1
|
Shi Q, Yu S, Zhou M, Wang P, Li W, Jin X, Pan Y, Sheng Y, Li H, Qin L, Meng X. Diterpenoids of Marine Organisms: Isolation, Structures, and Bioactivities. Mar Drugs 2025; 23:131. [PMID: 40137317 PMCID: PMC11943766 DOI: 10.3390/md23030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Diterpenoids from marine-derived organisms represent a prolific source of secondary metabolites, characterized by their exceptionally promising chemical structures and pronounced pharmacological properties. In recent years, marine diterpenoids have garnered considerable attention and are regarded as a prominent area of scientific research. As a vital class of metabolites, diterpenoids show diverse biological activities, encompassing antibacterial, antifungal, antiviral, anti-inflammatory, inhibitory, and cytotoxic activities, among others. With the rapid advancement of equipment and identified technology, there has been a tremendous surge in the discovery rate of novel diterpenoid skeletons and bioactivities derived from marine fungi over the past decade. The present review compiles the reported diterpenoids from marine fungal sources mainly generated from January 2000 to December 2024. In this paper, 515 diterpenoids from marine organisms are summarized. Among them, a total of 281 structures from various fungal species are included, comprising 55 from sediment, 39 from marine animals (predominantly invertebrates, including 17 from coral and 22 from sponges), and 53 from marine plants (including 34 from algae and 19 from mangrove). Diverse biological activities are exhibited in 244 compounds, and among these, 112 compounds showed great anti-tumor activity (45.90%) and 110 metabolites showed remarkable cytotoxicity (45.08%). Furthermore, these compounds displayed a range of diverse bioactivities, including potent anti-oxidant activity (2.87%), promising anti-inflammatory activity (1.64%), great anti-bacterial activity (1.64%), notable anti-thrombotic activity (1.23%), etc. Moreover, the diterpenoids' structural characterization and biological activities are additionally elaborated upon. The present critical summary provides a comprehensive overview of the reported knowledge regarding diterpenoids derived from marine fungi, invertebrates, and aquatic plants. The systematic review presented herein offers medical researchers an extensive range of promising lead compounds for the development of marine drugs, thereby furnishing novel and valuable pharmaceutical agents.
Collapse
Affiliation(s)
- Qi Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Manjia Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Peilu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Wenlong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xin Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Yiting Pan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| |
Collapse
|
2
|
Kang SJ, Zhao L, Wang H, Gao JM, Qi J. Chemical structures, biological activities, and biosynthetic analysis of secondary metabolites of the Diatrypaceae family: A comprehensive review. Mycology 2024; 15:322-344. [PMID: 39247891 PMCID: PMC11376284 DOI: 10.1080/21501203.2024.2341648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/07/2024] [Indexed: 09/10/2024] Open
Abstract
The family Diatrypaceae is a less well-known group within the order Xylariales (Ascomycota). Initially, the focus on its metabolites was related to the pathogenicity of one of its members, Eutypa lata. To date, a total of 254 natural products have been identified from Diatrypaceae strains. These compounds include terpenoids, sterols, polyketones, phenols, and acetylene aromatic compounds, which have shown anticancer, cytotoxic, anti-inflammatory, antimicrobial, and antiviral activities. The complex and diverse structural types, along with the diverse bioactivities, highlight the potential of Diatrypaceae as a valuable source of bioactive natural products. In this review, a deep analysis of the biosynthesis of pimarane diterpenes and scoparasin-type cytochalasins is provided, coupled with a compilation of the biosynthetic pathways of aromatic acetylene compounds in filamentous fungi. This comprehensive review not only enhances our understanding of the natural product chemistry, biological activities, and biosynthesis of secondary metabolites from the Diatrypaceae family but also promotes the exploitation and development of important bioactive compounds and potential strains.
Collapse
Affiliation(s)
- Shi-Jie Kang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Ling Zhao
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, China
| | - Haiqiang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, China
- Department of Pharmacy, School of Medicine, Xi'an International University, Xi'an, China
| |
Collapse
|
3
|
Gao Y, Wang J, Meesakul P, Zhou J, Liu J, Liu S, Wang C, Cao S. Cytotoxic Compounds from Marine Fungi: Sources, Structures, and Bioactivity. Mar Drugs 2024; 22:70. [PMID: 38393041 PMCID: PMC10890532 DOI: 10.3390/md22020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Marine fungi, such as species from the Penicillium and Aspergillus genera, are prolific producers of a diversity of natural products with cytotoxic properties. These fungi have been successfully isolated and identified from various marine sources, including sponges, coral, algae, mangroves, sediment, and seawater. The cytotoxic compounds derived from marine fungi can be categorized into five distinct classes: polyketides, peptides, terpenoids and sterols, hybrids, and other miscellaneous compounds. Notably, the pre-eminent group among these compounds comprises polyketides, accounting for 307 out of 642 identified compounds. Particularly, within this collection, 23 out of the 642 compounds exhibit remarkable cytotoxic potency, with IC50 values measured at the nanomolar (nM) or nanogram per milliliter (ng/mL) levels. This review elucidates the originating fungal strains, the sources of isolation, chemical structures, and the noteworthy antitumor activity of the 642 novel natural products isolated from marine fungi. The scope of this review encompasses the period from 1991 to 2023.
Collapse
Affiliation(s)
- Yukang Gao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jianjian Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Pornphimon Meesakul
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| | - Jiamin Zhou
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Jinyan Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shuo Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Universities in Guangxi for Excavation and Development of Ancient Ethnomedicinal Recipes, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, China; (Y.G.); (J.W.); (J.Z.); (J.L.); (S.L.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA;
| |
Collapse
|
4
|
Yi J, Shi K, Wu B, Li W, Chen G. Study on Secondary Metabolites of Marine-Derived Fungus Eutypella sp. F0219. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Qiu P, Xia J, Zhang H, Lin D, Shao Z. A Review of Diterpenes from Marine-Derived Fungi: 2009-2021. Molecules 2022; 27:molecules27238303. [PMID: 36500394 PMCID: PMC9741372 DOI: 10.3390/molecules27238303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Marine-derived fungi are important sources of novel compounds and pharmacologically active metabolites. As an important class of natural products, diterpenes show various biological activities, such as antiviral, antibacterial, anti-inflammatory, antimalarial, and cytotoxic activities. Developments of equipment for the deep-sea sample collection allow discoveries of more marine-derived fungi with increasing diversity, and much progress has been made in the identification of diterpenes with novel structures and bioactivities from marine fungi in the past decade. The present review article summarized the chemical structures, producing organisms and biological activities of 237 diterpenes which were isolated from various marine-derived fungi over the period from 2009 to 2021. This review is beneficial for the exploration of marine-derived fungi as promising sources of bioactive diterpenes.
Collapse
Affiliation(s)
- Peng Qiu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haitao Zhang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| |
Collapse
|
6
|
Ye K, Ai HL. Pimarane Diterpenes from Fungi. Pharmaceuticals (Basel) 2022; 15:ph15101291. [PMID: 36297402 PMCID: PMC9609704 DOI: 10.3390/ph15101291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pimarane diterpenes are a kind of tricyclic diterpene, generally isolated from plant and fungi. In nature, fungi distribute widely and there are nearly two to three million species. They provide many secondary metabolites, including pimarane diterpenes, with novel skeletons and bioactivities. These natural products from fungi have the potential to be developed into clinical medicines. Herein, the structures and bioactivities of 197 pimarane diterpenes are summarized and the biosynthesis and pharmacological researches of pimarane diterpenes are introduced. This review may be useful improving the understanding of pimarane diterpenes from fungi.
Collapse
|
7
|
Zhang YH, Du HF, Gao WB, Li W, Cao F, Wang CY. Anti-inflammatory Polyketides from the Marine-Derived Fungus Eutypella scoparia. Mar Drugs 2022; 20:486. [PMID: 36005490 PMCID: PMC9410037 DOI: 10.3390/md20080486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Three new polyketides, eutyketides A and B (1 and 2) and cytosporin X (3), along with four known compounds (4-7), were obtained from the marine-derived fungus Eutypella scoparia. The planar structures of 1 and 2 were elucidated by extensive HRMS and 1D and 2D NMR analyses. Their relative configurations of C-13 and C-14 were determined with chemical conversions by introducing an acetonylidene group. The absolute configurations of 1-3 were determined by comparing their experimental electronic circular dichroism (ECD) data with their computed ECD results. All of the isolated compounds were tested for their anti-inflammatory activities on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages. Compounds 5 and 6 showed stronger anti-inflammatory activities than the other compounds, with the inhibition of 49.0% and 54.9% at a concentration of 50.0 µg/mL, respectively.
Collapse
Affiliation(s)
- Ya-Hui Zhang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hui-Fang Du
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
| | - Wen-Bin Gao
- College of Life Sciences, Cangzhou Normal University, Cangzhou 061000, China;
| | - Wan Li
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
| | - Fei Cao
- College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, Hebei University, Baoding 071002, China; (H.-F.D.); (W.L.)
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
8
|
Zhang R, Wang H, Chen B, Dai H, Sun J, Han J, Liu H. Discovery of Anti-MRSA Secondary Metabolites from a Marine-Derived Fungus Aspergillus fumigatus. Mar Drugs 2022; 20:302. [PMID: 35621953 PMCID: PMC9146929 DOI: 10.3390/md20050302] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/30/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a WHO high-priority pathogen that can cause great harm to living beings, is a primary cause of death from antibiotic-resistant infections. In the present study, six new compounds, including fumindoline A-C (1-3), 12β, 13β-hydroxy-asperfumigatin (4), 2-epi-tryptoquivaline F (17) and penibenzophenone E (37), and thirty-nine known ones were isolated from the marine-derived fungus Aspergillus fumigatus H22. The structures and the absolute configurations of the new compounds were unambiguously assigned by spectroscopic data, mass spectrometry (MS), electronic circular dichroism (ECD) spectroscopic analyses, quantum NMR and ECD calculations, and chemical derivatizations. Bioactivity screening indicated that nearly half of the compounds exhibit antibacterial activity, especially compounds 8 and 11, and 33-38 showed excellent antimicrobial activities against MRSA, with minimum inhibitory concentration (MIC) values ranging from 1.25 to 2.5 μM. In addition, compound 8 showed moderate inhibitory activity against Mycobacterium bovis (MIC: 25 μM), compound 10 showed moderate inhibitory activity against Candida albicans (MIC: 50 μM), and compound 13 showed strong inhibitory activity against the hatching of a Caenorhabditis elegans egg (IC50: 2.5 μM).
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (H.W.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Haifeng Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (H.W.)
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Jingzu Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| | - Hongwei Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Education, College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (R.Z.); (H.W.)
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (B.C.); (H.D.); (J.S.)
| |
Collapse
|
9
|
Xu Y, Zhong Z, Gao Y, Wang Y, Zhang L, Huang H, Zheng J, Zhang K, Zheng X, Goodin S. The Mangrove-Derived Diterpenoid Diaporthe B Inhibits the Stemness and Increases the Efficacy of Docetaxel in Prostate Cancer PC-3 Cells. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211049688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The absolute configuration of diaporthe B, a pimarane diterpene isolated from the mangrove derived endophytic fungus Eutypella sp #3E, was determined by a single-crystal x-ray diffraction study. The present study aimed to investigate the effects of diaporthe B on docetaxel-resistant prostate cancer PC-3 cells. Results of our studies showed that docetaxel-resistant PC-3 cells had higher sphere-forming efficiency and an increase in adherence to collagen-coated culture plates. The protein levels of cancer stem cell (CSC)-related markers CD44, CD133, and ALDH1A1 were higher in the docetaxel-resistant PC-3 cells than in the parental cells. Treatment with diaporthe B dose-dependently inhibited the growth and induced apoptosis in the resistant cells. Moreover, diaporthe B treatment decreased the sphere-forming efficiency and the adherence to collagen-coated plates in docetaxel-resistant PC-3 cells. Diaporthe B also decreased the protein levels of CSC-related markers CD44, CD133, and ALDH1A1 in the resistant cells. In addition, a combination of diaporthe B and docetaxel had a more potent effect on growth inhibition and apoptosis in the resistant cells than either agent alone. Our studies suggest that diaporthe B inhibits the stemness of prostate cancer cells and may have therapeutic potential for enhancing the efficacy of docetaxel in docetaxel-resistant prostate cancer cells.
Collapse
Affiliation(s)
- Yao Xu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Zhiwei Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yiwen Gao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Yuhui Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Huarong Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Junxia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen City, People’s Republic of China
| | - Xi Zheng
- Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Susan Goodin
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Dehghan N, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Ghazi SP, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Zendehboudi T, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Mohajer F, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Afshar AR, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Kharadmehr A, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran, Alamasi-Turk S, Anatomy and Cell Biology Department, Bushehr University of Medical Sciences, Bushehr, Iran, Tamadon A, The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran. Persian Gulf Bivalves: Bioactive Pharmaceutical Compounds and Biomedical Applications. IRANIAN SOUTH MEDICAL JOURNAL 2021; 24:481-504. [DOI: 10.52547/ismj.24.5.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
|
11
|
Shabana S, Lakshmi KR, Satya AK. An Updated Review of Secondary Metabolites from Marine Fungi. Mini Rev Med Chem 2021; 21:602-642. [PMID: 32981503 DOI: 10.2174/1389557520666200925142514] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 11/22/2022]
Abstract
Marine fungi are valuable and richest sources of novel natural products for medicinal and pharmaceutical industries. Nutrient depletion, competition or any other type of metabolic stress which limits marine fungal growth promotes the formation and secretion of secondary metabolites. Generally secondary metabolites can be produced by many different metabolic pathways and include antibiotics, cytotoxic and cyto-stimulatory compounds. Marine fungi produce many different types of secondary metabolites that are of commercial importance. This review paper deals with around 187 novel compounds and 212 other known compounds with anticancer and antibacterial activities with a special focus on the period from 2011-2019. Furthermore, this review highlights the sources of organisms, chemical classes and biological activities (anticancer and antibacterial) of metabolites, that were isolated and structurally elucidated from marine fungi to throw a helping hand for novel drug development.
Collapse
Affiliation(s)
- Syed Shabana
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - K Rajya Lakshmi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| | - A Krishna Satya
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar 522510, Guntur, Andhra Pradesh, India
| |
Collapse
|
12
|
Gozari M, Alborz M, El-Seedi HR, Jassbi AR. Chemistry, biosynthesis and biological activity of terpenoids and meroterpenoids in bacteria and fungi isolated from different marine habitats. Eur J Med Chem 2020; 210:112957. [PMID: 33160760 DOI: 10.1016/j.ejmech.2020.112957] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023]
Abstract
The marine environment with its vast biological diversity encompasses many organisms that produce bioactive natural products. Marine microorganisms are rich sources of compounds from many structural classes with a multitude of biological activities. The biosynthesis of microbial natural products depends on a variety of biotic and abiotic factors in the marine environment, including temperature, nutrients, salinity and interaction with other microorganisms. Terpenoids, as one of the most important groups of natural products in terrestrial microorganisms are important metabolites for marine microorganisms. Here, we have reviewed the chemistry, biosynthesis and pharmacological activities of terpenoids, extracted from marine microbes, and then survey their potential applications in drug development. We also discussed the different habitats in which marine microorganisms are found including sediments, the flora, such as seaweeds, sea grasses, and mangroves as well as the fauna like sponges and corals. Amongst these habitats, marine sediments are the major source for terpenoids producing microorganisms. The marine bacteria produce mostly meroterpenoids, while the fungi are well known for production of isoprenoids. Interestingly, marine-derived microbial terpenoids have some structural characteristics such as halogenation, which are catalyzed by specific enzymes with distinct substrate specificity. These compounds have anticancer, antibacterial, antifungal, antimalarial and anti-inflammatory properties. The information collected here might provide useful clues for developing new medications.
Collapse
Affiliation(s)
- Mohsen Gozari
- Persian Gulf and Oman Sea Ecological Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Bandar Abbas, Iran
| | - Maryam Alborz
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, SE-751 23, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, PR China
| | - Amir Reza Jassbi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Eutyscoparols A-G, polyketide derivatives from endophytic fungus Eutypella scoparia SCBG-8. Fitoterapia 2020; 146:104681. [DOI: 10.1016/j.fitote.2020.104681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022]
|
14
|
Hou X, Xu Y, Zhu S, Zhang Y, Guo L, Qiu F, Che Y. Sarcosenones A–C, highly oxygenated pimarane diterpenoids from an endolichenic fungus Sarcosomataceae sp. RSC Adv 2020; 10:15622-15628. [PMID: 35495431 PMCID: PMC9052384 DOI: 10.1039/d0ra02485f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/03/2022] Open
Abstract
Three new highly oxygenated pimarane diterpenoids, sarcosenones A–C (1–3), and the known 9α-hydroxy-1,8(14),15-isopimaratrien-3,7,11-trione (4), were isolated from cultures of an endolichenic fungus Sarcosomataceae sp. Their structures were elucidated based on NMR spectroscopic data and electronic circular dichroism (ECD) calculations. Compound 1 showed moderate cytotoxicity against a small panel of four human tumor cell lines, with IC50 values of 7.5–26.4 μM. The new highly oxygenated pimarane diterpenoids sarcosenones A–C (1–3) were isolated from an endolichenic fungus Sarcosomataceae sp. Compound 1 showed moderate cytotoxicity towards human tumor cells.![]()
Collapse
Affiliation(s)
- Xintong Hou
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- People's Republic of China
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Yang Xu
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Shuaiming Zhu
- State Key Laboratory of Toxicology & Medical Countermeasures
- Beijing Institute of Pharmacology & Toxicology
- Beijing 100850
- People's Republic of China
| | - Yang Zhang
- State Key Laboratory of Toxicology & Medical Countermeasures
- Beijing Institute of Pharmacology & Toxicology
- Beijing 100850
- People's Republic of China
| | - Liangdong Guo
- State Key Laboratory of Mycology
- Institute of Microbiology
- Chinese Academy of Sciences
- Beijing 100101
- People's Republic of China
| | - Feng Qiu
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- People's Republic of China
| | - Yongsheng Che
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- People's Republic of China
- Institute of Medicinal Biotechnology
- Chinese Academy of Medical Sciences & Peking Union Medical College
| |
Collapse
|
15
|
Niu S, Peng G, Xia J, Xie C, Li Z, Yang X. A New Pimarane Diterpenoid from the
Botryotinia fuckeliana
Fungus Isolated from Deep‐Sea Water. Chem Biodivers 2019; 16:e1900519. [DOI: 10.1002/cbdv.201900519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Siwen Niu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural Resources 184 Daxue Road Xiamen 361005 P. R. China
| | - Guizhen Peng
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural Resources 184 Daxue Road Xiamen 361005 P. R. China
| | - Jin‐Mei Xia
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural Resources 184 Daxue Road Xiamen 361005 P. R. China
| | - Chun‐Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural Resources 184 Daxue Road Xiamen 361005 P. R. China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural Resources 184 Daxue Road Xiamen 361005 P. R. China
| | - Xian‐Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural Resources 184 Daxue Road Xiamen 361005 P. R. China
| |
Collapse
|
16
|
Helaly SE, Thongbai B, Stadler M. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep 2019; 35:992-1014. [PMID: 29774351 DOI: 10.1039/c8np00010g] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to December 2017 The diversity of secondary metabolites in the fungal order Xylariales is reviewed with special emphasis on correlations between chemical diversity and biodiversity as inferred from recent taxonomic and phylogenetic studies. The Xylariales are arguably among the predominant fungal endophytes, which are the producer organisms of pharmaceutical lead compounds including the antimycotic sordarins and the antiparasitic nodulisporic acids, as well as the marketed drug, emodepside. Many Xylariales are "macromycetes", which form conspicuous fruiting bodies (stromata), and the metabolite profiles that are predominant in the stromata are often complementary to those encountered in corresponding mycelial cultures of a given species. Secondary metabolite profiles have recently been proven highly informative as additional parameters to support classical morphology and molecular phylogenetic approaches in order to reconstruct evolutionary relationships among these fungi. Even the recent taxonomic rearrangement of the Xylariales has been relying on such approaches, since certain groups of metabolites seem to have significance at the species, genus or family level, respectively, while others are only produced in certain taxa and their production is highly dependent on the culture conditions. The vast metabolic diversity that may be encountered in a single species or strain is illustrated based on examples like Daldinia eschscholtzii, Hypoxylon rickii, and Pestalotiopsis fici. In the future, it appears feasible to increase our knowledge of secondary metabolite diversity by embarking on certain genera that have so far been neglected, as well as by studying the volatile secondary metabolites more intensively. Methods of bioinformatics, phylogenomics and transcriptomics, which have been developed to study other fungi, are readily available for use in such scenarios.
Collapse
Affiliation(s)
- Soleiman E Helaly
- Dept Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
17
|
Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR. Bioactive Compounds Isolated from Marine-Derived Microbes in China: 2009-2018. Mar Drugs 2019; 17:E339. [PMID: 31174259 PMCID: PMC6628246 DOI: 10.3390/md17060339] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
This review outlines the research that was carried out regarding the isolation of bioactive compounds from marine-derived bacteria and fungi by China-based research groups from 2009-2018, with 897 publications being surveyed. Endophytic organisms featured heavily, with endophytes from mangroves, marine invertebrates, and marine algae making up more than 60% of the microbial strains investigated. There was also a strong focus on fungi as a source of active compounds, with 80% of publications focusing on this area. The rapid increase in the number of publications in the field is perhaps most notable, which have increased more than sevenfold over the past decade, and suggests that China-based researchers will play a major role in marine microbial natural products drug discovery in years to come.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Wenhui Wu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Xueling Liu
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin 300072, China.
| |
Collapse
|
18
|
Niu S, Liu D, Shao Z, Proksch P, Lin W. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Reveglia P, Cimmino A, Masi M, Nocera P, Berova N, Ellestad G, Evidente A. Pimarane diterpenes: Natural source, stereochemical configuration, and biological activity. Chirality 2018; 30:1115-1134. [DOI: 10.1002/chir.23009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Pierluigi Reveglia
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Marco Masi
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Paola Nocera
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| | - Nina Berova
- Department of Chemistry; Columbia University; New York NY USA
| | - George Ellestad
- Department of Chemistry; Columbia University; New York NY USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche Università di Napoli Federico II; Complesso Universitario Monte S. Angelo; Naples Italy
| |
Collapse
|
20
|
Eutypellenoids A⁻C, New Pimarane Diterpenes from the Arctic Fungus Eutypella sp. D-1. Mar Drugs 2018; 16:md16080284. [PMID: 30115869 PMCID: PMC6117666 DOI: 10.3390/md16080284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022] Open
Abstract
Three new pimarane diterpenes, eutypellenoids A–C (1–3), together with a known compound, eutypenoid C (4), were isolated from the culture extract of Eutypella sp. D-1 derived from the Arctic region. Compounds 1–3 possessed an uncommon tetrahydrofuran-fused pimarane diterpene skeleton. The structures of all compounds were determined by detailed spectroscopic analysis, electronic circular dichroism (ECD) analysis, as well as a comparison with the literature data. Antibacterial, antifungal, and cytotoxic activities of these compounds were evaluated. Compound 2 displayed antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC values of 8 and 8 μg/mL, respectively. Additionally, compound 2 showed antifungal activity against Candida parapsilosis, Candida albicans, Candida glabrata, and Candida tropicalis with MIC values of 8, 8, 16, and 32 μg/mL, respectively. Furthermore, compound 2 exhibited moderate cytotoxic activity against HCT-116 cell line with IC50 value of 3.7 μM.
Collapse
|
21
|
Wang X, Sun K, Wang B. Bioactive Pimarane Diterpenes from the Arctic Fungus Eutypella sp. D-1. Chem Biodivers 2018; 15. [PMID: 29168349 DOI: 10.1002/cbdv.201700501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
Two new pimarane diterpenes, libertellenone M (1) and libertellenone N (2), together with five known compounds were isolated from the culture extract of Eutypella sp. D-1 derived from high-latitude soil of the Arctic. The structures of these compounds were determined by spectroscopic data as well as experimental and calculated electronic circular dichroism (ECD) analysis. Antimicrobial and cytotoxic activities of the isolated compounds were evaluated. Compound 3 exhibited weak antibacterial activity against Escherichia coli, Bacillus subtilis, and Vibrio vulnificus, each with MIC values of 16 μg/mL. Compounds 2 and 3 showed moderate cytotoxic activity against K562 and MCF-7 cell lines with IC50 values of 7.67 and 9.57 μm, respectively.
Collapse
Affiliation(s)
- Xiaoli Wang
- Marine Science and Technology College, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316022, P. R. China.,School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316022, P. R. China
| | - Kunlai Sun
- School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316022, P. R. China
| | - Bin Wang
- School of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316022, P. R. China
| |
Collapse
|
22
|
Deshmukh SK, Prakash V, Ranjan N. Marine Fungi: A Source of Potential Anticancer Compounds. Front Microbiol 2018; 8:2536. [PMID: 29354097 PMCID: PMC5760561 DOI: 10.3389/fmicb.2017.02536] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
Metabolites from marine fungi have hogged the limelight in drug discovery because of their promise as therapeutic agents. A number of metabolites related to marine fungi have been discovered from various sources which are known to possess a range of activities as antibacterial, antiviral and anticancer agents. Although, over a thousand marine fungi based metabolites have already been reported, none of them have reached the market yet which could partly be related to non-comprehensive screening approaches and lack of sustained lead optimization. The origin of these marine fungal metabolites is varied as their habitats have been reported from various sources such as sponge, algae, mangrove derived fungi, and fungi from bottom sediments. The importance of these natural compounds is based on their cytotoxicity and related activities that emanate from the diversity in their chemical structures and functional groups present on them. This review covers the majority of anticancer compounds isolated from marine fungi during 2012-2016 against specific cancer cell lines.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| | - Ved Prakash
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Nihar Ranjan
- TERI–Deakin Nano Biotechnology Centre, The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
23
|
Wang X, Yu H, Zhang Y, Lu X, Wang B, Liu X. Bioactive Pimarane-Type Diterpenes from Marine Organisms. Chem Biodivers 2017; 15. [DOI: 10.1002/cbdv.201700276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/20/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaoli Wang
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Marine Science and Technology College; Zhejiang Ocean University; 1 South Haida Road Zhoushan 316022 P. R. China
| | - Haobing Yu
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| | - Yixin Zhang
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| | - Xiaoling Lu
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| | - Bin Wang
- School of Food and Pharmacy; Zhejiang Ocean University; 1 South Haida Road Zhoushan 316022 P. R. China
| | - Xiaoyu Liu
- Marine Biopharmaceutical Institute; Second Military Medical University; Xiangyin Road 800 Shanghai 200433 P. R. China
- Department of Biochemistry and Molecular Biology; College of Basic Medical Sciences; Second Military Medical University; Shanghai 200433 P. R. China
| |
Collapse
|
24
|
Joy M, Chakraborty K. An unprecedented antioxidative isopimarane norditerpenoid from bivalve clam, Paphia malabarica with anti-cyclooxygenase and lipoxygenase potential. PHARMACEUTICAL BIOLOGY 2017; 55:819-824. [PMID: 28116944 PMCID: PMC6130755 DOI: 10.1080/13880209.2017.1280061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
CONTEXT The yellow-foot bivalve clam, Paphia malabarica Chemnitz (Veneridae) is distributed in the southwest coastal regions of India. The ethyl acetate-methanol extract of this species exhibited significant antioxidant and anti-inflammatory activities. OBJECTIVES To purify and characterize the bioactive compound from P. malabarica along with in vitro assays. MATERIALS AND METHODS The edible portion of P. malabarica was freeze dried (1.20 kg, yield 20.0%) and extracted with ethyl acetate and methanol (1:1 v/v, 500 mL ×3) by sonication (8 h). The antioxidant activity against DPPH/ABTS+ and anti-inflammatory potential against cyclooxygenase-1,2 (COX-1, 2)/5-lipoxygenase (5-LOX) enzymes were carried out with varying concentrations (0.25-2.00 mg/mL) to determine the IC50 values. The crude extract was chromatographically fractionated and the fraction showing greater potential was further fractionated to yield the pure compound, which was characterized by extensive NMR, IR and mass spectroscopic analyses. RESULTS AND DISCUSSION The fractionation of crude extract of P. malabarica was followed by structural characterization of the new rearranged isopimarane derivative, 18 (4 → 14), 19 (4 → 8)-bis-abeo C19 norditerpenoid. The isopimarane derivative displayed comparable antioxidant activity with α-tocopherol (IC50 DPPH scavenging activity ∼0.6 mg/mL), whereas anti-inflammatory (anti-5-LOX) effect of the title compound was significantly greater (IC50 0.75 mg/mL) than ibuprofen (IC50 0.93 mg/mL). In addition, the greater selectivity index (anti-COX-1IC50/anti-COX-2IC50 0.85) explained the lesser side effects of the isopimarane norditerpenoid than the nonsteroidal anti-inflammatory drug-based therapies. CONCLUSIONS The isopimarane derivative isolated from P. malabrica can be a natural substitute to commercial drugs in future.
Collapse
Affiliation(s)
- Minju Joy
- Central Marine Fisheries Research Institute, Cochin, India
| | | |
Collapse
|
25
|
Liao HX, Sun DW, Zheng CJ, Wang CY. A new hexahydrobenzopyran derivative from the gorgonian-derived Fungus Eutypella sp. Nat Prod Res 2017; 31:1640-1646. [PMID: 28278631 DOI: 10.1080/14786419.2017.1285301] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new hexahydrobenzopyran derivative cytosporin L (1), and another eight known compounds were isolated from the gorgonian-derived fungus Eutypella sp. collected from the South China Sea. The structure of 1 was elucidated by comprehensive spectroscopic data. The absolute configuration of 1 was determined by a chemical reaction and the modified Mosher's method. The isolated secondary metabolites were evaluated for their antibacterial activities. Compound 1 showed antibacterial activity towards Micrococcus lysodeikticus and Enterobacter aerogenes with the same MIC values of 3.12 μM. Compounds 1-3 were evaluated for antiviral activities. Compounds 1 and 2 obviously inhibited the respiratory syncytial virus (RSV) with the IC50 values of 72.01 and 30.25 μM, respectively.
Collapse
Affiliation(s)
- Hai-Xia Liao
- a Key Laboratory of Marine Drugs , The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China
| | - Da-Wei Sun
- a Key Laboratory of Marine Drugs , The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China
| | - Cai-Juan Zheng
- c Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education , Hainan Normal University , Haikou , People's Republic of China
| | - Chang-Yun Wang
- a Key Laboratory of Marine Drugs , The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China , Qingdao , People's Republic of China.,b Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China
| |
Collapse
|
26
|
Liu HX, Zhang L, Chen YC, Sun ZH, Pan QL, Li HH, Zhang WM. Monoterpenes and sesquiterpenes from the marine sediment-derived fungus Eutypella scoparia FS46. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:145-151. [PMID: 27256790 DOI: 10.1080/10286020.2016.1189906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Eutypellol A (1), the first norsesquiterpenoid of sequicarene family, as well as eutypellol B (2), a rare 7-methyl oxidized 2-carene derivative, and one new natural product 2-(2-hydroxy-4-methylcyclohex-3-enyl)propanoic acid (3), along with eight known terpenoids, were isolated from the marine sediment-derived fungus Eutypella scoparia FS46 collected from the South China Sea. Their structures were established on the basis of extensive spectroscopic analysis. Compounds 1-3 were evaluated for their antibacterial activities against Staphylococcus aureus and cytotoxic activities against MCF-7, NCI-H460, and SF-268 tumor cell lines.
Collapse
Affiliation(s)
- Hong-Xin Liu
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Ling Zhang
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Yu-Chan Chen
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Zhang-Hua Sun
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Qing-Ling Pan
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Hao-Hua Li
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Wei-Min Zhang
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| |
Collapse
|
27
|
Niu S, Liu D, Shao Z, Proksch P, Lin W. Eutypellazines A–M, thiodiketopiperazine-type alkaloids from deep sea derived fungus Eutypella sp. MCCC 3A00281. RSC Adv 2017. [DOI: 10.1039/c7ra05774a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioassay and NMR/MS guided fractionation resulted in the isolation of 13 new alkaloids from marine fungus Eutypella sp.
Collapse
Affiliation(s)
- Siwen Niu
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing
- P. R. China
- Key Laboratory of Marine Biogenetic Resources
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing
- P. R. China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources
- Third Institute of Oceanography
- SOA
- Xiamen
- P. R. China
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich-Heine University
- 40225 Duesseldorf
- Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- Beijing
- P. R. China
| |
Collapse
|
28
|
Fan Z, Sun ZH, Liu HX, Chen YC, Li HH, Zhang WM. Perangustols A and B, a pair of new azaphilone epimers from a marine sediment-derived fungus Cladosporium perangustm FS62. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:1024-1029. [PMID: 27240037 DOI: 10.1080/10286020.2016.1181623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
A pair of new azaphilone epimers, perangustols A-B (1-2), and two new natural products (3-4), together with two known metabolites (5-6) were isolated from the culture of the marine sediment-derived fungus Cladosporium perangustum FS62. The structures of these compounds were established on the basis of extensive spectroscopic analysis. The isolated compounds (1-6) were evaluated for their cytotoxic activities against the SF-268, MCF-7, NCI-H460, and HepG-2 tumor cell lines. Nonetheless, no significant activity was observed.
Collapse
Affiliation(s)
- Zhen Fan
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
- b South China Sea Institute of Oceanology, Chinese Academy of Sciences , Guangzhou 510006 , China
- c College of Earth Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhang-Hua Sun
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Hong-Xin Liu
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Yu-Chan Chen
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Hao-Hua Li
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| | - Wei-Min Zhang
- a State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology , Guangdong Institute of Microbiology , Guangzhou 510070 , China
| |
Collapse
|
29
|
Fan Z, Sun ZH, Liu Z, Chen YC, Liu HX, Li HH, Zhang WM. Dichotocejpins A-C: New Diketopiperazines from a Deep-Sea-Derived Fungus Dichotomomyces cejpii FS110. Mar Drugs 2016; 14:md14090164. [PMID: 27618072 PMCID: PMC5039535 DOI: 10.3390/md14090164] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 01/07/2023] Open
Abstract
Three new diketopiperazines, dichotocejpins A–C (1–3), together with eight known analogues (4–11), were isolated from the culture of the deep-sea sediment derived fungus Dichotomomyces cejpii FS110. Their structures, including absolute configurations, were elucidated by a combination of HRESIMS, NMR, X-ray crystallography, and ECD calculations. Compounds 4–6, 10–11 showed significant cytotoxic activities against MCF-7, NCI-H460, HepG-2, and SF-268 tumor cell lines. Compound 1 exhibited excellent inhibitory activity against α-glucosidase with an IC50 of 138 μM.
Collapse
Affiliation(s)
- Zhen Fan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Zhang-Hua Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Zhong Liu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Yu-Chan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Hong-Xin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Hao-Hua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Wei-Min Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
30
|
Dichotocejpins A–C: New Diketopiperazines from a Deep-Sea-Derived Fungus Dichotomomyces cejpii FS110. Mar Drugs 2016. [DOI: 10.3390/md14090164 pmid: 276180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Kuriakose GC, Palem PPC, Jayabaskaran C. Fungal vincristine from Eutypella spp - CrP14 isolated from Catharanthus roseus induces apoptosis in human squamous carcinoma cell line -A431. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:302. [PMID: 27550200 PMCID: PMC4994308 DOI: 10.1186/s12906-016-1299-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/17/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND Catharanthus roseus, a medicinal plant, is known to produce secondary metabolites, vincristine and vinblastine, which are terpenoid indole alkaloids. Previously we have reported that Eutypella spp - CrP14 isolated from stem cutting of this plant had shown significant antiproliferative activity when tested in vitro against HeLa cell line. The present study was conducted to identify the anticancer compound responsible for the anti-proliferative activity of the fungal extract and to evaluate its in vitro anticancer and apoptotic effects. METHODS The anti-proliferative activity of the fungal anticancer compound, vincristine was analyzed by MTT assay against different cancer cell lines. We examined its efficacy of apoptotic induction on A431 cells. The parameters examined included cell cycle distribution, loss of mitochondrial membrane potential (MMP), DNA fragmentation and reactive oxygen species (ROS) generation. RESULTS The presence of vincristine in fungal culture filtrate was confirmed through chromatographic and spectroscopic analyses, and the amount was estimated to be 53 ± 5.0 μg/l. The partially purified fungal vincristine had strong cytotoxic activity towards human squamous carcinoma cells - A431 in the MTT assay. Furthermore, we showed that the fungal vincristine was capable of inducing apoptosis in A431 cells through generation of reactive oxygen species and activation of the intrinsic pathway leading to loss of MMP. CONCLUSIONS We have demonstrated for the first time that the vincristine from Eutypella spp - CrP14 is an efficient inducer of apoptosis in A431 cells, meriting its further evaluation in vivo.
Collapse
Affiliation(s)
- Gini C. Kuriakose
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| | - Padmini P. C. Palem
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012 India
| | | |
Collapse
|
32
|
Liu H, Zhang L, Chen Y, Li S, Tan G, Sun Z, Pan Q, Ye W, Li H, Zhang W. Cytotoxic pimarane-type diterpenes from the marine sediment-derived fungus Eutypella sp. FS46. Nat Prod Res 2016; 31:404-410. [DOI: 10.1080/14786419.2016.1169418] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Ling Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Guohui Tan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhanghua Sun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Qingling Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Wei Ye
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haohua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
33
|
|
34
|
Abstract
Activity-guided isolation of the fermentation broth of the deep-sea derived fungus Acaromyces ingoldii FS121, which was obtained from the China South Sea, yielded a new naphtha-[2,3-b]pyrandione analogue, acaromycin A (1) and a new thiazole analogue, acaromyester A (2), as well as the known compound (+)-cryptosporin (3). Their structures, including absolute configurations, were determined by extensive spectroscopic analysis and electronic circular dichroism (ECD) spectra. Compounds 1–3 were evaluated for in vitro growth inhibitory activities against four tumor cell lines (MCF-7, NCI-H460, SF-268 and HepG-2), wherein compounds 1 and 3 exhibited considerable growth inhibitory effects, with IC50 values less than 10 µM.
Collapse
|
35
|
Zhang LQ, Chen XC, Chen ZQ, Wang GM, Zhu SG, Yang YF, Chen KX, Liu XY, Li YM. Eutypenoids A-C: Novel Pimarane Diterpenoids from the Arctic Fungus Eutypella sp. D-1. Mar Drugs 2016; 14:E44. [PMID: 26959036 PMCID: PMC4820298 DOI: 10.3390/md14030044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/14/2016] [Accepted: 02/15/2016] [Indexed: 11/16/2022] Open
Abstract
Eutypenoids A-C (1-3), pimarane diterpenoid alkaloid and two ring A rearranged pimarane diterpenoids, were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Their structures, including absolute configurations, were authenticated on the basis of the mass spectroscopy (MS), nuclear magnetic resonance (NMR), X-ray crystallography, and electronic circular dichroism (ECD) analysis. The immunosuppressive effects of eutypenoids A-C (1-3) were studied using a ConA-induced splenocyte proliferation model, which suggested that 2 exhibited potent immunosuppressive activities.
Collapse
Affiliation(s)
- Liu-Qiang Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Xiao-Chong Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Zhao-Qiang Chen
- Shanghai Institute of Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Gui-Min Wang
- Shanghai Institute of Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Shi-Guo Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Yi-Fu Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Kai-Xian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
- Shanghai Institute of Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.
| | - Xiao-Yu Liu
- Department of Biochemistry and Molecular Biology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China.
| | - Yi-Ming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
36
|
Wu B, Wiese J, Labes A, Kramer A, Schmaljohann R, Imhoff JF. Lindgomycin, an Unusual Antibiotic Polyketide from a Marine Fungus of the Lindgomycetaceae. Mar Drugs 2015; 13:4617-32. [PMID: 26225984 PMCID: PMC4556996 DOI: 10.3390/md13084617] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/11/2015] [Accepted: 07/16/2015] [Indexed: 12/24/2022] Open
Abstract
An unusual polyketide with a new carbon skeleton, lindgomycin (1), and the recently described ascosetin (2) were extracted from mycelia and culture broth of different Lindgomycetaceae strains, which were isolated from a sponge of the Kiel Fjord in the Baltic Sea (Germany) and from the Antarctic. Their structures were established by spectroscopic means. In the new polyketide, two distinct domains, a bicyclic hydrocarbon and a tetramic acid, are connected by a bridging carbonyl. The tetramic acid substructure of compound 1 was proved to possess a unique 5-benzylpyrrolidine-2,4-dione unit. The combination of 5-benzylpyrrolidine-2,4-dione of compound 1 in its tetramic acid half and 3-methylbut-3-enoic acid pendant in its decalin half allow the assignment of a new carbon skeleton. The new compound 1 and ascosetin showed antibiotic activities with IC50 value of 5.1 (±0.2) µM and 3.2 (±0.4) μM, respectively, against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Bin Wu
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany.
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany.
| | - Antje Labes
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany.
| | - Annemarie Kramer
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany.
| | - Rolf Schmaljohann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany.
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany.
| |
Collapse
|
37
|
Elissawy AM, El-Shazly M, Ebada SS, Singab AB, Proksch P. Bioactive terpenes from marine-derived fungi. Mar Drugs 2015; 13:1966-92. [PMID: 25854644 PMCID: PMC4413195 DOI: 10.3390/md13041966] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 03/14/2015] [Indexed: 12/29/2022] Open
Abstract
Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.
Collapse
Affiliation(s)
- Ahmed M. Elissawy
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Sherif S. Ebada
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - AbdelNasser B. Singab
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine Universität, Geb. 26.23, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-211-811-4163; Fax: +49-211-811-1923
| |
Collapse
|
38
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
39
|
Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar Drugs 2014; 12:1208-19. [PMID: 24663111 PMCID: PMC3967205 DOI: 10.3390/md12031208] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/22/2014] [Accepted: 02/11/2014] [Indexed: 01/15/2023] Open
Abstract
Two unusual pyridones, trichodin A (1) and trichodin B (2), together with the known compound, pyridoxatin (3), were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC₅₀ values of 24 μM and 4 μM, respectively.
Collapse
|
40
|
Pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. J Antibiot (Tokyo) 2013; 67:171-4. [PMID: 24169793 DOI: 10.1038/ja.2013.104] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/14/2013] [Accepted: 09/26/2013] [Indexed: 11/09/2022]
Abstract
Two new diterpenes, libertellenone G(1) and libertellenone H(2) were isolated from the fungus Eutypella sp. D-1 isolated from the soil of high latitude of Arctic, together with two known pimarane diterpenes (3-4). The structures of 1 and 2 were elucidated from spectroscopic data (nuclear magnetic resonance, mass spectrometry and infrared). These compounds were evaluated for cytotoxic activity against seven human tumor cell lines. Compound 2 showed a range of cytotoxicity between 3.31 and 44.1 μM. Compound 1 exhibited antibacterial activity against Escherichia coli, Bacillus subtilis and Staphylococcus aureus.
Collapse
|
41
|
Wu B, Wu X, Sun M, Li M. Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Mar Drugs 2013; 11:2713-21. [PMID: 23917067 PMCID: PMC3766860 DOI: 10.3390/md11082713] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 12/22/2022] Open
Abstract
Two new sesquiterpenes, 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7β H-eudesman-2β,11-diol (1) and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β,2β,11, 14-tetraol (2), were produced as stress metabolites in the cultured mycelia of Pestalotiopsis sp. Z233 isolated from the algae Sargassum horneri in response to abiotic stress elicitation by CuCl2. Their structures were established by spectroscopic means. New compounds 1 and 2 showed tyrosinase inhibitory activities with IC50 value of 14.8 µM and 22.3 µM.
Collapse
Affiliation(s)
- Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel 24105, Germany; E-Mail:
| | - Xiaodan Wu
- Center of Analysis and Measurement, Zhejiang University, Hangzhou 310058, China; E-Mail:
| | - Min Sun
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel 24105, Germany; E-Mail:
| | - Minhui Li
- Pharmacy Department, Baotou Medical College, Baotou 014060, China
| |
Collapse
|
42
|
Sun L, Li D, Tao M, Chen Y, Zhang Q, Dan F, Zhang W. Two new polyketides from a marine sediment-derived fungusEutypella scopariaFS26. Nat Prod Res 2013; 27:1298-304. [DOI: 10.1080/14786419.2012.733393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|