Lima HS, Tupinambás U, Guimarães FG. Estimating time-varying epidemiological parameters and underreporting of Covid-19 cases in Brazil using a mathematical model with fuzzy transitions between epidemic periods.
PLoS One 2024;
19:e0305522. [PMID:
38885221 PMCID:
PMC11182538 DOI:
10.1371/journal.pone.0305522]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Our study conducts a comprehensive analysis of the Covid-19 pandemic in Brazil, spanning five waves over three years. We employed a novel Susceptible-Infected-Recovered-Dead-Susceptible (SIRDS) model with a fuzzy transition between epidemic periods to estimate time-varying parameters and evaluate case underreporting. The initial basic reproduction number (R0) is identified at 2.44 (95% Confidence Interval (CI): 2.42-2.46), decreasing to 1.00 (95% CI: 0.99-1.01) during the first wave. The model estimates an underreporting factor of 12.9 (95% CI: 12.5-13.2) more infections than officially reported by Brazilian health authorities, with an increasing factor of 5.8 (95% CI: 5.2-6.4), 12.9 (95% CI: 12.5-13.3), and 16.8 (95% CI: 15.8-17.5) in 2020, 2021, and 2022 respectively. Additionally, the Infection Fatality Rate (IFR) is initially 0.88% (95% CI: 0.81%-0.94%) during the initial phase but consistently reduces across subsequent outbreaks, reaching its lowest value of 0.018% (95% CI: 0.011-0.033) in the last outbreak. Regarding the immunity period, the observed uncertainty and low sensitivity indicate that inferring this parameter is particularly challenging. Brazil successfully reduced R0 during the first wave, coinciding with decreased human mobility. Ineffective public health measures during the second wave resulted in the highest mortality rates within the studied period. We attribute lower mortality rates in 2022 to increased vaccination coverage and the lower lethality of the Omicron variant. We demonstrate the model generalization by its application to other countries. Comparative analyses with serological research further validate the accuracy of the model. In forecasting analysis, our model provides reasonable outbreak predictions. In conclusion, our study provides a nuanced understanding of the Covid-19 pandemic in Brazil, employing a novel epidemiological model. The findings contribute to the broader discourse on pandemic dynamics, underreporting, and the effectiveness of health interventions.
Collapse