mousavizadeh A, Kowsari M, Moosavifard SE, Christiansen G, Javeshghani D, Alipour M, Akrami M. Facile preparation of a novel biogenic silver-loaded Nanofilm with intrinsic anti-bacterial and oxidant scavenging activities for wound healing. Sci Rep 2020; 10:6129. [PMID: 32273549 PMCID: PMC7145826 DOI: 10.1038/s41598-020-63032-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
To eliminate the microbial infection from an injury site, various modalities have been developed such as dressings and human skin substitutes. However, the high amount of reactive oxygen species, microbial infection, and damaging extracellular matrix remain as the main challenges for the wound healing process. In this study, for the first time, green synthesized silver nanoparticles (AgNPs) using Teucrium polium extract were embedded in poly lactic acid/poly ethylene glycol (PLA/PEG) film to provide absorbable wound dressing, with antioxidant and antibacterial features. The physicochemical analysis demonstrated, production of AgNPs with size approximately 32.2 nm and confirmed the presence of phytoconstituents on their surface. The antibacterial assessments exhibited a concentration-dependent sensitivity of Staphylococcus aureus and Pseudomonas aeruginosa toward biosynthesized AgNPs, which showed a suitable safety profile in human macrophage cells. Furthermore, oxidant scavenging assays demonstrated exploitation of plant extract as a reducing agent, endows antioxidant activity to biogenic AgNPs. The formation of PLA/PEG nanofilm and entrapment of AgNPs into their matrix were clearly confirmed by scanning electron microscopy. More importantly, antibacterial examination demonstrated that the introduction of biogenic AgNPs into PLA/PEG nanofibers led to complete growth inhibition of P. aeruginosa and S. aureus. In summary, the simultaneous antioxidant activity and antimicrobial activity of the novel biogenic AgNPs/PLA/PEG nanofilm showed its potential for application as wound dressing.
Collapse
Affiliation(s)
- Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Clinical Research Development Unit, Imamsajad Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Bagheri
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Salehpour
- Medicinal Plant Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohamad Hassan Fouani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Darabian
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | | | - Ali Mousavizadeh
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Majid Kowsari
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Seyyed Ebrahim Moosavifard
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | | | - Danesh Javeshghani
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Teixeira MA, Paiva MC, Amorim MTP, Felgueiras HP. Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E557. [PMID: 32204521 PMCID: PMC7153368 DOI: 10.3390/nano10030557] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 01/16/2023]
Abstract
Wound healing requires careful, directed, and effective therapies to prevent infections and accelerate tissue regeneration. In light of these demands, active biomolecules with antibacterial properties and/or healing capacities have been functionalized onto nanostructured polymeric dressings and their synergistic effect examined. In this work, various antibiotics, nanoparticles, and natural extract-derived products that were used in association with electrospun nanocomposites containing cellulose, cellulose acetate and different types of nanocellulose (cellulose nanocrystals, cellulose nanofibrils, and bacterial cellulose) have been reviewed. Renewable, natural-origin compounds are gaining more relevance each day as potential alternatives to synthetic materials, since the former undesirable footprints in biomedicine, the environment, and the ecosystems are reaching concerning levels. Therefore, cellulose and its derivatives have been the object of numerous biomedical studies, in which their biocompatibility, biodegradability, and, most importantly, sustainability and abundance, have been determinant. A complete overview of the recently produced cellulose-containing nanofibrous meshes for wound healing applications was provided. Moreover, the current challenges that are faced by cellulose acetate- and nanocellulose-containing wound dressing formulations, processed by electrospinning, were also enumerated.
Collapse
Affiliation(s)
- Marta A. Teixeira
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| | - Maria C. Paiva
- Department of Polymer Engineering, Institute for Polymers and Composites/i3N, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal;
| | - M. Teresa P. Amorim
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.A.T.); (M.T.P.A.)
| |
Collapse
|
17
|
Zborníková E, Gallo J, Večeřová R, Bogdanová K, Kolář M, Vítovská D, Do Pham DD, Pačes O, Mojr V, Šanderová H, Ulrichová J, Galandáková A, Čadek D, Hrdlička Z, Krásný L, Rejman D. Evaluation of Second-Generation Lipophosphonoxins as Antimicrobial Additives in Bone Cement. ACS OMEGA 2020; 5:3165-3171. [PMID: 32118132 PMCID: PMC7045315 DOI: 10.1021/acsomega.9b03072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Successful surgeries involving orthopedic implants depend on the avoidance of biofilm development on the implant surface during the early postoperative period. Here, we investigate the potential of novel antibacterial compounds-second-generation lipophosphonoxins (LPPOs II)-as additives to surgical bone cements. We demonstrate (i) excellent thermostability of LPPOs II, which is essential to withstand elevated temperatures during exothermic cement polymerization; (ii) unchanged tensile strength and elongation at the break properties of the composite cements containing LPPOs II compared to cements without additives; (iii) convenient elution kinetics on the order of days; and (iv) the strong antibiofilm activity of the LPPO II-loaded cements even against bacteria resistant to the medicinally utilized antibiotic, gentamicin. Thus, LPPOs II display promising potential as antimicrobial additives to surgical bone cements.
Collapse
Affiliation(s)
- Eva Zborníková
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Department
of Analytical Chemistry, Faculty of Science, Charles University Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Jiří Gallo
- Department
of Orthopedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I.P. Pavlova 6, 775
20 Olomouc, Czech Republic
| | - Renata Večeřová
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Bogdanová
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Milan Kolář
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Dragana Vítovská
- Institute
of Microbiology, Czech Academy of Sciences
v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Duy Dinh Do Pham
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Pačes
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Viktor Mojr
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hana Šanderová
- Institute
of Microbiology, Czech Academy of Sciences
v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jitka Ulrichová
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Adéla Galandáková
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Drahomír Čadek
- Department
of Polymers, University of Chemistry and
Technology Prague, Technická 5, Dejvice, 166 28 Praha 6, Czech Republic
| | - Zdeněk Hrdlička
- Department
of Polymers, University of Chemistry and
Technology Prague, Technická 5, Dejvice, 166 28 Praha 6, Czech Republic
| | - Libor Krásný
- Institute
of Microbiology, Czech Academy of Sciences
v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Dominik Rejman
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
18
|
A Short Overview of Recent Developments on Antimicrobial Coatings Based on Phytosynthesized Metal Nanoparticles. COATINGS 2019. [DOI: 10.3390/coatings9120787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phytosynthesis of metallic nanoparticles represents an exciting new area of research, with promising perspectives, gaining in the last decades an increasing importance. Nanotechnology represents an important tool and an efficient option for obtaining particles with controlled morphology and shapes, phytosynthesized nanoparticles (NPs) being a good alternative to remove hazardous reagents. Due to the practical applications of the phytosynthesized nanoparticles, which are mainly associated with their antimicrobial potential, the abundance of scientific literature in this domain is given by researches in the phytosynthesis of metallic nanoparticles (3654 articles) and the evaluation of their antimicrobial properties (2338 papers). The application of phytosynthesized nanoparticles as antimicrobial coatings represented the subject of only 446 works, which lead us to the subject of this review paper. Application of antimicrobial coatings containing phytosynthesized nanoparticles for the development of antimicrobial textiles, other biomedical applications, protection of food (including fruits and vegetables), as well as for other types of applications based on their antimicrobial potential are covered by the present review.
Collapse
|
19
|
Deng W, Shao H, Li H, Zhou Y. Is surface modification effective to prevent periprosthetic joint infection? A systematic review of preclinical and clinical studies. Orthop Traumatol Surg Res 2019; 105:967-974. [PMID: 31227461 DOI: 10.1016/j.otsr.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/13/2019] [Accepted: 05/02/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND With increasing recognition of the importance of biofilm formation in the pathogenesis of periprosthetic joint infection (PJI), a push towards finding solutions to prevent PJI via surface modification of prostheses is occurring. Unlike the promising in vitro antimicrobial effects of these surface modifications, the preclinical and clinical prophylactic effects vary and are debated. Therefore, we performed this systematic review to answer: (1) what kinds of methods of surface modification are used in preclinical and clinical studies to prevent PJI, (2) whether these modifications are effective to prevent PJI. METHODS Electronic searches were performed using PubMed, Embase and the Cochrane library databases up to and including December 2017 with predetermined criteria: (1) in vivo studies with (2) surface modification for prophylactic effects against infection. Both animal studies and clinical trials were included. Data were extracted and presented systematically. RESULTS Overall, 21 studies were included. Among these, fourteen were carried out in animal models and seven were clinical studies. In the animal studies, six used antibiotics and six silver modifications, while copper and Cationic Steroidal Antimicrobial-13 were each used for one study. In the seven clinical studies targeting patients with high infection risk, five of them focused on silver-coated prostheses and the remaining two studied iodine-coated implants. In all of the animal studies, when compared with the control group, the surface modified groups had a lower infection risk (RR ranging from 0 to 0.71). Clinical studies using silver-coated prostheses also demonstrated a lower infection risk (RR ranging from 0.24 to 0.70), while iodine-coated implants showed a 0% and 5% incidence of PJI in the two case series included. DISCUSSION The results from the publications included in this review indicate that surface modification, especially antibiotic and silver modifications, are helpful preventing PJI in both preclinical animal models and in clinical trials. LEVEL OF EVIDENCE III, systematic review of level III retrospective comparative studies and level IV case series and animal experiments.
Collapse
Affiliation(s)
- Wang Deng
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Hongyi Shao
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Hua Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Yixin Zhou
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China.
| |
Collapse
|
20
|
Liao C, Li Y, Tjong SC. Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1102. [PMID: 31374855 PMCID: PMC6724040 DOI: 10.3390/nano9081102] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/21/2019] [Accepted: 07/25/2019] [Indexed: 12/18/2022]
Abstract
Aliphatic polyesters such as poly(lactic acid) (PLA), polycaprolactone (PCL) and poly(lactic-co-glycolic) acid (PLGA) copolymers have been widely used as biomaterials for tissue engineering applications including: bone fixation devices, bone scaffolds, and wound dressings in orthopedics. However, biodegradable aliphatic polyesters are prone to bacterial infections due to the lack of antibacterial moieties in their macromolecular chains. In this respect, silver nanoparticles (AgNPs), graphene oxide (GO) sheets and AgNPs-GO hybrids can be used as reinforcing nanofillers for aliphatic polyesters in forming antimicrobial nanocomposites. However, polymeric matrix materials immobilize nanofillers to a large extent so that they cannot penetrate bacterial membrane into cytoplasm as in the case of colloidal nanoparticles or nanosheets. Accordingly, loaded GO sheets of aliphatic polyester nanocomposites have lost their antibacterial functions such as nanoknife cutting, blanket wrapping and membrane phospholipid extraction. In contrast, AgNPs fillers of polyester nanocomposites can release silver ions for destroying bacterial cells. Thus, AgNPs fillers are more effective than loaded GO sheets of polyester nanocomposiites in inhibiting bacterial infections. Aliphatic polyester nanocomposites with AgNPs and AgNPs-GO fillers are effective to kill multi-drug resistant bacteria that cause medical device-related infections.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
21
|
Enhanced Antibacterial Activity of Poly (dimethylsiloxane) Membranes by Incorporating SiO 2 Microspheres Generated Silver Nanoparticles. NANOMATERIALS 2019; 9:nano9050705. [PMID: 31064123 PMCID: PMC6566769 DOI: 10.3390/nano9050705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 12/21/2022]
Abstract
The nonspecific adsorption of proteins and bacteria on the surface of polydimethylsiloxane (PDMS) had been a serious concern in a wide range of applications, such as medical devices. In order to improve the anti-adhesive and antibacterial capability, bare silver nanoparticles (AgNPs, ~15 nm) were generated in-situ on their surface without extra reducing and stabilizing agents. The main reason for this was that the SiO2 microspheres that are covalent bonded to the bulked PDMS could not only generate AgNPs spontaneously but also insure that no AgNPs were released to the environment. Meanwhile, the thiol-group-functionalized SiO2 microspheres self-assembled on the surface of PDMS by thiol-vinyl click reaction without any impact on their biomedical applications. After the modification of SiO2 microspheres with AgNPs, the surface of PDMS showed a smaller water contact angle than before, and the adhesion and growth of E. coli and Bacillus subtilis were effectively inhibited. When the monolayer of SiO2 microspheres with AgNPs was assembled completely on the surface of PDMS, they present improved bacterial resistance performance (living bacteria, 0%). This approach offers an antibacterial and anti-adhesive surface bearing small and well-defined quantities of in-situ generated AgNPs, and it is a novel, green, simple, and low-cost technique to generate AgNPs on soft biomedical substrates.
Collapse
|
22
|
Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019; 8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Antibacterial coatings that eliminate initial bacterial attachment and prevent subsequent biofilm formation are essential in a number of applications, especially implanted medical devices. Although various approaches, including bacteria-repelling and bacteria-killing mechanisms, have been developed, none of them have been entirely successful due to their inherent drawbacks. In recent years, antibacterial coatings that are responsive to the bacterial microenvironment, that possess two or more killing mechanisms, or that have triggered-cleaning capability have emerged as promising solutions for bacterial infection and contamination problems. This review focuses on recent progress on three types of such responsive and synergistic antibacterial coatings, including i) self-defensive antibacterial coatings, which can "turn on" biocidal activity in response to a bacteria-containing microenvironment; ii) synergistic antibacterial coatings, which possess two or more killing mechanisms that interact synergistically to reinforce each other; and iii) smart "kill-and-release" antibacterial coatings, which can switch functionality between bacteria killing and bacteria releasing under a proper stimulus. The design principles and potential applications of these coatings are discussed and a brief perspective on remaining challenges and future research directions is presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| |
Collapse
|
23
|
Wi YM, Patel R. Understanding Biofilms and Novel Approaches to the Diagnosis, Prevention, and Treatment of Medical Device-Associated Infections. Infect Dis Clin North Am 2018; 32:915-929. [PMID: 30241715 DOI: 10.1016/j.idc.2018.06.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Treatment of medical device-related infections is challenging and recurrence is common. The main reason for this is that microorganisms adhere to the surfaces of medical devices and enter into a biofilm state in which they display distinct growth rates, structural features, and protection from antimicrobial agents and host immune mechanisms compared with their planktonic counterparts. This article reviews how microorganisms form biofilms and the mechanisms of protection against antimicrobial agents and the host immune system provided by biofilms. Also discussed are innovative strategies for the diagnosis of biofilm-associated infection and novel approaches to treatment and prevention of medical device-associated infections.
Collapse
Affiliation(s)
- Yu Mi Wi
- Division of Infectious Diseases, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University, 158 palyong-ro, MasanHoiwon-gu, Changwon-si, Gyeongsangnam-do 51353, Korea
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA; Division of Infectious Diseases, Department of Medicine, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| |
Collapse
|
24
|
Orapiriyakul W, Young PS, Damiati L, Tsimbouri PM. Antibacterial surface modification of titanium implants in orthopaedics. J Tissue Eng 2018; 9:2041731418789838. [PMID: 30083308 PMCID: PMC6071164 DOI: 10.1177/2041731418789838] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022] Open
Abstract
The use of biomaterials in orthopaedics for joint replacement, fracture healing and bone regeneration is a rapidly expanding field. Infection of these biomaterials is a major healthcare burden, leading to significant morbidity and mortality. Furthermore, the cost to healthcare systems is increasing dramatically. With advances in implant design and production, research has predominately focussed on osseointegration; however, modification of implant material, surface topography and chemistry can also provide antibacterial activity. With the increasing burden of infection, it is vitally important that we consider the bacterial interaction with the biomaterial and the host when designing and manufacturing future implants. During this review, we will elucidate the interaction between patient, biomaterial surface and bacteria. We aim to review current and developing surface modifications with a view towards antibacterial orthopaedic implants for clinical applications.
Collapse
Affiliation(s)
- Wich Orapiriyakul
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Peter S Young
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Laila Damiati
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, College of Medical, Veterinary & Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, UK
| |
Collapse
|
25
|
Zheng Y, He L, Asiamah TK, Otto M. Colonization of medical devices by staphylococci. Environ Microbiol 2018; 20:3141-3153. [PMID: 29633455 DOI: 10.1111/1462-2920.14129] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
The use of medical devices in modern medicine is constantly increasing. Despite the multiple precautionary strategies that are being employed in hospitals, which include increased hygiene and sterilization measures, bacterial infections on these devices still happen frequently. Staphylococci are among the major causes of medical device infection. This is mostly due to the strong capacity of those bacteria to form device-associated biofilms, which provide resistance to chemical and physical treatments as well as attacks by the host's immune system. Biofilm development is a multistep process with specific factors participating in each step. It is tightly regulated to provide a balance between biofilm expansion and detachment. Detachment from a biofilm on a medical device can lead to severe systemic infection, such as bacteremia and sepsis. While our understanding of staphylococcal biofilm formation has increased significantly and staphylococcal biofilm formation on medical devices is among the best understood biofilm-associated infections, the extensive effort put in preclinical studies with the goal to find novel therapies against staphylococcal device-associated infections has not yet resulted in efficient, applicable therapeutic options for that difficult-to-treat type of disease.
Collapse
Affiliation(s)
- Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Lei He
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Titus K Asiamah
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Shevtsov MA, Yudintceva NM, Blinova MI, Voronkina IV, Suslov DN, Galibin OV, Gavrilov DV, Akkaoui M, Raykhtsaum G, Albul AV, Pitkin E, Pitkin M. Evaluation of the temporary effect of physical vapor deposition silver coating on resistance to infection in transdermal skin and bone integrated pylon with deep porosity. J Biomed Mater Res B Appl Biomater 2018; 107:169-177. [PMID: 29573163 DOI: 10.1002/jbm.b.34108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 02/13/2018] [Accepted: 02/18/2018] [Indexed: 02/06/2023]
Abstract
Periprosthetic infection via skin-implant interface is a leading cause of failures and revisions in direct skeletal attachment of limb prostheses. Implants with deep porosity fabricated with skin and bone integrated pylons (SBIP) technology allow for skin ingrowth through the implant's structure creating natural barrier against infection. However, until the skin cells remodel in all pores of the implant, additional care is required to prevent from entering bacteria to the still nonoccupied pores. Temporary silver coating was evaluated in this work as a means to provide protection from infection immediately after implantation followed by dissolution of silver layer in few weeks. A sputtering coating with 1 µm thickness was selected to be sufficient for fighting infection until the deep ingrowth of skin in the porous structure of the pylon is completed. In vitro study showed less bacterial (Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa) growth on silver coated tablets compared to the control group. Analysis of cellular density of MG-63 cells, fibroblasts, and mesenchymal stem cells (MSCs) showed that silver coating did not inhibit the cell growth on the implants and did not affect cellular functional activity. The in vivo study did not show any postoperative complications during the 6-month observation period in the model of above-knee amputation in rabbits when SBIP implants, either silver-coated or untreated were inserted into the bone residuum. Three-phase scintigraphy demonstrated angiogenesis in the pores of the pylons. The findings suggest that a silver coating with well-chosen specifications can increase the safety of porous implants for direct skeletal attachment. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 107B: 169-177, 2019.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,Technical University of Munich, Munich, Germany.,Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia.,Polenov Russian Scientific Research Institute of Neurosurgery, St. Petersburg, Russia
| | - Natalia M Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Miralda I Blinova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Irina V Voronkina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Dmitriy N Suslov
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Oleg V Galibin
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Dmitriy V Gavrilov
- Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | | | | | - Andrey V Albul
- Veterinary Clinic "Neurology, Traumatology and Intensive Therapy of Doctor Sotnikov V.V.,", St. Petersburg, Russia
| | - Emil Pitkin
- Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark Pitkin
- Poly-Orth International, Sharon, Massachusetts.,Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
27
|
Pezzotti G, Bock RM, McEntire BJ, Adachi T, Marin E, Boschetto F, Zhu W, Mazda O, Bal SB. In vitroantibacterial activity of oxide and non-oxide bioceramics for arthroplastic devices: I.In situtime-lapse Raman spectroscopy. Analyst 2018; 143:3708-3721. [DOI: 10.1039/c8an00233a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Raman spectroscopy proved why the antibacterial response of non-oxide Si3N4bioceramic is superior to those of alumina-based oxide bioceramics.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Orthopedic Surgery
| | | | | | - Tetsuya Adachi
- Department of Dental Medicine
- Graduate School of Medical Science
- Kyoto Prefectural University of Medicine
- Kyoto 602-8566
- Japan
| | - Elia Marin
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Dental Medicine
| | - Francesco Boschetto
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
- Department of Immunology
| | - Wenliang Zhu
- Ceramic Physics Laboratory
- Kyoto Institute of Technology
- Kyoto
- Japan
| | - Osam Mazda
- Department of Immunology
- Kyoto Prefectural University of Medicine
- Kamigyo-ku
- Japan
| | - Sonny B. Bal
- Amedica Corporation
- Salt Lake City
- USA
- Department of Orthopaedic Surgery
- University of Missouri
| |
Collapse
|
28
|
Antimicrobial and Osseointegration Properties of Nanostructured Titanium Orthopaedic Implants. MATERIALS 2017; 10:ma10111302. [PMID: 29137166 PMCID: PMC5706249 DOI: 10.3390/ma10111302] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
The surface design of titanium implants influences not only the local biological reactions but also affects at least the clinical result in orthopaedic application. During the last decades, strong efforts have been made to improve osteointegration and prevent bacterial adhesion to these surfaces. Following the rule of “smaller, faster, cheaper”, nanotechnology has encountered clinical application. It is evident that the hierarchical implant surface micro- and nanotopography orchestrate the biological cascades of early peri-implant endosseous healing or implant loosening. This review of the literature gives a brief overview of nanostructured titanium-base biomaterials designed to improve osteointegration and prevent from bacterial infection.
Collapse
|
29
|
Fargašová A, Balzerová A, Prucek R, Sedláková MH, Bogdanová K, Gallo J, Kolář M, Ranc V, Zbořil R. Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy. Anal Chem 2017; 89:6598-6607. [DOI: 10.1021/acs.analchem.7b00759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ariana Fargašová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Anna Balzerová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Robert Prucek
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Miroslava Htoutou Sedláková
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Kateřina Bogdanová
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Jiří Gallo
- Department
of Orthopaedics, Faculty of Medicine and Dentistry, Palacký University Olomouc, I. P. Pavlova 6, 77520 Olomouc, Czech Republic
| | - Milan Kolář
- Department
of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Václav Ranc
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů
27, 783 71 Olomouc, Czech Republic
| |
Collapse
|