1
|
Biliuta G, Zhang S, Gradinaru LM, Bercea M, Baron RI, Bejan D, Coseri S. Advanced pullulan nanofibers reinforced by cellulose fibrils as drug carriers for salicylic acid. Int J Biol Macromol 2024; 283:137624. [PMID: 39547616 DOI: 10.1016/j.ijbiomac.2024.137624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/21/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The goal of the current work is to showcase the synthesis of homogeneous pullulan nanofibers that are strengthened by the addition of cellulose nanofibrils (CNF). One of the main difficulties this study faced was determining the ideal water/organic solvent ratio for the electrospinning process, which would allow for the maximum reduction in the amount of organic solvent (DMF or DMSO) needed. The rheological behavior of electrospinning solutions was modulated by varying both, the pullulan concentration and solvent system composition. The amount of CNF in the composition significantly affects the properties of the created nanofibers. When the CNF content increased from 1 % to 5 %, the diameter of the fibers decreases from 284 nm to 90 nm. This is attributed to the enhanced conductivity and surface charge density of the solution jet. The as prepared nanofibres can hold a variety of drugs and can be used to create novel formulations for various biomedical purposes. The nanofibres were tested for salicylic acid incorporation and release. Drug release exhibited zero-order kinetics, suggesting that the concentration remained unaffected by the rate of release. Furthermore, the nanofibres demonstrated remarkable antibacterial activity against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Gabriela Biliuta
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Luiza Madalina Gradinaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Raluca Ioana Baron
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Dana Bejan
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A, Grigore Ghica Voda Alley, 700487 Iasi, Romania.
| |
Collapse
|
2
|
Liu X, Tan W, Ye Z, Zhang Y, Ren Y, Liu X. Lignin-based flame retardants chelated with Fe 3+: Facilitating the development of flame retardant, UV resistant and antibacterial properties polyvinyl alcohol composites. Int J Biol Macromol 2024; 286:138182. [PMID: 39615721 DOI: 10.1016/j.ijbiomac.2024.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
To overcome the problems of inflammability, poor UV resistance and susceptible to bacterial growth of polyvinyl alcohol (PVA), a new lignin-based PVA composite (PVA/PLig-Fe) was prepared. Compared to PVA, the limiting oxygen index (LOI) of PVA/PLig-Fe was increased by 64.8 %. The peak heat release rate (PHRR) and total heat release (THR) were reduced from 247.40 kW/m2 and 8.26 MJ/m2 of pure PVA to 151.70 kW/m2 and 6.95 MJ/m2, respectively. In addition, the total smoke production (TSP) of the modified sample was reduced from 3.11 m2 to 1.87 m2 compared with PVA. Notably, the elongation at break and tensile strength of PVA/PLig-Fe increased from 188 % and 35 MPa to 247 % and 53 MPa, and its transmittance of UVA (TUVA) and transmittance of UVB (TUVB) were reduced to 0.54 % and 0.59 %, respectively. Besides, the treated samples demonstrated 99.95 % and 99.90 % antibacterial activity against E. coli and S. aureus, respectively. The present research provides a feasible approach for the development of flame retardant, enhanced mechanical properties, UV resistant, and antibacterial PVA composites as a promising application in packaging.
Collapse
Affiliation(s)
- Xiaoyu Liu
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Tan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Ziyin Ye
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yongli Zhang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanlin Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xiaohui Liu
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
3
|
Assani KD, Nosoudi N, Ramirez-Vick JE, Singh SP. M1 to M2 induction in macrophages using a retinoic acid-releasing mesenchymal stem cell scaffold. Biomed Mater Eng 2023; 34:143-157. [PMID: 35871316 DOI: 10.3233/bme-221410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Modulation of macrophage polarization is required for effective tissue repair and regenerative therapies. Therapeutic modulation of macrophages from an inflammatory M1 to a fibrotic M2 phenotype could help in diseases, such as chronic wounds, which are stalled in a prolonged and heightened inflammatory stage within the wound healing process. OBJECTIVE This study evaluates the efficiency of a pullulan/gelatin nanofiber scaffold loaded with retinoic acid (RA) and adipose-derived mesenchymal stem cells (ASCs) to modulate M1 to M2 anti-inflammatory transition. METHODS Scaffolds were fabricated by electrospinning, and crosslinked using ethylene glycol diglycidyl ether (EGDE). Exposure of RA and/or ASCs to cultured macrophages have been shown to promote M1 to M2 transition. Pullulan was chosen as a scaffold material due to its ability to quench reactive oxygen species, key signaling molecules that play an important role in the progression of inflammation, as well as for its excellent mechanical properties. Gelatin was chosen as an additional scaffold component due to the presence of cell-binding motifs and its biocompatibility. Scaffold compositions examined were 75:25 and 50:50, pullulan:gelatin. The scaffolds were crosslinked in 1:70 and 1:50 EGDE:EtOH. The scaffold composition was determined via FTIR. For the present study, the 75:25 pullulan:gelatin crosslinked with 1:70 EGDE:EtOH, forming nanofibers 328 ± 47.9 nm (mean ± SD) in diameter, was chosen as the scaffold composition due to its lower degradation and release rate, which allows a sustained delivery of RA. RESULTS The scaffold composition degraded to approximately 80% after 14 days, with approximately 38% of the drug released after 7 days. THP-1 monocytic cells were induced into a M1 macrophage phenotype through stimulation with lipopolysaccharide (LPS) and gamma interferon (IFN-γ). These M1 macrophages were the exposed to scaffolds loaded with RA and ASCs, to induce differentiation to an M2 phenotype. CONCLUSION Gene expression quantitation by qPCR showed a reduction of M1 biomarkers, tumor necrosis factor alpha (TNFα) and interleukin 1β (IL1β), and an increase of M2 biomarker CCL22 after 2 days of exposure, suggesting successful M1 to M2 transition.
Collapse
Affiliation(s)
- Kaivon D Assani
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Nasim Nosoudi
- Department of Biomedical Engineering, College of Engineering and Computer Sciences, Marshall University, Huntington, WV, USA
| | - Jaime E Ramirez-Vick
- Department of Biomedical, Industrial & Human Factors Engineering, Wright State University, Dayton, OH, USA
| | - Surinder P Singh
- CSIR-National Physical Laboratory, Dr. K. S. Krishanan Marg, New Delhi, India
| |
Collapse
|
4
|
Electrospun biopolymer material for antimicrobial function of fresh fruit and vegetables: Application perspective and challenges. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Moris H, Ghaee A, Karimi M, Nouri-Felekori M, Mashak A. Preparation and characterization of Pullulan-based nanocomposite scaffold incorporating Ag-Silica Janus particles for bone tissue engineering. BIOMATERIALS ADVANCES 2022; 135:212733. [PMID: 35929198 DOI: 10.1016/j.bioadv.2022.212733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
A nanocomposite bone scaffold was fabricated from pullulan, a natural extracellular polysaccharide. Pullulan (PULL) was blended with polyvinylpyrrolidone (PVP), and a nano-platform with ball-stick morphology, Ag-Silica Janus particles (Ag-Silica JPs), which were utilized to fabricate nanocomposite scaffold with enhanced mechanical and biological properties. The Ag-Silica JPs were synthesized via a one-step sol-gel method and used to obtain synergistic properties of silver and silica's antibacterial and bioactive effects, respectively. The synthesized Ag-Silica JPs were characterized by means of FE-SEM, DLS, and EDS. The PULL/PVP scaffolds containing Ag-Silica JPs, fabricated by the freeze-drying method, were evaluated by SEM, EDS, FTIR, XRD, ICP and biological analysis, including antibacterial activity, bioactivity, cell viability and cell culture tests. It was noted that increasing Ag-Silica JPs amounts to an optimum level (1% w/w) led to an improvement in compressive modulus and strength of nanocomposite scaffold, reaching 1.03 ± 0.48 MPa and 3.27 ± 0.18, respectively. Scaffolds incorporating Ag-Silica JPs also showed favorable antibacterial activity. The investigations through apatite forming ability of scaffolds in SBF indicated spherical apatite precipitates. Furthermore, the cell viability test proved the outstanding biocompatibility of nanocomposite scaffolds (more than 90%) confirmed by cell culture tests showing that increment of Ag-Silica JPs amounts led to better adhesion, proliferation, ALP activity and mineralization of MG-63 cells.
Collapse
Affiliation(s)
- Hanieh Moris
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran.
| | - Majid Karimi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Mohammad Nouri-Felekori
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Arezou Mashak
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran
| |
Collapse
|
6
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
7
|
Poudel D, Swilley-Sanchez S, O’keefe S, Matson J, Long T, Fernández-Fraguas C. Novel Electrospun Pullulan Fibers Incorporating Hydroxypropyl-β-Cyclodextrin: Morphology and Relation with Rheological Properties. Polymers (Basel) 2020; 12:E2558. [PMID: 33142774 PMCID: PMC7693914 DOI: 10.3390/polym12112558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Fibers produced by electrospinning from biocompatible, biodegradable and naturally occurring polymers have potential advantages in drug delivery and biomedical applications because of their unique functionalities. Here, electrospun submicron fibers were produced from mixtures containing an exopolysaccharide (pullulan) and a small molecule with hosting abilities, hydroxypropyl-β-cyclodextrin (HP-β-CD), thus serving as multi-functional blend. The procedure used water as sole solvent and excluded synthetic polymers. Rheological characterization was performed to evaluate the impact of HP-β-CD on pullulan entanglement concentration (CE); the relationship with electrospinnability and fiber morphology was investigated. Neat pullulan solutions required three times CE (~20% w/v pullulan) for effective electrospinning and formation of bead-free nanofibers. HP-β-CD (30% w/v) facilitated electrospinning, leading to the production of continuous, beadless fibers (average diameters: 853-1019 nm) at lower polymer concentrations than those required in neat pullulan systems, without significantly shifting the polymer CE. Rheological, Differential Scanning Calorimetry (DSC) and Dynamic Light Scattering (DLS) measurements suggested that electrospinnability improvement was due to HP-β-CD assisting in pullulan entanglement, probably acting as a crosslinker. Yet, the type of association was not clearly identified. This study shows that blending pullulan with HP-β-CD offers a platform to exploit the inherent properties and advantages of both components in encapsulation applications.
Collapse
Affiliation(s)
- Deepak Poudel
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.P.); (S.O.)
| | - Sarah Swilley-Sanchez
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (S.S.-S.); (J.M.); (T.L.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sean O’keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.P.); (S.O.)
| | - John Matson
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (S.S.-S.); (J.M.); (T.L.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Timothy Long
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (S.S.-S.); (J.M.); (T.L.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Cristina Fernández-Fraguas
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (D.P.); (S.O.)
- Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Iacob AT, Drăgan M, Ionescu OM, Profire L, Ficai A, Andronescu E, Confederat LG, Lupașcu D. An Overview of Biopolymeric Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management. Pharmaceutics 2020; 12:E983. [PMID: 33080849 PMCID: PMC7589858 DOI: 10.3390/pharmaceutics12100983] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, despite the thoroughgoing scientific research carried out in the area of wound healing management, the treatment of skin injuries, regardless of etiology remains a big provocation for health care professionals. An optimal wound dressing should be nontoxic, non-adherent, non-allergenic, should also maintain a humid medium at the wound interfacing, and be easily removed without trauma. For the development of functional and bioactive dressings, they must meet different conditions such as: The ability to remove excess exudates, to allow gaseous interchange, to behave as a barrier to microbes and to external physical or chemical aggressions, and at the same time to have the capacity of promoting the process of healing by stimulating other intricate processes such as differentiation, cell adhesion, and proliferation. Over the past several years, various types of wound dressings including hydrogels, hydrocolloids, films, foams, sponges, and micro/nanofibers have been formulated, and among them, the electrospun nanofibrous mats received an increased interest from researchers due to the numerous advantages and their intrinsic properties. The drug-embedded nanofibers are the potential candidates for wound dressing application by virtue of: Superior surface area-to volume ratio, enormous porosity (can allow oxy-permeability) or reticular nano-porosity (can inhibit the microorganisms'adhesion), structural similitude to the skin extracellular matrix, and progressive electrospinning methodology, which promotes a prolonged drug release. The reason that we chose to review the formulation of electrospun nanofibers based on polysaccharides as dressings useful in wound healing was based on the ever-growing research in this field, research that highlighted many advantages of the nanofibrillary network, but also a marked versatility in terms of numerous active substances that can be incorporated for rapid and infection-free tissue regeneration. In this review, we have extensively discussed the recent advancements performed on electrospun nanofibers (eNFs) formulation methodology as wound dressings, and we focused as well on the entrapment of different active biomolecules that have been incorporated on polysaccharides-based nanofibers, highlighting those bioagents capable of improving the healing process. In addition, in vivo tests performed to support their increased efficacy were also listed, and the advantages of the polysaccharide nanofiber-based wound dressings compared to the traditional ones were emphasized.
Collapse
Affiliation(s)
- Andreea-Teodora Iacob
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Maria Drăgan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Oana-Maria Ionescu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Lenuța Profire
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucuresti, Romania;
- Academy of Romanian Scientists, Ilfov st 3, 050085 Bucharest, Romania
| | - Luminița Georgeta Confederat
- Department of Preventive Medicine and Interdisciplinarity, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania;
| | - Dan Lupașcu
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700115 Iasi, Romania; (A.-T.I.); (M.D.); (O.-M.I.); (D.L.)
| |
Collapse
|
9
|
Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr Polym 2020; 247:116705. [PMID: 32829833 DOI: 10.1016/j.carbpol.2020.116705] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 12/29/2022]
Abstract
Electrospinning has garnered significant attention in view of its many advantages such as feasibility for various polymers, scalability required for mass production, and ease of processing. Extensive studies have been devoted to the use of electrospinning to fabricate various electrospun nanofibers derived from carbohydrate gum polymers in combination with synthetic polymers and/or additives of inorganic or organic materials with gums. In view of the versatility and the widespread choice of precursors that can be deployed for electrospinning, various gums from both, the plants and microbial-based gum carbohydrates are holistically and/or partially included in the electrospinning solution for the preparation of functional composite nanofibers. Moreover, our strategy encompasses a combination of natural gums with other polymers/inorganic or nanoparticles to ensue distinct properties. This early established milestone in functional carbohydrate gum polymer-based composite nanofibers may be deployed by specialized researchers in the field of nanoscience and technology, and especially for exploiting electrospinning of natural gums composites for diverse applications.
Collapse
|
10
|
Coltelli MB, Danti S, De Clerk K, Lazzeri A, Morganti P. Pullulan for Advanced Sustainable Body- and Skin-Contact Applications. J Funct Biomater 2020; 11:jfb11010020. [PMID: 32197310 PMCID: PMC7151585 DOI: 10.3390/jfb11010020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
The present review had the aim of describing the methodologies of synthesis and properties of biobased pullulan, a microbial polysaccharide investigated in the last decade because of its interesting potentialities in several applications. After describing the implications of pullulan in nano-technology, biodegradation, compatibility with body and skin, and sustainability, the current applications of pullulan are described, with the aim of assessing the potentialities of this biopolymer in the biomedical, personal care, and cosmetic sector, especially in applications in contact with skin.
Collapse
Affiliation(s)
- Maria-Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
- Correspondence: (M.-B.C.); (P.M.)
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
| | - Karen De Clerk
- Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Ghent University, Technologiepark 70A, 9052 Ghent, Belgium;
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy; (S.D.); (A.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Florence, Italy
| | - Pierfrancesco Morganti
- Department of Mental Health and Physics and Preventive Medicine, Unit of Dermatology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Academy of History of Health Care Art, 00193 Rome, Italy
- Correspondence: (M.-B.C.); (P.M.)
| |
Collapse
|
11
|
Zhang C, Li Y, Wang P, Zhang H. Electrospinning of nanofibers: Potentials and perspectives for active food packaging. Compr Rev Food Sci Food Saf 2020; 19:479-502. [DOI: 10.1111/1541-4337.12536] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/20/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cen Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Yang Li
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Peng Wang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
| | - Hui Zhang
- College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou China
- Zhejiang Key Laboratory for Agro‐Food ProcessingZhejiang University Hangzhou China
- Ningbo Research InstituteZhejiang University Ningbo China
| |
Collapse
|
12
|
Li N, Qian Y, Zhang Z, Wang Y, Lve L, Wei C. New Patent on Electrospinning for Increasing Rutin Loading in Nanofibers. RECENT PATENTS ON NANOTECHNOLOGY 2020; 14:35-41. [PMID: 31702520 DOI: 10.2174/1872210513666191107101326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The electrospinning and the bubble electrospinning provide facile ways for the fabrication of functional nanofibers by incorporating rutin/hydroxypropyl-β-cyclodextrin inclusion complex (RT/HP-β-CD-IC) in Polyvinyl Alcohol (PVA). Few patents on incorporation of rutin and cyclodextrin in nanofibers has been reported. OBJECTIVE The study aimed at increasing the loading amount of rutin in the electrospun nanofibers to obtain ultraviolet resistant property. METHODS Rutin was encapsulated in the cavity of RT/HP-β-CD and formed an inclusion complex. Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimeter (DSC) was used to verify the formation of inclusion complexes. RESULTS The results showed that the inclusion between rutin and HP-β-CD had been successfully formed. The surface morphologies of nanofibrous membranes were characterized by Scanning Electron Microscope (SEM), which indicated that adding RT/HP-β-CD inclusion complexes had little influence on the morphologies and diameters of the fibers. Ultraviolet resistant results also confirmed the inclusion complex had increased the loading amount in the final nanofibrous mats, and thus had good ultraviolet resistant properties. CONCLUSION The formed inclusion complexes had obviously enhanced the loading amount of rutin in electrospun PVA nanofibers, indicating that encapsulation of rutin in the cavity of HP-β-CD is a good way to increase the loading amount.
Collapse
Affiliation(s)
- Na Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yongfang Qian
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Zhen Zhang
- Sinomatech Membrane Material Company, Nanjing 211112, Jiangsu, China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Lihua Lve
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chunyan Wei
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
13
|
Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M. Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1874-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Román JT, Fuenmayor CA, Zuluaga Dominguez CM, Clavijo-Grimaldo D, Acosta M, García-Castañeda JE, Fierro-Medina R, Rivera-Monroy ZJ. Pullulan nanofibers containing the antimicrobial palindromic peptide LfcinB (21-25) Pal obtained via electrospinning. RSC Adv 2019; 9:20432-20438. [PMID: 35514725 PMCID: PMC9065569 DOI: 10.1039/c9ra03643a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/24/2019] [Indexed: 01/02/2023] Open
Abstract
Electrospinning technology is useful for making ultrafine drug-eluting fibers for the clinical treatment of wounds. We show the incorporation of an antimicrobial LfcinB-derived peptide into Pullulan nanofibers. The palindromic peptide LfcinB (21-25)Pal: RWQWRWQWR was synthesized, purified, and characterized by means of the RP-HPLC and MALDI-TOF MS methods. The peptide's antibacterial activity against the E. coli ATCC 25922 strain was evaluated, and the peptide LfcinB (20-25)Pal exhibited significant antibacterial activity. Nanofibers were obtained by electrospinning a Pullulan or Pullulan-LfcinB (21-25)Pal solution. The obtained nanofibers were characterized via microscopy (AFM and SEM) and RP-HPLC chromatography. The peptide incorporation efficiency was 31%. The Pullulan-LfcinB (21-25)Pal nanofibers were soluble in water, and the peptide was liberated immediately. The Pullulan-LfcinB (21-25)Pal nanofibers exhibited the same antibacterial activity against E. coli strain as the free peptide LfcinB (21-25)Pal. The results suggest that Pullulan-LfcinB (21-25)Pal nanofibers could be considered for designing and developing antibacterial wound dressings.
Collapse
Affiliation(s)
- Julieth Tatiana Román
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de alimentos (ICTA), Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia
| | - Carlos Mario Zuluaga Dominguez
- Agricultural Sciences Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia
| | - Dianney Clavijo-Grimaldo
- Medicine Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia
| | - Martha Acosta
- Servicio Nacional de Aprendizaje (SENA) Technopark Calle 54 No. 10-39 Zip code 110231 Bogotá Colombia
| | - Javier Eduardo García-Castañeda
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| | - Ricardo Fierro-Medina
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| | - Zuly Jenny Rivera-Monroy
- Science Faculty, Universidad Nacional de Colombia Av. carrera 30 no. 45-03 Bogotá Zip code 111321 Colombia +57 1 3165000 ext. 14436
| |
Collapse
|
15
|
Extremophilic exopolysaccharides: A review and new perspectives on engineering strategies and applications. Carbohydr Polym 2019; 205:8-26. [DOI: 10.1016/j.carbpol.2018.10.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
|
16
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
17
|
Li J, Wang W, Zhao L, Li S, Yang L, Huang Y. In situ
synthesis of PBO-α-(amino phthalocyanine copper) composite fiber with excellent UV-resistance and tensile strength. J Appl Polym Sci 2018. [DOI: 10.1002/app.46870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- J. Li
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
- State Key Laboratory of Urban Water Resource and Environment; Harbin Institute of Technology; Harbin China
| | - W. Wang
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - L. Zhao
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - S. Li
- Institute of Petrochemistry Heilongjiang, Academy of Sciences; Harbin China
| | - L. Yang
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
| | - Y. Huang
- School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin China
- State Key Laboratory of Urban Water Resource and Environment; Harbin Institute of Technology; Harbin China
| |
Collapse
|
18
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|
19
|
Subjalearndee N, Intasanta V. Mechanically robust, multifunctional and nanofibrous membranes for tuberculosis elimination. RSC Adv 2017. [DOI: 10.1039/c7ra08762d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanically robust and potent antibacterial membranes are fabricated for total elimination of water- and airborne tuberculosis (TB) bacteria.
Collapse
Affiliation(s)
- Nakarin Subjalearndee
- Nano Functional Textile Laboratory
- National Nanotechnology Center
- National Science and Technology Development Agency
- Pathumthani
- Thailand
| | - Varol Intasanta
- Nano Functional Textile Laboratory
- National Nanotechnology Center
- National Science and Technology Development Agency
- Pathumthani
- Thailand
| |
Collapse
|