1
|
Ugarte-Anero A, Fernandez-Gamiz U, Portal-Porras K, Lopez-Guede JM, Sanchez-Merino G. Numerical study of different ventilation schemes in a classroom for efficient aerosol control. Heliyon 2023; 9:e19961. [PMID: 37809677 PMCID: PMC10559565 DOI: 10.1016/j.heliyon.2023.e19961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/11/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
The air quality is a parameter to be controlled in order to live in a comfortable place. This paper analyzes the trajectory of aerosols exhaled into the environment in a classroom. Three scenarios are investigated; without ventilation, with natural and with mechanical ventilation. A multi-phase computational fluid study based on Eulerian-Lagrangian techniques is defined. Temperature and ambient relative humidity, as well as air velocity, direction and pressure is taken into account. For droplets evaporation, mass transfer and turbulent dispersion have been added. This work tends to be of great help in various areas, such as the field of medicine and energy engineering, aiming to show the path of aerosols dispersed in the air. The results show that the classroom with a mechanical ventilation scheme offers good results when it comes to an efficient control of aerosols. In all three cases, aerosols exhaled into the environment impregnate the front row student in the first 0.5 s. Reaching the time of 4, 2 and 1 s, in the class without ventilation, mechanical and natural ventilation, respectively, the aerosols have been already deposited on the table of the person in the first row, being exposed for longer in the case of no ventilation. Particles with a diameter of less than 20 μm are distributed throughout the classroom over a long period. The air jet injected into the interior space offers a practically constant relative humidity and a drop in temperature, slowing down the process of evaporation of the particles. In the first second, it can be seen that a mass of 0.0025 mg formed by 9 million droplets accumulates, in cases without ventilation and natural ventilation. The room with a mechanical installation accumulated 5.5 million particles of mass 0.0028 mg in the first second. The energy losses generated by natural ventilation are high compared to the other scenarios, exactly forty and twenty times more in the scenario with mechanical ventilation and without ventilation, respectively.
Collapse
Affiliation(s)
- Ainara Ugarte-Anero
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
- Bioaraba, New Technologies and Information Systems in Health Research Group, Vitoria-Gasteiz, Spain
- Osakidetza Basque Health Service, Araba University Hospital, Medical Physics Department, Vitoria-Gasteiz, Spain
| | - Unai Fernandez-Gamiz
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
- Bioaraba, New Technologies and Information Systems in Health Research Group, Vitoria-Gasteiz, Spain
- Osakidetza Basque Health Service, Araba University Hospital, Medical Physics Department, Vitoria-Gasteiz, Spain
| | - Koldo Portal-Porras
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
| | - Jose Manuel Lopez-Guede
- Bioaraba, New Technologies and Information Systems in Health Research Group, Vitoria-Gasteiz, Spain
- Osakidetza Basque Health Service, Araba University Hospital, Medical Physics Department, Vitoria-Gasteiz, Spain
- System Engineering and Automation Control Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
| | - Gaspar Sanchez-Merino
- Bioaraba, New Technologies and Information Systems in Health Research Group, Vitoria-Gasteiz, Spain
- Osakidetza Basque Health Service, Araba University Hospital, Medical Physics Department, Vitoria-Gasteiz, Spain
| |
Collapse
|
2
|
Chillón SA, Fernandez-Gamiz U, Zulueta E, Ugarte-Anero A, Urbina-Garcia O. Numerical modeling of a sneeze, a cough and a continuum speech inside a hospital lift. Heliyon 2023; 9:e13370. [PMID: 36744064 PMCID: PMC9889118 DOI: 10.1016/j.heliyon.2023.e13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
The global COVID-19 and its variants put us on notice of the importance of studying the spread of respiratory diseases. The most common means of propagation was the emission of droplets due to different respiration activities. This study modeled by computational fluid dynamics (CFD) techniques a high risk scenario like a hospital elevator. The cabin was provided with an extraction fan and a rack for air renewal. Inside, a sneeze, a cough and a continuum speech were simulated. Inside the lift, two occupants were introduced to observe the risk of propagation of emitted droplets and the impact in diseases spreading risk. The fan effectivity over the droplets ejection was analyzed, as well as environmental condition of a clinical setting. For this purpose the amount of droplets inside were counted during whole time of simulations. The effect of the fan was concluded as able to eject the 60% of small droplets, but also a high performance in spreading particles inside. Among the three cases, the riskiest scenario was the continuum speech due to the saturation of droplets in airborne.
Collapse
Affiliation(s)
- Sergio A. Chillón
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
| | - Unai Fernandez-Gamiz
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain,Corresponding author
| | - Ekaitz Zulueta
- Automatic and Simulation Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
| | - Ainara Ugarte-Anero
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
| | - Oskar Urbina-Garcia
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, Vitoria-Gasteiz, 01006, Araba, Spain
| |
Collapse
|
3
|
Oh W, Ooka R, Kikumoto H, Han M. Numerical modeling of sneeze airflow and its validation with an experimental dataset. INDOOR AIR 2022; 32:e13171. [PMID: 36437664 DOI: 10.1111/ina.13171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
In this study, we aimed at providing datasets using experimental results to validate the sneeze airflow. In addition, the boundary conditions for the sneeze simulation that could reproduce the sneeze airflow in the experimental results are presented and reviewed. The validation datasets were created by performing ensemble-average analysis with the experimental results of particle image velocimetry, and these were used to explore the boundary conditions to reproduce the sneeze airflow. As a result of the sneeze airflow reproduced by computational fluid dynamics simulation, the magnitude ranges of maximum velocity at the interface were observed to be 21.1-23.9 m/s for males and 17.9-20.3 m/s for females, which were higher than those of coughing. Compared with the experimental results, the root-mean-square error range for the overall airflow distribution was 0.19-0.23 m/s, whereas the error range for the magnitude of the maximum velocity at a criterion point was 0.03-0.08 m/s. The total sneezing airflow volume was in the range of 0.36-0.48 L, which was relatively low compared with that of coughing. Thus, this study provides important fundamental boundary conditions for computational fluid dynamics analysis, validated by experimental results, to interpret the spread of infectious particles by sneezing.
Collapse
Affiliation(s)
- Wonseok Oh
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Ryozo Ooka
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Kikumoto
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Mengtao Han
- School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Ge H, Zhao P, Choi S, Deng T, Feng Y, Cui X. Effects of face shield on an emitter during a cough process: A large-eddy simulation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154856. [PMID: 35358516 DOI: 10.1016/j.scitotenv.2022.154856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/03/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Face shield is a common personal protection equipment for pandemic. In the present work, three-dimensional computational fluid dynamic (CFD) method is used to simulate a cough jet from an emitter who wears a face shield. A realistic manikin model with a simplified mouth cavity is employed. A large eddy simulation with a dynamic structure subgrid scale model is applied to model the turbulence. An Eulerian-Lagrangian approach is adopted to model the two-phase flows, with which the droplets are represented by a cloud of particles. The droplet breakup, evaporation, dispersion, drag force, and wall impingement are considered in this model. An inlet velocity profile that is based on a variable mouth opening area is considered. Special attentions have been put the vortex structure and droplet re-distribution induced by the face shield. It is found that the multiple vortices are formed when the cough jet impinges on the face shield. Some droplets move backward and others move downward after the impinging. It is also found that a small modification of the face shield significantly modifies the flow field and droplet distribution. We conclude that face shield significantly reduces the risk factor in the front of the emitter, meanwhile the risk factor in the back of the emitter increases. When the receiver standing in front of the emitter is shorter than the emitter, the risk is still very high. More attentions should be paid on the design of the face field, clothes cleaning and floor cleaning of the emitters with face shields. Based on the predicted droplet trajectory, a conceptual model for droplet flux is proposed for the scenario with the face shield.
Collapse
Affiliation(s)
- Haiwen Ge
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Peng Zhao
- Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute, University of Tennessee, Knoxville, TN, USA
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Teng Deng
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Yaning Feng
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xinguang Cui
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Ugarte-Anero A, Fernandez-Gamiz U, Portal-Porras K, Zulueta E, Urbina-Garcia O. Computational characterization of the behavior of a saliva droplet in a social environment. Sci Rep 2022; 12:6405. [PMID: 35437309 PMCID: PMC9016067 DOI: 10.1038/s41598-022-10180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
The conduct of respiratory droplets is the basis of the study to reduce the spread of a virus in society. The pandemic suffered in early 2020 due to COVID-19 shows the lack of research on the evaporation and fate of droplets exhaled in the environment. The current study, attempts to provide solution through computational fluid dynamics techniques based on a multiphase state with the help of Eulerian-Lagrangian techniques to the activity of respiratory droplets. A numerical study has shown how the behavior of droplets of pure water exhaled in the environment after a sneeze or cough have a dynamic equal to the experimental curve of Wells. The droplets of saliva have been introduced as a saline solution. Considering the mass transferred and the turbulence created, the results has showed that the ambient temperature and relative humidity are parameters that significantly affect the evaporation process, and therefore to the fate. Evaporation time tends to be of a higher value when the temperature affecting the environment is lower. With constant parameters of particle diameter and ambient temperature, an increase in relative humidity increases the evaporation time. A larger particle diameter is consequently transported at a greater distance, since the opposite force it affects is the weight. Finally, a neural network-based model is presented to predict particle evaporation time.
Collapse
Affiliation(s)
- Ainara Ugarte-Anero
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Unai Fernandez-Gamiz
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain.
| | - Koldo Portal-Porras
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Ekaitz Zulueta
- System Engineering and Automation Control Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| | - Oskar Urbina-Garcia
- Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, UPV/EHU, Nieves Cano 12, 01006, Vitoria-Gasteiz, Araba, Spain
| |
Collapse
|