1
|
Kaur G, Bhari R, Kumar K. Nanobiosensors and their role in detection of adulterants and contaminants in food products. Crit Rev Biotechnol 2024; 44:547-561. [PMID: 36842973 DOI: 10.1080/07388551.2023.2175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 02/28/2023]
Abstract
Nanotechnology is a multifaceted technical and scientific field undergoing a fast expansion. Nanoparticles, quantum dots, nanotubes, nanorods, nanowires, nanochips and many more are being increasingly used for fabrication of nanosensors and nanobiosensors to increase the sensitivity and selectivity of reactions. Food safety is an extremely important concern in food industries since it is directly associated with effect of food on human health. Here in our review, we have not only described the newest information regarding methods and use of nanomaterials for construction of nanosensors but also their detection range, limit of detection (LOD) and applications for food safety. Precise nanosensors having improved sensitivity and low limit of detection were discussed in brief. Review is primarily focused on nanosensors employed for detection of adulterants and contaminants in food products such as meat products, milk, fruit juices and water samples.
Collapse
Affiliation(s)
- Gurlovleen Kaur
- Department of Biotechnology and Food Technology, M. M. Modi College, Patiala, Punjab, India
- Department of Biotechnology and Food Technology, Punjabi University, Patiala, Punjab, India
| | - Ranjeeta Bhari
- Department of Biotechnology and Food Technology, Punjabi University, Patiala, Punjab, India
| | - Kuldeep Kumar
- Department of Biotechnology and Food Technology, M. M. Modi College, Patiala, Punjab, India
| |
Collapse
|
2
|
Güneş M, Aktaş K, Yalçın B, Burgazlı AY, Asilturk M, Ünşar AE, Kaya B. In vivo assessment of the toxic impact of exposure to magnetic iron oxide nanoparticles (IONPs) using Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104412. [PMID: 38492762 DOI: 10.1016/j.etap.2024.104412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Iron oxide nanoparticles (IONPs) have useful properties, such as strong magnetism and compatibility with living organisms which is preferable for medical applications such as drug delivery and imaging. However, increasing use of these materials, especially in medicine, has raised concerns regarding potential risks to human health. In this study, IONPs were coated with silicon dioxide (SiO2), citric acid (CA), and polyethylenimine (PEI) to enhance their dispersion and biocompatibility. Both coated and uncoated IONPs were assessed for genotoxic effects on Drosophila melanogaster. Results showed that uncoated IONPs induced genotoxic effects, including mutations and recombinations, while the coated IONPs demonstrated reduced or negligible genotoxicity. Additionally, bioinformatic analyses highlighted potential implications of induced recombination in various cancer types, underscoring the importance of understanding nanoparticle-induced genomic instability. This study highlights the importance of nanoparticle coatings in reducing potential genotoxic effects and emphasizes the necessity for comprehensive toxicity assessments in nanomaterial research.
Collapse
Affiliation(s)
- Merve Güneş
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey.
| | - Kemal Aktaş
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| | | | - Meltem Asilturk
- Department of Material Science and Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Ayca Erdem Ünşar
- Department of Environmental Engineering, Faculty of Engineering, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Department of Biology, Faculty of Sciences, Akdeniz University, Antalya, Turkey
| |
Collapse
|
3
|
Gutierrez FV, Lima IS, De Falco A, Ereias BM, Baffa O, Diego de Abreu Lima C, Morais Sinimbu LI, de la Presa P, Luz-Lima C, Damasceno Felix Araujo JF. The effect of temperature on the synthesis of magnetite nanoparticles by the coprecipitation method. Heliyon 2024; 10:e25781. [PMID: 38390158 PMCID: PMC10881852 DOI: 10.1016/j.heliyon.2024.e25781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Magnetic nanoparticles, such as magnetite (Fe3O4), exhibit superparamagnetic properties below 15 nm at room temperature. They are being explored for medical applications, and the coprecipitation technique is preferred for cost-effective production. This study investigates the impact of synthesis temperature on the nanoparticles' physicochemical characteristics. Two types of magnetic analysis were conducted. Samples T 40, T 50, and T 60 displayed superparamagnetic behavior, as evidenced by the magnetization curves. The experiments verified the development of magnetic nanoparticles with an average diameter of approximately dozens of nanometers, as determined by various measurement methods such as XDR, Raman, and TEM. Raman spectroscopy showed the characteristic bands of the magnetite phase at 319, 364, 499, and 680 cm-1. This was confirmed in the second analysis with the ZFC-FC curves, which showed that the samples' blocking temperatures were below ambient temperature. ZFC-FC curves revealed a similar magnetization of about 30 emu/g when applying a magnetic field of 5 kOe.
Collapse
Affiliation(s)
- Frederico Vieira Gutierrez
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Iara Souza Lima
- Physics Department, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-91, SP, Brazil
| | - Anna De Falco
- Chemistry Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Beatriz Marques Ereias
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Oswaldo Baffa
- Physics Department, FFCLRP, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-91, SP, Brazil
| | - Caique Diego de Abreu Lima
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Lanna Isabely Morais Sinimbu
- Physics Department, Pontifical Catholic University of Rio de Janeiro, Rua Marques de São Vicente, 22451-900, Rio de Janeiro, Brazil
| | - Patricia de la Presa
- Institute of Applied Magnetism, UCM-ADIF-CSIC, A6 22,500km, 28230, Las Rozas, Spain
- Material Physics Department, UCM, Ciudad Universitaria, 28040, Madrid, Spain
| | - Cleanio Luz-Lima
- Physics Department, Federal University of Piauí, 64.049-550, Teresina, PI, Brazil
| | | |
Collapse
|
4
|
Hasan GG, Laouini SE, Khelef A, Mohammed HA, Althamthami M, Meneceur S, Alharthi F, Alshareef SA, Menaa F. Efficient treatment of oily wastewater, antibacterial activity, and photodegradation of organic dyes using biosynthesized Ag@Fe 3O 4 nanocomposite. Bioprocess Biosyst Eng 2024; 47:75-90. [PMID: 38081951 DOI: 10.1007/s00449-023-02946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/09/2023] [Indexed: 01/10/2024]
Abstract
A significant waste (e.g., high oil content and pollutants such as heavy metals, dyes, and microbial contaminants) in water is generated during crude oil extraction and industrial processes, which poses environmental challenges. This study explores the potential of Ag@Fe3O4 nanocomposite (NC) biosynthesized using the aqueous leaf extract of Laurus nobilis for the treatment of oily wastewater. The NC was characterized using ultraviolet-visible (UV-Vis) spectrophotometry, Scanning Electron Microscopy (SEM), Fourier Transformed Infrared (FTIR) and X-Ray Diffraction (XRD) spectroscopies. The crystalline structure of the NC was determined to be face-centered cubic with an average size of 42 nm. Ag@Fe3O4 NC exhibited significant degradation (96.8%, 90.1%, and 93.8%) of Rose Bengal (RB), Methylene Blue (MB), and Toluidine Blue (TB), respectively, through a reduction reaction lasting 120 min at a dye concentration of 10 mg/L. The observed reaction kinetics followed a pseudo-first-order model, with rate constants (k-values) of 0.0284 min-1, 0.0189 min-1, and 0.0212 min-1 for RB, MB, and TB, respectively. The fast degradation rate can be attributed to the low band gap (1.9 eV) of Ag@Fe3O4 NC. The NC elicited an impressive effectiveness (99-100%, 98.0%, and 91.8% within 30 min) in removing, under sunlight irradiation, several heavy metals, total petroleum hydrocarbons (TPH), and total suspended solids (TSS) from the oily water samples. Furthermore, Ag@Fe3O4 NC displayed potent antibacterial properties and a good biocompatibility. These findings contribute to the development of efficient and cost-effective methods for wastewater treatment and environmental remediation.
Collapse
Affiliation(s)
- Gamil Gamal Hasan
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria.
- Laboratory of Valorization and Technology of Sahara Resources (VTRS), El Oued University, 39000, El Oued, Algeria.
| | - Salah Eddine Laouini
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Abdelhamid Khelef
- Laboratory of Valorization and Technology of Sahara Resources (VTRS), El Oued University, 39000, El Oued, Algeria
| | - Hamdi Ali Mohammed
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria
- Laboratory of Biotechnology Biomaterials and Condensed Matter, Faculty of Technology, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Althamthami
- Department of Process Engineering, College of Science and Technology, Biskra University, 07000, Biskra, Algeria
| | - Souhaila Meneceur
- Department of Process Engineering, Faculty of Technology, El Oued University, 39000, El Oued, Algeria
| | - Fahad Alharthi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Sohad A Alshareef
- Department of Chemistry, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), Fluorotronics, Inc. - California Innovations Corporation, San Diego, CA, 92037, USA.
| |
Collapse
|
5
|
Calatayud DG, Lledos M, Casarsa F, Pascu SI. Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors. ACS BIO & MED CHEM AU 2023; 3:389-417. [PMID: 37876497 PMCID: PMC10591303 DOI: 10.1021/acsbiomedchemau.3c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Nanotechnology advances have the potential to assist toward the earlier detection of diseases, giving increased accuracy for diagnosis and helping to personalize treatments, especially in the case of noncommunicative diseases (NCDs) such as cancer. The main advantage of nanoparticles, the scaffolds underpinning nanomedicine, is their potential to present multifunctionality: synthetic nanoplatforms for nanomedicines can be tailored to support a range of biomedical imaging modalities of relevance for clinical practice, such as, for example, optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). A single nanoparticle has the potential to incorporate myriads of contrast agent units or imaging tracers, encapsulate, and/or be conjugated to different combinations of imaging tags, thus providing the means for multimodality diagnostic methods. These arrangements have been shown to provide significant improvements to the signal-to-noise ratios that may be obtained by molecular imaging techniques, for example, in PET diagnostic imaging with nanomaterials versus the cases when molecular species are involved as radiotracers. We surveyed some of the main discoveries in the simultaneous incorporation of nanoparticulate materials and imaging agents within highly kinetically stable radio-nanomaterials as potential tracers with (pre)clinical potential. Diversity in function and new developments toward synthesis, radiolabeling, and microscopy investigations are explored, and preclinical applications in molecular imaging are highlighted. The emphasis is on the biocompatible materials at the forefront of the main preclinical developments, e.g., nanoceramics and liposome-based constructs, which have driven the evolution of diagnostic radio-nanomedicines over the past decade.
Collapse
Affiliation(s)
- David G. Calatayud
- Department
of Inorganic Chemistry, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Department
of Electroceramics, Instituto de Cerámica
y Vidrio, Madrid 28049, Spain
| | - Marina Lledos
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Federico Casarsa
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Sofia I. Pascu
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- Centre
of Therapeutic Innovations, University of
Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
6
|
Shahzad A, Khan IA, Manzoor A, Kashif M, Ahsan M, He M, Razzokov J. Synthesis of nickel nanowires (Ni-NWs) as high ferromagnetic material by electrodeposition technique. Heliyon 2023; 9:e12576. [PMID: 36699268 PMCID: PMC9868378 DOI: 10.1016/j.heliyon.2022.e12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
Metallic nanowires (NWs) and their different compounds display incredible prospects for their use in various applications including media storage, sensor and solar cell devices along with the biological drug delivery systems. In this research work, the metallic NWs like nickel nanowires (Ni-NWs) are synthesized successfully by employing electrodeposition process. Anodic aluminum oxide (AAO) templates are employed as a platform with copper metal coating which acts as an active cathode. The synthesized Ni-NWs are examined through various characterization techniques including X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer (VSM) to study the crystal structure, surface morphology and magnetic properties, respectively. The XRD analysis shows the development of various diffraction planes like Ni (111), Ni (200), Ni (220) which confirms the formation of polycrystalline nickel NWs. The SEM analysis reveals that the range of diameter and length of nickel NWs are found to be ∼160 to 200 and ∼4 to 11 micron respectively showing high aspect ratio (ranged from ∼200 to 300). The ferromagnetic behavior of Ni-NWs is confirmed by the hysteresis loop carried out for parallel and perpendicular configurations having Hc = 100 and 206 Oe, respectively. The obtained results suggest that the synthesized Ni- NWs may be used for high-density media storage devices.
Collapse
Affiliation(s)
- Aamir Shahzad
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Ijaz Ahmad Khan
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Alina Manzoor
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Muhammad Kashif
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Muhammad Ahsan
- Department of Physics, Government College University Faisalabad (GCUF), Allama Iqbal Road, Faisalabad 38040, Pakistan
| | - Maogang He
- Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education (MOE), Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied Research, National Research University TIIAME, Kori Niyoziy 39, 100000 Tashkent, Uzbekistan
| |
Collapse
|
7
|
Bhatkalkar SG, Kumar D, Ali A, Sachar S. Influence of surfactants on biomolecular conjugation of magnetic nanoparticles. J Biomol Struct Dyn 2022; 40:12895-12907. [PMID: 34542389 DOI: 10.1080/07391102.2021.1977701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we report the physicochemical interaction among iron oxide nanoparticles (MNPs) and essential biomolecules, namely, serum albumin (BSA, HSA), collagen and deoxyribonucleic acid (DNA) in the presence of various cationic, anionic and non-ionic surfactants. Iron oxide nanoparticles are synthesized by the wet chemical process and are characterized by X-ray powder diffraction analysis (XRD), Fourier transform infrared spectroscopic, UV-Vis spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy mapping studies . The conjugation of MNPs protein was analyzed using UV-Vis spectroscopy, fluorescence spectroscopy, circular dichroism technique and gel electrophoresis. The spectroscopic investigation illustrates the surfactant-dependent binding between MNPs and protein. Gel electrophoresis in the absence and presence of MNPs-surfactant systems has been used to study the impact on DNA structure. It was found that Tween 80 imparts better stability as well as biocompatibility to the synthesized MNPs. The findings offer extensive information on the influence of various surfactant coatings on MNP surfaces and their influence on vital biomolecules, making it useful for designing MNPs for biological applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Mumbai, India
| | - Shilpee Sachar
- Department of Chemistry, University of Mumbai, Vidyanagari, Mumbai, India
| |
Collapse
|
8
|
da Silva Junior AG, Frias IAM, Lima-Neto RG, Franco OL, Oliveira MDL, Andrade CAS. Electrochemical detection of gram-negative bacteria through mastoparan-capped magnetic nanoparticle. Enzyme Microb Technol 2022; 160:110088. [PMID: 35777193 DOI: 10.1016/j.enzmictec.2022.110088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 12/29/2022]
Abstract
The increasing number of multidrug resistance microorganisms is an alarming threat, and their rapid detection is essential to prevent nosocomial, foodborne, or waterborne infections. Many peptides derived from the venom of wasp Synoeca surinama have antimicrobial activity against Gram-positive and Gram-negative bacteria. Synoeca-MP, an antimicrobial peptide (AMP) from mastoparan family, seems to increase bacterial membrane permeability, promoting cytotoxicity and membrane disruption. Here Synoeca-MP was evaluated as biorecognition element tethered over chitosan-coated magnetic nanoparticles (Fe3O4-Chit). The transducing layer of the biosensor was developed from the self-assembling of 4-mercaptobenzoic acid (4-MBA) monolayer onto gold substrate. Atomic force microscopy (AFM) analyses confirmed the biointeraction between AMP and different pathogens membranes. The fabrication and performance of the biosensing assembly were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Detection of Enterococcus faecalis (G+), Klebsiella pneumoniae (G-), Pseudomonas aeruginosa (G-), and Candida tropicalis was assessed in a recognition range from 101 to 105 CFU.mL-1. An instrumental limit of detection of 10 CFU.mL-1 was obtained for each specimen. However, the device presented a preferential selectivity towards Gram-negative bacteria. The proposed biosensor is a sensitive, fast, and straightforward platform for microbial detection in aqueous samples, envisaged for environmental monitoring applications.
Collapse
Affiliation(s)
- Alberto G da Silva Junior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Isaac A M Frias
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Reginaldo G Lima-Neto
- Centro de Ciências da Saúde, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Octávio L Franco
- Centro de Análises Proteômicas e Bioquímicas de Brasília, Pos-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; S-Inova Biotech, Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, MS, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
9
|
Magnetic Nanoparticle-Based Electrochemical Sensing Platform Using Ferrocene-Labelled Peptide Nucleic Acid for the Early Diagnosis of Colorectal Cancer. BIOSENSORS 2022; 12:bios12090736. [PMID: 36140121 PMCID: PMC9496070 DOI: 10.3390/bios12090736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diagnostic biomarkers based on epigenetic changes such as DNA methylation are promising tools for early cancer diagnosis. However, there are significant difficulties in directly and specifically detecting methylated DNA regions. Here, we report an electrochemical sensing system based on magnetic nanoparticles that enable a quantitative and selective analysis of the methylated septin9 (mSEPT9) gene, which is considered a diagnostic marker in early stage colorectal cancer (CRC). Methylation levels of SEPT9 in CRC samples were successfully followed by the selective recognition ability of a related peptide nucleic acid (PNA) after hybridization with DNA fragments in human patients’ serums and plasma (n = 10). Moreover, this system was also adapted into a point-of-care (POC) device for a one-step detection platform. The detection of mSEPT9 demonstrated a limit of detection (LOD) value of 0.37% and interference-free measurement in the presence of branched-chain amino acid transaminase 1 (BCAT1) and SRY box transcription factor 21 antisense divergent transcript 1 (SOX21-AS1). The currently proposed functional platform has substantial prospects in translational applications of early CRC detection.
Collapse
|
10
|
Blend of neem oil based polyesteramide as magnetic nanofiber mat for efficient cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
da Silva-Junio AG, Frias IAM, Lima-Neto RG, Migliolo L, E Silva PS, Oliveira MDL, Andrade CAS. Electrochemical biosensor based on Temporin-PTA peptide for detection of microorganisms. J Pharm Biomed Anal 2022; 216:114788. [PMID: 35525110 DOI: 10.1016/j.jpba.2022.114788] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022]
Abstract
Bacterial and fungal infections are challenging due to their low susceptibility and resistance to antimicrobial drugs. For this reason, antimicrobial peptides (AMP) emerge as excellent alternatives to overcome these problems. At the same time, their active insertion into the cell wall of microorganisms can be availed for biorecognition applications in biosensing platforms. Temporin-PTA (T-PTA) is an AMP found in the skin secretions of the Malaysian fire frog Hylarana picturata, which presents antibacterial activity against MRSA, Escherichia coli, and Bacillus subtilis. In this work, T-PTA was explored as an innovative sensing layer aiming for the electrochemical differentiation of Klebsiella pneumoniae, Acinetobacter baumannii, Bacillus subtilis, Enterococcus faecalis, Candida albicans, and C. tropicalis based on the structural differences of their membranes. The biosensor was analyzed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). In this approach, the different structural features of each microorganism resulted in different adherence degrees and, therefore, different electrochemical responses. The transducing layer was fabricated by the self-assembling of a 4-mercaptobenzoic acid (MBA) monolayer and gold-capped magnetic nanoparticles (Fe3O4@Au) implemented to improve the electrical signal of the biointeraction. We found that each interaction, expressed in variations of electron transfer resistance and anodic peak current, demonstrated a singular response from which the platform can discriminate all different microorganisms. We found expressive sensitivity towards Gram-negative species, especially K. pneumoniae. A detection limit of 101 CFU.mL-1 and a linear range of 101 to 105 CFU.mL-1 were obtained. The T-PTA biosensor platform is a promising and effective tool for microbial identification.
Collapse
Affiliation(s)
- Alberto G da Silva-Junio
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Isaac A M Frias
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Reginaldo G Lima-Neto
- Centro de Ciências da Saúde, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil
| | - Patrícia S E Silva
- S-Inova Biotech, Programa de Pos-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil.
| |
Collapse
|
12
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
13
|
Metallurgical Wastes as Resources for Sustainability of the Steel Industry. SUSTAINABILITY 2022. [DOI: 10.3390/su14095488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The industrial pollution caused by metallurgical waste accumulation has a negative impact on the three environmental factors: soil, air and water. Therefore, the correct management of these wastes would lead to: protection of the environmental factors, the saving of natural resources and sustainability of the steel industry. The purpose of this paper is to assess the chemical and mineralogical compositions of metallurgical wastes landfilled in the Păgida slag dump (Alba County, Romania), for sustainability of the steel industry and metal conservation. The chemical compositions of the two waste samples were analyzed by the XRF (X-ray fluorescence) technique. According to the chemical characterization, magnesium oxide (MgO) has potential to be used as an additional and raw material in the cement industry. The presence of oxides such as CaO, SiO2 FeO and Al2O3 in the compositions of the metallurgical waste samples indicate that they have the potential for use as clinker materials in cement production. The iron and manganese contents from metallurgical wastes can be reused in the iron and steel industry. The presence of V2O5 and TiO2 is connected with the making of stainless steel, and for this reason they have the potential to be reused in the stainless steel industry. The predominant chemical compounds are SiO2, Fetotal, Cao and MgO. The mineralogical compositions were analyzed by the XRD (X-ray diffraction) technique. The mineralogical compounds presenting reuse potential in different domains are Fayalite, Magnetite, Magnesioferrite and Periclase. The mineralogical compounds from metallurgical wastes can be reused as: raw and/or additional materials in the process from which they originate (steelmaking); raw and/or additional materials in road construction and concrete production; pigments in paints; micronutrients in fertilizers; ore of iron, etc. Then, the theoretical assessments of the recovery potentials of the metals were estimated for slag dumps. Copper (Cu), vanadium (V), molybdenum (Mo) and nickel (Ni) have high recovery potential. The total economic value of the recovery potential of metals from slag dumps was assessed to be USD 1175.7440 million.
Collapse
|
14
|
An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications. METALS 2022. [DOI: 10.3390/met12040605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several developments have recently emerged for core-shell magnetic nanomaterials, indicating that they are suitable materials for biomedical applications. Their usage in hyperthermia and drug delivery applications has escalated since the use of shell materials and has several beneficial effects for the treatment in question. The shell can protect the magnetic core from oxidation and provide biocompatibility for many materials. Yet, the synthesis of the core-shell materials is a multifaceted challenge as it involves several steps and parallel processes. Although reviews on magnetic core-shell nanoparticles exist, there is a lack of literature that compares the size and shape of magnetic core-shell nanomaterials synthesized via various methods. Therefore, this review outlines the primary synthetic routes for magnetic core-shell nanoparticles, along with the recent advances in magnetic core-shell nanomaterials. As core-shell nanoparticles have been proposed among others as therapeutic nanocarriers, their potential applications in hyperthermia drug delivery are discussed.
Collapse
|
15
|
Escobar A, Reis RL, Oliveira JM. Nanoparticles for neurotrophic factor delivery in nerve guidance conduits for peripheral nerve repair. Nanomedicine (Lond) 2022; 17:477-494. [DOI: 10.2217/nnm-2021-0413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries are a major source of disabilities, and treatment of long nerve gap autografts is the gold standard. However, due to poor availability and donor-site morbidity, research is directed towards the development of regenerative strategies based on the use of artificial nerve guidance conduits (NGCs). Several properties and characteristics of the NGCs can be fine-tuned, such as the architecture of the conduit, the surface topography and the addition of bioactive molecules and cells to speed up nerve regeneration. In this review, US FDA-approved NGCs are described. The recent works, in which polymeric, magnetic, silica-based and lipidic NPs are employed to introduce growth factors (GFs) to NGCs, are overviewed and discussed in depth herein.
Collapse
Affiliation(s)
- Ane Escobar
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables & Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco GMR, 4805-017, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
16
|
High-Moment FeCo Magnetic Nanoparticles Obtained by Topochemical H2 Reduction of Co-Ferrites. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cobalt ferrite nanoparticles of different stoichiometries synthesized by a sol–gel autocombustion method were used as a starting material to obtain high-moment Fe50Co50 and Fe66Co34 metal nanoparticles by topochemical hydrogen reduction. Structural and magnetic investigations confirmed the formation of FeCo nanoparticles with crystallite sizes of about 30 nm and magnetization at 0.5 T of ~265 Am2/kg (0 K), which was larger than the expected bulk value, likely because of the incorporation in the body-centered cubic (bcc) FeCo structure of the residual C atoms present on the surface of the oxide particles. Temperature-dependent magnetization measurements in the H2 atmosphere were also performed to investigate in detail the reduction mechanism and the effect of an external magnetic field on the process efficiency.
Collapse
|
17
|
|
18
|
Abstract
Magnetic nanoparticles (MNPs) have great potential in biochemistry and medical science. In particular, iron oxide nanoparticles have demonstrated a promising effect in various biomedical applications due to their high magnetic properties, large surface area, stability, and easy functionalization. However, colloidal stability, biocompatibility, and potential toxicity of MNPs in physiological environments are crucial for their in vivo application. In this context, many research articles focused on the possible procedures for MNPs coating to improve their physic-chemical and biological properties. This review highlights one viable fabrication strategy of biocompatible iron oxide nanoparticles using human serum albumin (HSA). HSA is mainly a transport protein with many functions in various fundamental processes. As it is one of the most abundant plasma proteins, not a single drug in the blood passes without its strength test. It influences the stability, pharmacokinetics, and biodistribution of different drug-delivery systems by binding or forming its protein corona on the surface. The development of albumin-based drug carriers is gaining increasing importance in the targeted delivery of cancer therapy. Considering this, HSA is a highly potential candidate for nanoparticles coating and theranostics area and can provide biocompatibility, prolonged blood circulation, and possibly resolve the drug-resistance cancer problem.
Collapse
|
19
|
Massana Roquero D, Smutok O, Othman A, Melman A, Katz E. "Smart" Delivery of Monoclonal Antibodies from a Magnetic Responsive Microgel Nanocomposite. ACS APPLIED BIO MATERIALS 2021; 4:8487-8497. [PMID: 35005932 DOI: 10.1021/acsabm.1c00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
"Smart" drug-delivery systems have significant potential to increase therapeutic efficiency, avoid undesired immune responses, and minimize drug side effects. Herein, we report on an innovative strategy to control the drug release process using two magneto-activated materials operating in the system. One of them, a polyvinyl alcohol (PVA)-diboronate (DB)-interpenetrated (IPN) alginate (Alg) microgel nanocomposite (PVA-DB-IPN-Alg) loaded with magnetic nanoparticles (MNPs), is acting as a drug-delivery system. The drugs or model (bio)molecules are loaded in the PVA-DB-IPN-Alg and then released upon receiving a magnetic signal. Another component of the system is represented with the MNPs functionalized with the glucose oxidase (GOx) enzyme, GOx-MNPs. The immobilized GOx biocatalytically produces H2O2 in the presence of glucose and oxygen, while the PVA-DB-IPN-Alg is decomposed/dissolved by reacting with H2O2. In the absence of a magnet, the biocatalytically produced H2O2 was mostly decomposed by the catalase enzyme present in the solution, thus not reaching the alginate microgel. Upon aggregation of these two types of particles induced by a magnet, the GOx-MNPs produced H2O2 in situ increasing locally its concentration, degrading the PVA-DB-IPN, thus opening pores in the alginate hydrogel resulting in a faster release of the entrapped payload. The release of the payload was confirmed in physiological complex environments, exemplified with human serum, demonstrating the stability and functionality of the materials in biological fluids. The release rate was strongly dependent on the concentration of catalase but not dependent on glucose concentration. The magneto-induced release process was confirmed for the small model protein payload, such as bovine serum albumin (BSA), as well as the trastuzumab monoclonal antibody (TmAb). For the latter, the release rate was up to 3.3 times higher in the presence of the magnet than in the absence of it in the human serum. We expect that the drug-delivery concept developed by these materials can find useful applications in the emerging field of "smart" materials in immunotherapy.
Collapse
Affiliation(s)
- Daniel Massana Roquero
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Ali Othman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
20
|
Affiliation(s)
- Prateek Rai
- Amity Institute of Applied Sciences, Amity University, Noida, India
| | - Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University, Noida, India
| |
Collapse
|
21
|
Bustamante-Torres M, Romero-Fierro D, Arcentales-Vera B, Pardo S, Bucio E. Interaction between Filler and Polymeric Matrix in Nanocomposites: Magnetic Approach and Applications. Polymers (Basel) 2021; 13:2998. [PMID: 34503038 PMCID: PMC8434030 DOI: 10.3390/polym13172998] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
In recent years, polymer nanocomposites produced by combining nanofillers and a polymeric matrix are emerging as interesting materials. Polymeric composites have a wide range of applications due to the outstanding and enhanced properties that are obtained thanks to the introduction of nanoparticles. Therefore, understanding the filler-matrix relationship is an important factor in the continued growth of this scientific area and the development of new materials with desired properties and specific applications. Due to their performance in response to a magnetic field magnetic nanocomposites represent an important class of functional nanocomposites. Due to their properties, magnetic nanocomposites have found numerous applications in biomedical applications such as drug delivery, theranostics, etc. This article aims to provide an overview of the filler-polymeric matrix relationship, with a special focus on magnetic nanocomposites and their potential applications in the biomedical field.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Belén Arcentales-Vera
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí 100650, Ecuador;
| | - Samantha Pardo
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| | - Emilio Bucio
- Facultad de Ciencias de la Vida, Universidad Politécnica Salesiana, Quito 170702, Ecuador;
| |
Collapse
|
22
|
Magnetic Characterization by Scanning Microscopy of Functionalized Iron Oxide Nanoparticles. NANOMATERIALS 2021; 11:nano11092197. [PMID: 34578513 PMCID: PMC8468937 DOI: 10.3390/nano11092197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
This study aimed to systematically understand the magnetic properties of magnetite (Fe3O4) nanoparticles functionalized with different Pluronic F-127 surfactant concentrations (Fe3O4@Pluronic F-127) obtained by using an improved magnetic characterization method based on three-dimensional magnetic maps generated by scanning magnetic microscopy. Additionally, these Fe3O4 and Fe3O4@Pluronic F-127 nanoparticles, as promising systems for biomedical applications, were prepared by a wet chemical reaction. The magnetization curve was obtained through these three-dimensional maps, confirming that both Fe3O4 and Fe3O4@Pluronic F-127 nanoparticles have a superparamagnetic behavior. The as-prepared samples, stored at approximately 20 °C, showed no change in the magnetization curve even months after their generation, resulting in no nanoparticles free from oxidation, as Raman measurements have confirmed. Furthermore, by applying this magnetic technique, it was possible to estimate that the nanoparticles' magnetic core diameter was about 5 nm. Our results were confirmed by comparison with other techniques, namely as transmission electron microscopy imaging and diffraction together with Raman spectroscopy. Finally, these results, in addition to validating scanning magnetic microscopy, also highlight its potential for a detailed magnetic characterization of nanoparticles.
Collapse
|
23
|
da Silva Junior AG, Frias IAM, Lima-Neto RG, Sá SR, Oliveira MDL, Andrade CAS. Concanavalin A differentiates gram-positive bacteria through hierarchized nanostructured transducer. Microbiol Res 2021; 251:126834. [PMID: 34364021 DOI: 10.1016/j.micres.2021.126834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
Biosensors are pre-prepared diagnostic devices composed of at least one biological probe. These devices are envisaged for the practical identification of specific targets of microbiological interest. In recent years, the use of narrow-specific probes such as lectins has been proven to distinguish bacteria and glycoproteins based on their superficial glycomic pattern. For instance, Concanavalin A is a carbohydrate-binding lectin indicated as a narrow-specific biological probe for Gram-negative bacteria. As a drawback, Gram-positive bacteria are frequently overlooked from lectin-based biosensing studies because their identification results in low resolution and overlapped signals. In this work, the authors explore the effect that platform nanostructuration has over the electrochemical response of ConA-based platforms constructed for bacterial detection; one is formed of chitosan-capped magnetic nanoparticles, and another is composed of gold nanoparticle-decorated magnetic nanoparticles. The biosensing platforms were characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) as a function of bacterial concentration. Our results show that probe-target interaction causes variations in the electrical responses of nanostructured transducers. Moreover, the association of gold nanoparticles to magnetic nanoparticles resulted in an electrical enhancement capable of overcoming low resolution and overlapping Gram-positive identification. Both platforms attained a limit of detection of 10 ° CFU mL-1, which is useful for water analyses and sanitation concerns, where low CFU mL-1 are always expected. Although both platforms were able to detect Gram-negative bacteria, Gram-positives were only correctly differentiated by the gold nanoparticle-decorated magnetic nanoparticles, thus demonstrating the positive influence of hierarchically nanostructured platforms.
Collapse
Affiliation(s)
- Alberto G da Silva Junior
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Isaac A M Frias
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Reginaldo G Lima-Neto
- Centro de Ciências da Saúde, Departamento de Medicina Tropical, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Sandra R Sá
- Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Laboratório de Biodispositivos Nanoestruturados, Departamento de Bioquímica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
24
|
Stancu V, Galatanu A, Enculescu M, Onea M, Popescu B, Palade P, Aradoaie M, Ciobanu R, Pintilie L. Influences of Dispersions' Shapes and Processing in Magnetic Field on Thermal Conductibility of PDMS-Fe 3O 4 Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3696. [PMID: 34279266 PMCID: PMC8269840 DOI: 10.3390/ma14133696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
Composites of magnetite (Fe3O4) nanoparticles dispersed in a polydimethylsiloxane (PDMS) matrix were prepared by a molding process. Two types of samples were obtained by free polymerization with randomly dispersed particles and by polymerization in an applied magnetic field. The magnetite nanoparticles were obtained from magnetic micrograins of acicular goethite (α-FeOOH) and spherical hematite (α-Fe2O3), as demonstrated by XRD measurements. The evaluation of morphological and compositional properties of the PDMS:Fe3O4 composites, performed by SEM and EDX, showed that the magnetic particles were uniformly distributed in the polymer matrix. Addition of magnetic dispersions promotes an increase of thermal conductivity compared with pristine PDMS, while further orienting the powders in a magnetic field during the polymerization process induces a decrease of the thermal conductivity compared with the un-oriented samples. The shape of the magnetic dispersions is an important factor, acicular dispersions providing a higher value for thermal conductivity compared with classic commercial powders with almost spherical shapes.
Collapse
Affiliation(s)
- V Stancu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - A Galatanu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - M Enculescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - M Onea
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - B Popescu
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - P Palade
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | - M Aradoaie
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering, Technical University Gh. Asachi Iasi, Boulevard Profesor Dimitrie Mangeron 67, 70050 Iasi, Romania
| | - R Ciobanu
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering, Technical University Gh. Asachi Iasi, Boulevard Profesor Dimitrie Mangeron 67, 70050 Iasi, Romania
- All Green SRL, 8 G. Cosbuc Street, 700470 Iasi, Romania
| | - L Pintilie
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| |
Collapse
|
25
|
Mamonov E, Kolmychek I, Radovskaya V, Pashen’kin I, Gusev N, Maydykovskiy A, Temiryazeva M, Temiryazev A, Murzina T. Interface Driven Effects in Magnetization-Induced Optical Second Harmonic Generation in Layered Films Composed of Ferromagnetic and Heavy Metals. MATERIALS 2021; 14:ma14133573. [PMID: 34206723 PMCID: PMC8269653 DOI: 10.3390/ma14133573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/05/2022]
Abstract
Properties of nanolayers can substantially differ from those of bulky materials, in part due to pronounced interface effects. It is known that combinations of layers of heavy and ferromagnetic metals leads to the appearance of specific spin textures induced by interface-induced Dzyaloshinskyi–Moria interaction (DMI), which attracts much interest and requires further studies. In this paper, we study magneto-optical effects in two- and three-layer films composed of a few nanometer thick Co layer adjacent to nanofilms of non-magnetic materials (Pt, W, Cu, Ta, MgO). For experimental studies of the interface magnetization-induced effects, we used the optical second harmonic generation (SHG) technique known for its high sensitivity to the symmetry breaking. We found that the structural asymmetry leads to the increase of the averaged SHG intensity, as well as to the magnetic field-induced effects in SHG. Moreover, by choosing the proper geometry of the experiment, we excluded the most studied linear in magnetization SHG contributions and, thus, succeeded in studying higher order in magnetization and non-local magnetic effects. We revealed odd in magnetization SHG effects consistent with the phenomenological description involving inhomogeneous (gradient) magnetization distribution at interfaces and found them quite pronounced, so that they should be necessarily taken into account when analyzing the non-linear magneto-optical response of nanostructures.
Collapse
Affiliation(s)
- Evgeniy Mamonov
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 1, 62, 119991 Moscow, Russia; (E.M.); (I.K.); (V.R.); (A.M.)
| | - Irina Kolmychek
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 1, 62, 119991 Moscow, Russia; (E.M.); (I.K.); (V.R.); (A.M.)
| | - Victoria Radovskaya
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 1, 62, 119991 Moscow, Russia; (E.M.); (I.K.); (V.R.); (A.M.)
| | - Igor Pashen’kin
- Institute for Physics of Microstructures RAS, GSP-105, 603950 Nizhny Novgorod, Russia; (I.P.); (N.G.)
| | - Nikita Gusev
- Institute for Physics of Microstructures RAS, GSP-105, 603950 Nizhny Novgorod, Russia; (I.P.); (N.G.)
| | - Anton Maydykovskiy
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 1, 62, 119991 Moscow, Russia; (E.M.); (I.K.); (V.R.); (A.M.)
| | - Marina Temiryazeva
- Kotel’nikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch, Vvedensky Sq. 1, 141190 Fryazino, Russia; (M.T.); (A.T.)
| | - Alexei Temiryazev
- Kotel’nikov Institute of Radioengineering and Electronics of RAS, Fryazino Branch, Vvedensky Sq. 1, 141190 Fryazino, Russia; (M.T.); (A.T.)
| | - Tatiana Murzina
- Department of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, 1, 62, 119991 Moscow, Russia; (E.M.); (I.K.); (V.R.); (A.M.)
- Correspondence:
| |
Collapse
|
26
|
Takeda Y, Mafuné F. Formation of Vanadium Nanoparticles by Laser Ablation in Reductive Aqueous Solution. CHEM LETT 2021. [DOI: 10.1246/cl.210098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yoshihiro Takeda
- East Tokyo Laboratory, Genesis Research Institute, Inc., 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| | - Fumitaka Mafuné
- Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
27
|
Eftekhari A, Arjmand A, Asheghvatan A, Švajdlenková H, Šauša O, Abiyev H, Ahmadian E, Smutok O, Khalilov R, Kavetskyy T, Cucchiarini M. The Potential Application of Magnetic Nanoparticles for Liver Fibrosis Theranostics. Front Chem 2021; 9:674786. [PMID: 34055744 PMCID: PMC8161198 DOI: 10.3389/fchem.2021.674786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is a major cause of morbidity and mortality worldwide due to chronic liver damage and leading to cirrhosis, liver cancer, and liver failure. To date, there is no effective and specific therapy for patients with hepatic fibrosis. As a result of their various advantages such as biocompatibility, imaging contrast ability, improved tissue penetration, and superparamagnetic properties, magnetic nanoparticles have a great potential for diagnosis and therapy in various liver diseases including fibrosis. In this review, we focus on the molecular mechanisms and important factors for hepatic fibrosis and on potential magnetic nanoparticles-based therapeutics. New strategies for the diagnosis of liver fibrosis are also discussed, with a summary of the challenges and perspectives in the translational application of magnetic nanoparticles from bench to bedside.
Collapse
Affiliation(s)
- Aziz Eftekhari
- Maragheh University of Medical Sciences, Maragheh, Iran
- Polymer Institute, Slovak Academy of Sciences, Bratislava, Slovakia
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
| | | | | | | | - Ondrej Šauša
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Nuclear Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Huseyn Abiyev
- Department of Biochemistry, Azerbaijan Medical University, Baku, Azerbaijan
| | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY, United States
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Rovshan Khalilov
- Russian Institute for Advanced Study, Moscow State Pedagogical University, Moscow, Russian Federation
- Department of Biophysics and Biochemistry, Baku State University, Baku, Azerbaijan
- Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
| | - Taras Kavetskyy
- Department of Surface Engineering, The John Paul II Catholic University of Lublin, Lublin, Poland
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
28
|
Ge L, Qiu H, Li H, Bo M, Huang Z, Li L, Yao C. Electronic and magnetic properties of twisted silver and palladium nanorods using density functional theory. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Bagherzadeh N, Sardarian AR, Eslahi H. Sustainable and recyclable magnetic nanocatalyst of 1,10-phenanthroline Pd(0) complex in green synthesis of biaryls and tetrazoles using arylboronic acids as versatile substrates. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Magnetically responsive antibacterial nanocrystalline jute cellulose nanocomposites with moderate catalytic activity. Carbohydr Polym 2021; 251:117024. [DOI: 10.1016/j.carbpol.2020.117024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
|
31
|
Krasia-Christoforou T, Socoliuc V, Knudsen KD, Tombácz E, Turcu R, Vékás L. From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2178. [PMID: 33142887 PMCID: PMC7692798 DOI: 10.3390/nano10112178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Iron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles. The synthesis and functionalization will be followed by the results of advanced physicochemical, structural, and magnetic characterization of multi-core particles, as well as single- and multi-core particle size distribution, morphology, internal structure, agglomerate formation processes, and constant and variable field magnetic properties. The review provides a comprehensive insight into the controlled synthesis and advanced structural and magnetic characterization of multi-core magnetic composites envisaged for nanomedicine and biotechnology.
Collapse
Affiliation(s)
- Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Avenue, P.O. Box 20537, Nicosia 1678, Cyprus;
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy–Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
| | - Kenneth D. Knudsen
- Department for Neutron Materials Characterization, Institute for Energy Technology (IFE), 2027 Kjeller, Norway;
| | - Etelka Tombácz
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, Zrínyi M. Str. 18., H-8800 Nagykanizsa, Hungary;
| | - Rodica Turcu
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Ladislau Vékás
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy–Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
| |
Collapse
|
32
|
Ruíz-Baltazar ÁDJ. Green synthesis assisted by sonochemical activation of Fe3O4-Ag nano-alloys: Structural characterization and studies of sorption of cationic dyes. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Microwave-Assisted Synthesis of Water-Dispersible Humate-Coated Magnetite Nanoparticles: Relation of Coating Process Parameters to the Properties of Nanoparticles. NANOMATERIALS 2020; 10:nano10081558. [PMID: 32784384 PMCID: PMC7466618 DOI: 10.3390/nano10081558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023]
Abstract
Nowadays, there is a demand in the production of nontoxic multifunctional magnetic materials possessing both high colloidal stability in water solutions and high magnetization. In this work, a series of water-dispersible natural humate-polyanion coated superparamagnetic magnetite nanoparticles has been synthesized via microwave-assisted synthesis without the use of inert atmosphere. An impact of a biocompatible humate-anion as a coating agent on the structural and physical properties of nanoparticles has been established. The injection of humate-polyanion at various synthesis stages leads to differences in the physical properties of the obtained nanomaterials. Depending on the synthesis protocol, nanoparticles are characterized by improved monodispersity, smaller crystallite and grain size (up to 8.2 nm), a shift in the point of zero charge (6.4 pH), enhanced colloidal stability in model solutions, and enhanced magnetization (80 emu g−1).
Collapse
|
34
|
Campanile R, Scardapane E, Forente A, Granata C, Germano R, Di Girolamo R, Minopoli A, Velotta R, Della Ventura B, Iannotti V. Core-Shell Magnetic Nanoparticles for Highly Sensitive Magnetoelastic Immunosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1526. [PMID: 32759707 PMCID: PMC7466411 DOI: 10.3390/nano10081526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
A magnetoelastic (ME) biosensor for wireless detection of analytes in liquid is described. The ME biosensor was tested against human IgG in the range 0-20 μg∙mL-1. The sensing elements, anti-human IgG produced in goat, were immobilized on the surface of the sensor by using a recently introduced photochemical immobilization technique (PIT), whereas a new amplification protocol exploiting gold coated magnetic nanoparticles (core-shell nanoparticles) is demonstrated to significantly enhance the sensitivity. The gold nanoflowers grown on the magnetic core allowed us to tether anti-human IgG to the nanoparticles to exploit the sandwich detection scheme. The experimental results show that the 6 mm × 1 mm × 30 μm ME biosensor with an amplification protocol that uses magnetic nanoparticles has a limit of detection (LOD) lower than 1 nM, works well in water, and has a rapid response time of few minutes. Therefore, the ME biosensor is very promising for real-time wireless detection of pathogens in liquids and for real life diagnostic purpose.
Collapse
Affiliation(s)
- Raffaele Campanile
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Emanuela Scardapane
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Antonio Forente
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
- Department of Mathematics and Physics-University of Campania “L. Vanvitelli”, Viale Abramo Lincoln 5, 81100 Caserta, Italy
| | - Roberto Germano
- PROMETE Srl, CNR Spin off, Piazzale Tecchio, 45 80125 Napoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemistry, University of Naples “Federico II”, Via Cintia 26, I-80126 Napoli, Italy;
| | - Antonio Minopoli
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
| | - Raffaele Velotta
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Bartolomeo Della Ventura
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute of Applied Sciences and Intelligent Systems of the National Research Council (CNR-ISASI), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy;
| | - Vincenzo Iannotti
- Department of Physics “E. Pancini”, University of Naples Federico II, Via Cintia 26, I-80126 Napoli, Italy; (R.C.); (E.S.); (A.F.); (A.M.); (R.V.); (B.D.V.)
- Institute for Superconducting, Oxides and other Innovative Materials and Devices of the National Research Council (CNR-SPIN), Piazzale V. Tecchio 80, I-80125 Napoli, Italy
| |
Collapse
|
35
|
Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 2020; 151:105412. [DOI: 10.1016/j.ejps.2020.105412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
|
36
|
Saturation of Specific Absorption Rate for Soft and Hard Spinel Ferrite Nanoparticles Synthesized by Polyol Process. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6020023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinel ferrite nanoparticles represent a class of magnetic nanoparticles (MNPs) with enormous potential in magnetic hyperthermia. In this study, we investigated the magnetic and heating properties of spinel soft NiFe2O4, MnFe2O4, and hard CoFe2O4 MNPs of comparable sizes (12–14 nm) synthesized by the polyol method. Similar to the hard ferrite, which predominantly is ferromagnetic at room temperature, the soft ferrite MNPs display a non-negligible coercivity (9–11 kA/m) arising from the strong interparticle interactions. The heating capabilities of ferrite MNPs were evaluated in aqueous media at concentrations between 4 and 1 mg/mL under alternating magnetic fields (AMF) amplitude from 5 to 65 kA/m at a constant frequency of 355 kHz. The hyperthermia data revealed that the SAR values deviate from the quadratic dependence on the AMF amplitude in all three cases in disagreement with the Linear Response Theory. Instead, the SAR values display a sigmoidal dependence on the AMF amplitude, with a maximum heating performance measured for the cobalt ferrites (1780 W/gFe+Co), followed by the manganese ferrites (835 W/gFe+Mn), while the nickel ferrites (540 W/gFe+Ni) present the lowest values of SAR. The heating performances of the ferrites are in agreement with their values of coercivity and saturation magnetization.
Collapse
|
37
|
Abstract
Magnetite nanoparticles (Fe3O4), average particle size of 12.9 nm, were synthesized de novo from ferrous and ferric iron salt solutions (total iron salt concentration of 3.8 mM) using steady-state headspace NH3(g), 3.3% v/v, at room temperature and pressure, without mechanical agitation, resulting in >99.9% yield. Nanoparticles size distributions were based on enumeration of TEM images and chemical compositions analyzed by: XRD, EDXRF, and FT-IR; super-paramagnetic properties were analyzed by magnetization saturation (74 emu/g). Studies included varying headspace [NH3(g)] (1.6, 3.3, 8.4% v/v), and total iron concentrations (1.0 mM, 3.8 mM, 10.0 mM, and >>10 mM). An application of the unmodified synthesized magnetite nanoparticles included analyses of tetracycline’s (50, 100, 200, 300, and 400 ppb) in aqueous, which was compared to the same tetracycline concentrations prepared in aqueous synthesis suspension with >97% extraction, analyzed with LC-MS/MS.
Collapse
|
38
|
Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2536. [PMID: 32268473 PMCID: PMC7177461 DOI: 10.3390/ijms21072536] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Based on their tunable physicochemical properties and the possibility of producing cell-specific platforms through surface modification with functional biomolecules, nanoparticles (NPs) represent highly promising tools for biomedical applications. To improve their potential under physiological conditions and to enhance their cellular uptake, combinations with cell-penetrating peptides (CPPs) represent a valuable strategy. CPPs are often cationic peptide sequences that are able to translocate across biological membranes and to carry attached cargos inside cells and have thus been recognized as versatile tools for drug delivery. Nevertheless, the conjugation of CPP to NP surfaces is dependent on many properties from both individual components, and further insight into this complex interplay is needed to allow for the fabrication of highly stable but functional vectors. Since CPPs per se are nonselective and enter nearly all cells likewise, additional decoration of NPs with homing devices, such as tumor-homing peptides, enables the design of multifunctional platforms for the targeted delivery of chemotherapeutic drugs. In this review, we have updated the recent advances in the field of CPP-NPs, focusing on synthesis strategies, elucidating the influence of different physicochemical properties, as well as their application in cancer research.
Collapse
Affiliation(s)
- Isabel Gessner
- Department of Chemistry, Inorganic Chemistry, University of Cologne, Greinstr 6, 50939 Cologne, Germany;
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
39
|
Abstract
Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields [...]
Collapse
|