1
|
Adıgüzel E, Ülger TG. A marine-derived antioxidant astaxanthin as a potential neuroprotective and neurotherapeutic agent: A review of its efficacy on neurodegenerative conditions. Eur J Pharmacol 2024; 977:176706. [PMID: 38843946 DOI: 10.1016/j.ejphar.2024.176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Astaxanthin is a potent lipid-soluble carotenoid produced by several different freshwater and marine microorganisms, including microalgae, bacteria, fungi, and yeast. The proven therapeutic effects of astaxanthin against different diseases have made this carotenoid popular in the nutraceutical market and among consumers. Recently, astaxanthin is also receiving attention for its effects in the co-adjuvant treatment or prevention of neurological pathologies. In this systematic review, studies evaluating the efficacy of astaxanthin against different neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, cerebrovascular diseases, and spinal cord injury are analyzed. Based on the current literature, astaxanthin shows potential biological activity in both in vitro and in vivo models. In addition, its preventive and therapeutic activities against the above-mentioned diseases have been emphasized in studies with different experimental designs. In contrast, none of the 59 studies reviewed reported any safety concerns or adverse health effects as a result of astaxanthin supplementation. The preventive or therapeutic role of astaxanthin may vary depending on the dosage and route of administration. Although there is a consensus in the literature regarding its effectiveness against the specified diseases, it is important to determine the safe intake levels of synthetic and natural forms and to determine the most effective forms for oral intake.
Collapse
Affiliation(s)
- Emre Adıgüzel
- Karamanoğlu Mehmetbey University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 70100, Karaman, Turkey.
| | - Taha Gökmen Ülger
- Bolu Abant İzzet Baysal University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu, Turkey
| |
Collapse
|
2
|
Nyarko-Danquah I, Pajarillo E, Kim S, Digman A, Multani HK, Ajayi I, Son DS, Aschner M, Lee E. Microglial Sp1 induced LRRK2 upregulation in response to manganese exposure, and 17β-estradiol afforded protection against this manganese toxicity. Neurotoxicology 2024; 103:105-114. [PMID: 38857675 DOI: 10.1016/j.neuro.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, presenting symptoms similar to those of Parkinson's disease (PD), yet the mechanisms by which Mn induces its neurotoxicity are not completely understood. 17β-estradiol (E2) affords neuroprotection against Mn toxicity in various neural cell types including microglia. Our previous studies have shown that leucine-rich repeat kinase 2 (LRRK2) mediates Mn-induced inflammatory toxicity in microglia. The LRRK2 promoter sequences contain three putative binding sites of the transcription factor (TF), specificity protein 1 (Sp1), which increases LRRK2 promoter activity. In the present study, we tested if the Sp1-LRRK2 pathway plays a role in both Mn toxicity and the protection afforded by E2 against Mn toxicity in BV2 microglial cells. The results showed that Mn induced cytotoxicity, oxidative stress, and tumor necrosis factor-α production, which were attenuated by an LRRK2 inhibitor, GSK2578215A. The overexpression of Sp1 increased LRRK2 promoter activity, mRNA and protein levels, while inhibition of Sp1 with its pharmacological inhibitor, mithramycin A, attenuated the Mn-induced increases in LRRK2 expression. Furthermore, E2 attenuated the Mn-induced Sp1 expression by decreasing the expression of Sp1 via the promotion of the ubiquitin-dependent degradation pathway, which was accompanied by increased protein levels of RING finger protein 4, the E3-ligase of Sp1, Sp1 ubiquitination, and SUMOylation. Taken together, our novel findings suggest that Sp1 serves as a critical TF in Mn-induced LRRK2 expression as well as in the protection afforded by E2 against Mn toxicity through reduction of LRRK2 expression in microglia.
Collapse
Affiliation(s)
- Ivan Nyarko-Danquah
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Edward Pajarillo
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Sanghoon Kim
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Alexis Digman
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Harpreet Kaur Multani
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Itunu Ajayi
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Science, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA.
| |
Collapse
|
3
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
4
|
Blagov AV, Summerhill VI, Sukhorukov VN, Zhigmitova EB, Postnov AY, Orekhov AN. Potential use of antioxidants for the treatment of chronic inflammatory diseases. Front Pharmacol 2024; 15:1378335. [PMID: 38818374 PMCID: PMC11137403 DOI: 10.3389/fphar.2024.1378335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
The excessive production of various reactive oxidant species over endogenous antioxidant defense mechanisms leads to the development of a state of oxidative stress, with serious biological consequences. The consequences of oxidative stress depend on the balance between the generation of reactive oxidant species and the antioxidant defense and include oxidative damage of biomolecules, disruption of signal transduction, mutation, and cell apoptosis. Accumulating evidence suggests that oxidative stress is involved in the physiopathology of various debilitating illnesses associated with chronic inflammation, including cardiovascular diseases, diabetes, cancer, or neurodegenerative processes, that need continuous pharmacological treatment. Oxidative stress and chronic inflammation are tightly linked pathophysiological processes, one of which can be simply promoted by another. Although, many antioxidant trials have been unsuccessful (some of the trials showed either no effect or even harmful effects) in human patients as a preventive or curative measure, targeting oxidative stress remains an interesting therapeutic approach for the development of new agents to design novel anti-inflammatory drugs with a reliable safety profile. In this regard, several natural antioxidant compounds were explored as potential therapeutic options for the treatment of chronic inflammatory diseases. Several metalloenzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, are among the essential enzymes that maintain the low nanomolar physiological concentrations of superoxide (O2•-) and hydrogen peroxide (H2O2), the major redox signaling molecules, and thus play important roles in the alteration of the redox homeostasis. These enzymes have become a striking source of motivation to design catalytic drugs to enhance the action of these enzymes under pathological conditions related to chronic inflammation. This review is focused on several major representatives of natural and synthetic antioxidants as potential drug candidates for the treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | | | - Anton Y. Postnov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| | - Alexander N. Orekhov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Federal State Budgetary Scientific Institution, Petrovsky National Research Centre of Surgery (FSBSI “Petrovsky NRCS”), Moscow, Russia
| |
Collapse
|
5
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
6
|
Silva J, Alves C, Soledade F, Martins A, Pinteus S, Gaspar H, Alfonso A, Pedrosa R. Marine-Derived Components: Can They Be a Potential Therapeutic Approach to Parkinson's Disease? Mar Drugs 2023; 21:451. [PMID: 37623732 PMCID: PMC10455662 DOI: 10.3390/md21080451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
The increase in the life expectancy average has led to a growing elderly population, thus leading to a prevalence of neurodegenerative disorders, such as Parkinson's disease (PD). PD is the second most common neurodegenerative disorder and is characterized by a progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). The marine environment has proven to be a source of unique and diverse chemical structures with great therapeutic potential to be used in the treatment of several pathologies, including neurodegenerative impairments. This review is focused on compounds isolated from marine organisms with neuroprotective activities on in vitro and in vivo models based on their chemical structures, taxonomy, neuroprotective effects, and their possible mechanism of action in PD. About 60 compounds isolated from marine bacteria, fungi, mollusk, sea cucumber, seaweed, soft coral, sponge, and starfish with neuroprotective potential on PD therapy are reported. Peptides, alkaloids, quinones, terpenes, polysaccharides, polyphenols, lipids, pigments, and mycotoxins were isolated from those marine organisms. They can act in several PD hallmarks, reducing oxidative stress, preventing mitochondrial dysfunction, α-synuclein aggregation, and blocking inflammatory pathways through the inhibition translocation of NF-kB factor, reduction of human tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6). This review gathers the marine natural products that have shown pharmacological activities acting on targets belonging to different intracellular signaling pathways related to PD development, which should be considered for future pre-clinical studies.
Collapse
Affiliation(s)
- Joana Silva
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| | - Francisca Soledade
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Alice Martins
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Susete Pinteus
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
| | - Helena Gaspar
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, Polytechnic of Leiria, 2520-630 Peniche, Portugal; (F.S.); (A.M.); (S.P.); (H.G.)
- BioISI—Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisboa, Portugal
| | - Amparo Alfonso
- Department of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, 27002 Lugo, Spain;
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, ARNET—Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-614 Peniche, Portugal;
| |
Collapse
|
7
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
9
|
Si P, Zhu C. Biological and neurological activities of astaxanthin (Review). Mol Med Rep 2022; 26:300. [PMID: 35946443 PMCID: PMC9435021 DOI: 10.3892/mmr.2022.12816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022] Open
Abstract
Astaxanthin is a lipid‑soluble carotenoid produced by various microorganisms and marine animals, including bacteria, yeast, fungi, microalgae, shrimps and lobsters. Astaxanthin has antioxidant, anti‑inflammatory and anti‑apoptotic properties. These characteristics suggest that astaxanthin has health benefits and protects against various diseases. Owing to its ability to cross the blood‑brain barrier, astaxanthin has received attention for its protective effects against neurological disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, cerebral ischemia/reperfusion, subarachnoid hemorrhage, traumatic brain injury, spinal cord injury, cognitive impairment and neuropathic pain. Previous studies on the neurological effects of astaxanthin are mostly based on animal models and cellular experiments. Thus, the biological effects of astaxanthin on humans and its underlying mechanisms are still not fully understood. The present review summarizes the neuroprotective effects of astaxanthin, explores its mechanisms of action and draws attention to its potential clinical implications as a therapeutic agent.
Collapse
Affiliation(s)
- Pan Si
- Department of Neurology Intervention, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Chenkai Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
10
|
Patil AD, Kasabe PJ, Dandge PB. Pharmaceutical and nutraceutical potential of natural bioactive pigment: astaxanthin. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:25. [PMID: 35794254 PMCID: PMC9259778 DOI: 10.1007/s13659-022-00347-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/09/2022] [Indexed: 05/31/2023]
Abstract
Astaxanthin (3,3'-dihydroxy-β,β-carotene-4,4'-dione) is an orange-red, lipophilic keto-carotenoid pigment. It is majorly found in marine ecosystems particularly in aquatic animals such as salmon, shrimp, trout, krill, crayfish, and so on. It is also synthesized in microalgae Heamatococcus pluvialis, Chlorococcum, Chlorella zofingiensis, red yeast Phaffia rhodozyma and bacterium Paracoccus carotinifaciens. Some aquatic and terrestrial creatures regarded as a primary and secondary sources of the astaxanthin producing and accumulating it through their metabolic pathways. Astaxanthin is the powerful antioxidant, nutritional supplement as well as promising therapeutic compound, observed to have activities against different ravaging diseases and disorders. Researchers have reported remarkable bioactivities of astaxanthin against major non-communicable chronic diseases such as cardiovascular diseases, cancer, diabetes, neurodegenerative, and immune disorders. The current review discusses some structural aspects of astaxanthin. It further elaborates its multiple potencies such as antioxidant, anti-inflammatory, anti-proliferative, anti-cancer, anti-obese, anti-diabetic, anti-ageing, anti-TB, anti-viral, anti-COVID 19, neuro-protective, nephro-protective, and fertility-enhancing properties. These potencies make it a more precious entity in the preventions as well as treatments of prevalent systematic diseases and/or disorders. Also, the review is acknowledging and documenting its powerful bioactivities in relation with the pharmaceutical as well as nutraceutical applicability.
Collapse
Affiliation(s)
- Apurva D. Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| | - Pramod J. Kasabe
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra India
| | - Padma B. Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra India
| |
Collapse
|
11
|
Wang S, Qi X. The Putative Role of Astaxanthin in Neuroinflammation Modulation: Mechanisms and Therapeutic Potential. Front Pharmacol 2022; 13:916653. [PMID: 35814201 PMCID: PMC9263351 DOI: 10.3389/fphar.2022.916653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Neuroinflammation is a protective mechanism against insults from exogenous pathogens and endogenous cellular debris and is essential for reestablishing homeostasis in the brain. However, excessive prolonged neuroinflammation inevitably leads to lesions and disease. The use of natural compounds targeting pathways involved in neuroinflammation remains a promising strategy for treating different neurological and neurodegenerative diseases. Astaxanthin, a natural xanthophyll carotenoid, is a well known antioxidant. Mounting evidence has revealed that astaxanthin is neuroprotective and has therapeutic potential by inhibiting neuroinflammation, however, its functional roles and underlying mechanisms in modulating neuroinflammation have not been systematically summarized. Hence, this review summarizes recent progress in this field and provides an update on the medical value of astaxanthin. Astaxanthin modulates neuroinflammation by alleviating oxidative stress, reducing the production of neuroinflammatory factors, inhibiting peripheral inflammation and maintaining the integrity of the blood-brain barrier. Mechanistically, astaxanthin scavenges radicals, triggers the Nrf2-induced activation of the antioxidant system, and suppresses the activation of the NF-κB and mitogen-activated protein kinase pathways. With its good biosafety and high bioavailability, astaxanthin has strong potential for modulating neuroinflammation, although some outstanding issues still require further investigation.
Collapse
|
12
|
Alugoju P, Krishna Swamy VKD, Anthikapalli NVA, Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Crit Rev Food Sci Nutr 2022; 63:10709-10774. [PMID: 35708049 DOI: 10.1080/10408398.2022.2084600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Age-related diseases are associated with increased morbidity in the past few decades and the cost associated with the treatment of these age-related diseases exerts a substantial impact on social and health care expenditure. Anti-aging strategies aim to mitigate, delay and reverse aging-associated diseases, thereby improving quality of life and reducing the burden of age-related pathologies. The natural dietary antioxidant supplementation offers substantial pharmacological and therapeutic effects against various disease conditions. Astaxanthin is one such natural carotenoid with superior antioxidant activity than other carotenoids, as well as well as vitamins C and E, and additionally, it is known to exhibit a plethora of pharmacological effects. The present review summarizes the protective molecular mechanisms of actions of astaxanthin on age-related diseases of multiple organs such as Neurodegenerative diseases [Alzheimer's disease (AD), Parkinson's disease (PD), Stroke, Multiple Sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Status Epilepticus (SE)], Bone Related Diseases [Osteoarthritis (OA) and Osteoporosis], Cancers [Colon cancer, Prostate cancer, Breast cancer, and Lung Cancer], Cardiovascular disorders [Hypertension, Atherosclerosis and Myocardial infarction (MI)], Diabetes associated complications [Diabetic nephropathy (DN), Diabetic neuropathy, and Diabetic retinopathy (DR)], Eye disorders [Age related macular degeneration (AMD), Dry eye disease (DED), Cataract and Uveitis], Gastric Disorders [Gastritis, Colitis, and Functional dyspepsia], Kidney Disorders [Nephrolithiasis, Renal fibrosis, Renal Ischemia reperfusion (RIR), Acute kidney injury (AKI), and hyperuricemia], Liver Diseases [Nonalcoholic fatty liver disease (NAFLD), Alcoholic Liver Disease (AFLD), Liver fibrosis, and Hepatic Ischemia-Reperfusion (IR) Injury], Pulmonary Disorders [Pulmonary Fibrosis, Acute Lung injury (ALI), and Chronic obstructive pulmonary disease (COPD)], Muscle disorders (skeletal muscle atrophy), Skin diseases [Atopic dermatitis (ATD), Skin Photoaging, and Wound healing]. We have also briefly discussed astaxanthin's protective effects on reproductive health.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - V K D Krishna Swamy
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, India
| | | | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Kabir MT, Rahman MH, Shah M, Jamiruddin MR, Basak D, Al-Harrasi A, Bhatia S, Ashraf GM, Najda A, El-Kott AF, Mohamed HRH, Al-Malky HS, Germoush MO, Altyar AE, Alwafai EB, Ghaboura N, Abdel-Daim MM. Therapeutic promise of carotenoids as antioxidants and anti-inflammatory agents in neurodegenerative disorders. Biomed Pharmacother 2022; 146:112610. [PMID: 35062074 DOI: 10.1016/j.biopha.2021.112610] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/26/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative disorders (NDs) including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis have various disease-specific causal factors and pathological features. A very common characteristic of NDs is oxidative stress (OS), which takes place due to the elevated generation of reactive oxygen species during the progression of NDs. Furthermore, the pathological condition of NDs including an increased level of protein aggregates can further lead to chronic inflammation because of the microglial activation. Carotenoids (CTs) are naturally occurring pigments that play a significant role in averting brain disorders. More than 750 CTs are present in nature, and they are widely available in plants, microorganisms, and animals. CTs are accountable for the red, yellow, and orange pigments in several animals and plants, and these colors usually indicate various types of CTs. CTs exert various bioactive properties because of its characteristic structure, including anti-inflammatory and antioxidant properties. Due to the protective properties of CTs, levels of CTs in the human body have been markedly linked with the prevention and treatment of multiple diseases including NDs. In this review, we have summarized the relationship between OS, neuroinflammation, and NDs. In addition, we have also particularly focused on the antioxidants and anti-inflammatory properties of CTs in the management of NDs.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Wonju 26426, Gangwon-do, South Korea.
| | - Muddaser Shah
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | | | - Debasish Basak
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL 33169, United States
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman; School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland.
| | - Attalla F El-Kott
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour 22511, Egypt
| | - Hanan R H Mohamed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Hamdan S Al-Malky
- Regional Drug Information Center, Ministry of Health, Jeddah, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Esraa B Alwafai
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
14
|
Manochkumar J, Doss CGP, El-Seedi HR, Efferth T, Ramamoorthy S. The neuroprotective potential of carotenoids in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153676. [PMID: 34339943 DOI: 10.1016/j.phymed.2021.153676] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/26/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Despite advances in research on neurodegenerative diseases, the pathogenesis and treatment response of neurodegenerative diseases remain unclear. Recent studies revealed a significant role of carotenoids to treat neurodegenerative diseases. The aim of this study was to systematically review the neuroprotective potential of carotenoids in vivo and in vitro and the molecular mechanisms and pathological factors contributing to major neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease, amyotrophic lateral sclerosis, and stroke). HYPOTHESIS Carotenoids as therapeutic molecules to target neurodegenerative diseases. RESULTS Aggregation of toxic proteins, mitochondrial dysfunction, oxidative stress, the excitotoxic pathway, and neuroinflammation were the major pathological factors contributing to the progression of neurodegenerative diseases. Furthermore, in vitro and in vivo studies supported the beneficiary role of carotenoids, namely lycopene, β-carotene, crocin, crocetin, lutein, fucoxanthin and astaxanthin in alleviating disease progression. These carotenoids provide neuroprotection by inhibition of neuro-inflammation, microglial activation, excitotoxic pathway, modulation of autophagy, attenuation of oxidative damage and activation of defensive antioxidant enzymes. Additionally, studies conducted on humans also demonstrated that dietary intake of carotenoids lowers the risk of neurodegenerative diseases. CONCLUSION Carotenoids may be used as drugs to prevent and treat neurodegenerative diseases. Although, the in vitro and in vivo results are encouraging, further well conducted clinical studies on humans are required to conclude about the full potential of neurodegenerative diseases.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Hesham R El-Seedi
- Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Box 574, SE-75 123 Uppsala, Sweden; Department of Chemistry, Faculty of Science, Menoufia University, 32512 Shebin El-Koom, Egypt
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
Molecular Mechanisms of Astaxanthin as a Potential Neurotherapeutic Agent. Mar Drugs 2021; 19:md19040201. [PMID: 33916730 PMCID: PMC8065559 DOI: 10.3390/md19040201] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neurological disorders are diseases of the central and peripheral nervous system that affect millions of people, and the numbers are rising gradually. In the pathogenesis of neurodegenerative diseases, the roles of many signaling pathways were elucidated; however, the exact pathophysiology of neurological disorders and possible effective therapeutics have not yet been precisely identified. This necessitates developing multi-target treatments, which would simultaneously modulate neuroinflammation, apoptosis, and oxidative stress. The present review aims to explore the potential therapeutic use of astaxanthin (ASX) in neurological and neuroinflammatory diseases. ASX, a member of the xanthophyll group, was found to be a promising therapeutic anti-inflammatory agent for many neurological disorders, including cerebral ischemia, Parkinson's disease, Alzheimer's disease, autism, and neuropathic pain. An effective drug delivery system of ASX should be developed and further tested by appropriate clinical trials.
Collapse
|
16
|
Gao HL, Yu XJ, Liu KL, Zuo YY, Fu LY, Chen YM, Zhang DD, Shi XL, Qi J, Li Y, Yi QY, Tian H, Wang XM, Yu JY, Zhu GQ, Liu JJ, Kang KB, Kang YM. Chronic Infusion of Astaxanthin Into Hypothalamic Paraventricular Nucleus Modulates Cytokines and Attenuates the Renin-Angiotensin System in Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2021; 77:170-181. [PMID: 33538532 DOI: 10.1097/fjc.0000000000000953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/28/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Oxidative stress, the renin-angiotensin system (RAS), and inflammation are some of the mechanisms involved in the pathogenesis of hypertension. The aim of this study is to examine the protective effect of the chronic administration of astaxanthin, which is extracted from the shell of crabs and shrimps, into hypothalamic paraventricular nucleus (PVN) in spontaneously hypertensive rats. Animals were randomly assigned to 2 groups and treated with bilateral PVN infusion of astaxanthin or vehicle (artificial cerebrospinal fluid) through osmotic minipumps (Alzet Osmotic Pumps, Model 2004, 0.25 μL/h) for 4 weeks. Spontaneously hypertensive rats had higher mean arterial pressure and plasma level of norepinephrine and proinflammatory cytokine; higher PVN levels of reactive oxygen species, NOX2, NOX4, IL-1β, IL-6, ACE, and AT1-R; and lower PVN levels of IL-10 and Cu/Zn SOD, Mn SOD, ACE2, and Mas receptors than Wistar-Kyoto rats. Our data showed that chronic administration of astaxanthin into PVN attenuated the overexpression of reactive oxygen species, NOX2, NOX4, inflammatory cytokines, and components of RAS within the PVN and suppressed hypertension. The present results revealed that astaxanthin played a role in the brain. Our findings demonstrated that astaxanthin had protective effect on hypertension by improving the balance between inflammatory cytokines and components of RAS.
Collapse
Affiliation(s)
- Hong-Li Gao
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Yi-Yi Zuo
- College of Stomatology, Xi'an Jiaotong University, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Xi'an, Shaanxi, People's Republic of China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Yan-Mei Chen
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Dong-Dong Zhang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Hua Tian
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Xiao-Min Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Jia-Yue Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China; and
| | - Jin-Jun Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| | - Kai B Kang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, China
| |
Collapse
|
17
|
Zhou Q, Zhang MM, Liu M, Tan ZG, Qin QL, Jiang YG. LncRNA XIST sponges miR-199a-3p to modulate the Sp1/LRRK2 signal pathway to accelerate Parkinson's disease progression. Aging (Albany NY) 2021; 13:4115-4137. [PMID: 33494069 PMCID: PMC7906184 DOI: 10.18632/aging.202378] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
In vitro and in vivo models of Parkinson’s disease were established to investigate the effects of the lncRNA XIST/miR-199a-3p/Sp1/LRRK2 axis. The binding between XIST and miR-199a-3p as well as miR-199a-3p and Sp1 were examined by luciferase reporter assay and confirmed by RNA immunoprecipitation analysis. Following the Parkinson’s disease animal behavioural assessment by suspension and swim tests, the brain tissue injuries were evaluated by hematoxylin and eosin, TdT-mediated dUTP-biotin nick end labelling, and tyrosine hydroxylase stainings. The results indicated that miR-199a-3p expression was downregulated, whereas that of XIST, Sp1 and LRRK2 were upregulated in Parkinson’s disease. Moreover, miR-199a-3p overexpression or XIST knockdown inhibited the cell apoptosis induced by MPP+ treatment and promoted cell proliferation. The neurodegenerative defects were significantly recovered by treating the cells with shXIST or shSp1, whereas miR-199a-3p inhibition or Sp1 and LRRK2 overexpression abrogated these beneficial effects. Furthermore, the results of our in vivo experiments confirmed the neuroprotective effects of shXIST and miR-199a-3p against MPTP-induced brain injuries, and the Parkinson’s disease behavioural symptoms were effectively alleviated upon shXIST or miR-199a-3p treatment. In summary, the results of the present study showed that lncRNA XIST sponges miR-199a-3p to modulate Sp1 expression and further accelerates Parkinson’s disease progression by targeting LRRK2.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Ming-Ming Zhang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Min Liu
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Zhi-Gang Tan
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Qi-Lin Qin
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| | - Yu-Gang Jiang
- Department of Neurosurgery, Second Xiangya Hospital of Central South University, Changsha 410011, Hunan Province, P.R. China
| |
Collapse
|
18
|
Zhang XS, Lu Y, Li W, Tao T, Peng L, Wang WH, Gao S, Liu C, Zhuang Z, Xia DY, Hang CH, Li W. Astaxanthin ameliorates oxidative stress and neuronal apoptosis via SIRT1/NRF2/Prx2/ASK1/p38 after traumatic brain injury in mice. Br J Pharmacol 2021; 178:1114-1132. [PMID: 33326114 DOI: 10.1111/bph.15346] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress and neuronal apoptosis play key roles in traumatic brain injury. We investigated the protective effects of astaxanthin against traumatic brain injury and its underlying mechanisms of action. EXPERIMENTAL APPROACH A weight-drop model of traumatic brain injury in vivo and hydrogen peroxide exposure in vitro model were established. Brain oedema, behaviour tests, western blot, biochemical analysis, lesion volume, histopathological study and cell viability were performed. KEY RESULTS Astaxanthin significantly reduced oxidative insults on Days 1, 3 and 7 after traumatic brain injury. Neuronal apoptosis was also ameliorated on Day 3. Additionally, astaxanthin improved neurological functions up to 3 weeks after traumatic brain injury. Astaxanthin treatment dramatically enhanced the expression of peroxiredoxin 2 (Prx2), nuclear factor-erythroid 2-related factor 2 (NRF2/Nrf2) and sirtuin 1 (SIRT1), while it down-regulated the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) and p38. Inhibition of Prx2 by siRNA injection reversed the beneficial effects of astaxanthin against traumatic brain injury. Additionally, Nrf2 knockout prevented the neuroprotective effects of astaxanthin in traumatic brain injury. In contrast, overexpression of Prx2 in Nrf2 knockout mice attenuated the secondary brain injury after traumatic brain injury. Moreover, inhibiting SIRT1 by EX527 dramatically inhibited the neuroprotective effects of astaxanthin and suppressed SIRT1/Nrf2/Prx2/ASK1/p38 pathway both in vivo and in vitro. CONCLUSION AND IMPLICATIONS Astaxanthin improved the neurological functions and protected the brain from injury after traumatic brain injury, primarily by reducing oxidative stress and neuronal death via SIRT1/Nrf2/Prx2/ASK1/p38 signalling pathway and might be a new candidate to ameliorate traumatic brain injury.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen Li
- Department of Pharmacy, Beijing Boai Hospital, China Rehabilitation Research Center, Capital Medical University, Beijing, China
| | - Tao Tao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei-Han Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
19
|
Exendin-4 Reversed the PC12 Cell Damage Induced by circRNA CDR1as/miR-671/GSK3β Signaling Pathway. J Mol Neurosci 2020; 71:778-789. [PMID: 32889692 DOI: 10.1007/s12031-020-01698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
The purpose of this paper is to study the effect of circRNA cerebellar degeneration-related protein 1 antisense RNA(CDR1as)/miR-671/GSK3β signaling pathway on PC12 cell injury and the mechanism of Exendin-4 (Ex-4) in PC12 cell injury protection. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) was used to detect the expression levels of circular RNA CDR1as and miR-671 in PC12 cells. By overexpressing or knocking out CDR1as, miR-671, and GSK3β, the role of CDR1as, miR-671, and GSK3β in PC12 cell injury was analyzed. The binding of CDR1as to miR-671 and GSK3β to miR-671 was verified by dual luciferase reporter assay. PC12 cells were treated with 1-methyl-4 phenyl-pyridine ion (MPP+) to construct a PC12 cell damage model. PC12 cell transfection experiments were used to confirm the role of CDR1as/miR-671/GSK3β signal axis in PC12 cell damage, and the role of Ex-4 in the association of circRNA CDR1as/miR-671/GSK3β signaling axis and PC12 cell damage. PC12 cell damage was detected by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cellular lactate dehydrogenase (LDH) release. Ex-4 reversed the phosphorylation levels of PI3K, AKT, and GSK-3β in MPP+-treated PC12 cells, and reduced MPP+-induced PC12 cell damage. CircRNA CDR1as upregulated the expression of GSK3β by sponge miR-671. Ex-4 downregulated CDR1as expression and upregulated miR-671 expression in MPP+-induced PC12 cell. Silencing of CDR1as reduced MPP+-induced PC12 cell damage. CDR1as transfection downregulated the expression of miR-671 in PC12 cells, promoted the expression and phosphorylated of GSK3β, and induced PC12 cell damage. GSK3β silencing reversed CDR1as-induced PC12 cell damage. CDR1as promoted the phosphorylation level of GSK3β in PC12 cells to cause cell damage; Ex-4 reversed the phosphorylation of GSK3β caused by CDR1as in PC12 cells and reduced the PC12 cell damage caused by CDR1as. Ex-4 reverses the damage of PC12 cells induced by CDR1as/miR-671/GSK3β signaling pathway.
Collapse
|
20
|
Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21103624. [PMID: 32455532 PMCID: PMC7279222 DOI: 10.3390/ijms21103624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic low-grade inflammatory process in which activated microglia generate cytotoxic factors-most prominently peroxynitrite-which induce the death and dysfunction of neighboring dopaminergic neurons. Dying neurons then release damage-associated molecular pattern proteins such as high mobility group box 1 which act on microglia via a range of receptors to amplify microglial activation. Since peroxynitrite is a key mediator in this process, it is proposed that nutraceutical measures which either suppress microglial production of peroxynitrite, or which promote the scavenging of peroxynitrite-derived oxidants, should have value for the prevention and control of PD. Peroxynitrite production can be quelled by suppressing activation of microglial NADPH oxidase-the source of its precursor superoxide-or by down-regulating the signaling pathways that promote microglial expression of inducible nitric oxide synthase (iNOS). Phycocyanobilin of spirulina, ferulic acid, long-chain omega-3 fatty acids, good vitamin D status, promotion of hydrogen sulfide production with taurine and N-acetylcysteine, caffeine, epigallocatechin-gallate, butyrogenic dietary fiber, and probiotics may have potential for blunting microglial iNOS induction. Scavenging of peroxynitrite-derived radicals may be amplified with supplemental zinc or inosine. Astaxanthin has potential for protecting the mitochondrial respiratory chain from peroxynitrite and environmental mitochondrial toxins. Healthful programs of nutraceutical supplementation may prove to be useful and feasible in the primary prevention or slow progression of pre-existing PD. Since damage to the mitochondria in dopaminergic neurons by environmental toxins is suspected to play a role in triggering the self-sustaining inflammation that drives PD pathogenesis, there is also reason to suspect that plant-based diets of modest protein content, and possibly a corn-rich diet high in spermidine, might provide protection from PD by boosting protective mitophagy and thereby aiding efficient mitochondrial function. Low-protein diets can also promote a more even response to levodopa therapy.
Collapse
|
21
|
Astaxanthin suppresses endoplasmic reticulum stress and protects against neuron damage in Parkinson's disease by regulating miR-7/SNCA axis. Neurosci Res 2020; 165:51-60. [PMID: 32333925 DOI: 10.1016/j.neures.2020.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that featured by the loss of dopaminergic neurons. Astaxanthin (AST), an important antioxidant, is demonstrated to be a neuroprotective agent for PD. However, the underlying mechanisms of AST in PD remain largely unclear. In this study, we found that AST treatment significantly not only abolished the cell viability inhibition and apoptosis promotion induced by 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells via inhibiting endoplasmic reticulum (ER) stress, but also reversed the MPP+ caused dysregulation of miR-7 and SNCA expression. MiR-7 knockdown and SNCA overexpression were achieved by treating SH-SY5Y cells with miR-7 inhibitor and pcDNA3.1-SNCA plasmids, respectively. MiR-7 could bind to and negatively regulate SNCA in SH-SY5Y cells. Treated SH-SY5Y cells with miR-7 inhibitor or pcDNA3.1-SNCA abrogated the protective effects of AST on MPP+ induced cytotoxicity. Knockdown of miR-7 aggravated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced neuron injury in vivo suggested by athletic performance, histopathological morphology, expression of tyrosine hydroxylase (TH) and TUNEL positvie cells, however, AST treatment could reverse these effects of miR-7 knockdown. Collectively, AST suppressed ER stress and protected against PD-caused neuron damage by targeting miR-7/SNCA axis, implying that AST might be a potential effective therapeutic agent for PD.
Collapse
|
22
|
Rzajew J, Radzik T, Rebas E. Calcium-Involved Action of Phytochemicals: Carotenoids and Monoterpenes in the Brain. Int J Mol Sci 2020; 21:ijms21041428. [PMID: 32093213 PMCID: PMC7073062 DOI: 10.3390/ijms21041428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Neurodegenerative and mood disorders represent growing medical and social problems, many of which are provoked by oxidative stress, disruption in the metabolism of various neurotransmitters, and disturbances in calcium homeostasis. Biologically active plant compounds have been shown to exert a positive impact on the function of calcium in the central nervous system. Methods: The present paper reviews studies of naturally occurring terpenes and derivatives and the calcium-based aspects of their mechanisms of action, as these are known to act upon a number of targets linked to neurological prophylaxis and therapy. Results: Most of the studied phytochemicals possess anticancer, antioxidative, anti-inflammatory, and neuroprotective properties, and these have been used to reduce the risk of or treat neurological diseases. Conclusion: The neuroprotective actions of some phytochemicals may employ mechanisms based on regulation of calcium homeostasis and should be considered as therapeutic agents.
Collapse
|
23
|
Astaxanthin Protects PC12 Cells against Homocysteine- and Glutamate-Induced Neurotoxicity. Molecules 2020; 25:molecules25010214. [PMID: 31948056 PMCID: PMC6982875 DOI: 10.3390/molecules25010214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Memory impairment has been shown to be associated with glutamate (Glu) excitotoxicity, homocysteine (Hcy) accumulation, and oxidative stress. We hypothesize that Glu and Hcy could damage neuronal cells, while astaxanthin (ATX) could be beneficial to alleviate the adverse effects. Using PC12 cell model, we showed that Glu and Hcy provoked a huge amount of reactive oxygen species (ROS) production, causing mitochondrial damage at EC50 20 and 10 mm, respectively. The mechanisms of action include: (1) increasing calcium influx; (2) producing ROS; (3) initiating lipid peroxidation; (4) causing imbalance of the Bcl-2/Bax homeostasis; and (5) activating cascade of caspases involving caspases 12 and 3. Conclusively, the damages caused by Glu and Hcy to PC12 cells can be alleviated by the potent antioxidant ATX.
Collapse
|
24
|
Nan B, Gu X, Huang X. The Role of the Reactive Oxygen Species Scavenger Agent, Astaxanthin, in the Protection of Cisplatin-Treated Patients Against Hearing Loss. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4291-4303. [PMID: 31908415 PMCID: PMC6927222 DOI: 10.2147/dddt.s212313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Emerging evidence of significant hearing loss occurring shortly after cisplatin administration in cancer patients has stimulated research into the causes and treatment of this side effect. Although the aetiology of cisplatin-induced hearing loss (CIHL) remains unknown, an increasing body of research suggests that it is associated with excessive generation of intracellular reactive oxygen species (ROS) in the cochlea. Astaxanthin, a xanthophyll carotenoid, has powerful anti-oxidant, anti-inflammatory, and anti-apoptotic properties based on its unique cell membrane function, diverse biological activities, and ability to permeate the blood-brain barrier. In this review, we summarize the role of ROS in CIHL and the effect of astaxanthin on inhibiting ROS production. We focus on investigating the mechanism of action of astaxanthin in suppressing excessive production of ROS.
Collapse
Affiliation(s)
- Benyu Nan
- Department of Otorhinolaryngology-Head and Neck Surgery, Wenzhou Medical University, Affiliated Hospital 2, Wenzhou 325000, People's Republic of China.,Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| | - Xi Gu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350000, People's Republic of China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, People's Republic of China
| |
Collapse
|
25
|
Dopaminergic neuron injury in Parkinson's disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/ α-synuclein pathway. Aging (Albany NY) 2019; 11:9264-9279. [PMID: 31683259 PMCID: PMC6874444 DOI: 10.18632/aging.102330] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
This study explored the influence of long non-coding RNA (lncRNA) SNHG14 on α-synuclein (α-syn) expression and Parkinson’s disease (PD) pathogenesis. Firstly, we found that the expression level of SNHG14 was elevated in brain tissues of PD mice. In MN9D cells, the rotenone treatment (1μmol/L) enhanced the binding between transcriptional factor SP-1 and SNHG14 promoter, thus promoting SNHG14 expression. Interference of SNHG14 ameliorated the DA neuron injury induced by rotenone. Next, we found an interaction between SNHG14 and miR-133b. Further study showed that miR-133b down-regulated α-syn expression by targeting its 3’-UTR of mRNA and SNHG14 could reverse the negative effect of miR-133b on α-syn expression. Interference of SNHG14 reduced rotenone-induced DA neuron damage through miR-133b in MN9D cells and α-syn was responsible for the protective effect of miR-133b. Similarly, interference of SNHG14 mitigated neuron injury in PD mouse model. All in all, silence of SNHG14 mitigates dopaminergic neuron injury by down-regulating α-syn via targeting miR-133b, which contributes to improving PD.
Collapse
|
26
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
27
|
Arige V, Agarwal A, Khan AA, Kalyani A, Natarajan B, Gupta V, Reddy SS, Barthwal MK, Mahapatra NR. Regulation of Monoamine Oxidase B Gene Expression: Key Roles for Transcription Factors Sp1, Egr1 and CREB, and microRNAs miR-300 and miR-1224. J Mol Biol 2019; 431:1127-1147. [PMID: 30738894 DOI: 10.1016/j.jmb.2019.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 11/15/2022]
Abstract
Monoamine oxidase B (MAO-B), a flavoenzyme located in the outer mitochondrial membrane, is involved in the catabolism of monoamines. Altered levels of MAO-B are associated with cardiovascular/neuronal diseases. However, molecular mechanisms of MAO-B gene regulation are partially understood. We undertook a systematic analysis of the MAO-B gene to identify the key transcriptional/post-transcriptional regulatory molecules. Expression of MAO-B promoter-reporter constructs in cultured cells identified the -144/+25-bp domain as the core promoter region. Stringent in silico analysis of this core promoter predicted binding sites for several transcription factors. Over-expression/down-regulation of transcription factors Sp1/Egr1/CREB increased/decreased the MAO-B promoter-reporter activity and endogenous MAO-B protein level. Electrophoretic mobility shift assays and ChIP assays provided evidence for interactions of Sp1/Egr1/CREB with the MAO-B promoter. MAOB transcript level also positively correlated with the transcript level of Sp1/Egr1/CREB in various human tissue samples. Computational predictions using multiple algorithms coupled with systematic functional analysis revealed direct interactions of the microRNAs miR-1224 and miR-300 with MAO-B 3'-UTR. Dopamine dose-dependently enhanced MAO-B transcript and protein levels via increased binding of CREB to MAO-B promoter and reduced miR-1224/miR-300 levels. 8-Bromo-cAMP and forskolin augmented MAO-B expression, whereas inhibition of PKA diminished the gene expression suggesting involvement of cAMP-PKA axis. Interestingly, Sp1/Egr1/CREB/miR-1224 levels correlate with MAO-B expression in rodent models of hypertension/MPTP-induced neurodegeneration, indicating their roles in governing MAO-B gene expression in these disease states. Taken together, this study elucidates the previously unknown roles of the transcription factors Sp1/Egr1/CREB and microRNAs miR-1224/miR-300 in regulating MAO-B gene expression under basal/disease states involving dysregulated catecholamine levels.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anshu Agarwal
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Abrar A Khan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ananthamohan Kalyani
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Bhargavi Natarajan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vinayak Gupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - S Santosh Reddy
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Manoj K Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
28
|
Zhang Z, Liu Y, Zhu X, Wei L, Zhu J, Shi K, Wang G, Pan L. Sciatic nerve leachate of cattle causes neuronal differentiation of PC12 cells via ERK1/2 signaling pathway. J Vet Sci 2018; 19:512-518. [PMID: 29695145 PMCID: PMC6070593 DOI: 10.4142/jvs.2018.19.4.512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 12/24/2022] Open
Abstract
Previous studies have shown that the sciatic nerve has neurotrophic activity, and nerve regeneration, differentiation, and axon outgrowth can be modulated by different sciatic nerve preparations. However, numerous animals may have to be sacrificed to obtain enough sciatic nerves to make a sciatic nerve preparation. Some studies have demonstrated that the role of sciatic nerve preparations in neural differentiation depends on the neurotrophins that Schwann cells secrete, and these factors are highly conserved among different species. To reduce the use of experimental animals, in this study, we made a leachate by using the sciatic nerve of cattle and explored its effect on neuronal differentiation of rat PC12 cells (a useful model for studying neuronal differentiation). Results showed the neurite outgrowth of PC12 cells treated with the cattle sciatic nerve leachate for 3, 6, and 9 days was significantly improved, and the expressions of β3-tubulin and microtubule-associated protein 2 (two neuron-specific proteins) were increased. Moreover, the ERK1/2 signaling pathway was activated after PC12 cells were incubated with cattle sciatic nerve leachate for 9 days. Thus, a sciatic nerve leachate obtained from cattle can effectively induce neuronal differentiation of rat PC12 cells via ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Xuemin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Lan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Jiamin Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Ke Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Guotao Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Li Pan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
29
|
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 2018; 136:1-20. [DOI: 10.1016/j.phrs.2018.08.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
30
|
Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res Bull 2018; 143:217-224. [PMID: 30243665 DOI: 10.1016/j.brainresbull.2018.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/11/2018] [Accepted: 09/17/2018] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a debilitating condition in which inflammatory responses in the secondary phase of injury leads to long lasting sensory-motor dysfunction. The medicinal therapy of SCI complications is still a clinical challenge. Understanding the molecular pathways underlying the progress of damage will help to find new therapeutic candidates. Astaxanthin (AST) is a ketocarotenoid which has shown anti-inflammatory effects in models of traumatic brain injury. In the present study, we examined its potential in the elimination of SCI damage through glutamatergic-phospo p38 mitogen-activated protein kinase (p-p38MAPK) signaling pathway. Inflammatory response, histopathological changes and sensory-motor function were also investigated in a severe compression model of SCI in male rats. The results of acetone drop and inclined plane tests indicated the promising role of AST in improving sensory and motor function of SCI rats. AST decreased the expression of n-methyl-d-aspartate receptor subunit 2B (NR2B) and p-p38MAPK as inflammatory signaling mediators as well as tumor necrosis factor-α (TNF-α) as an inflammatory cytokine, following compression SCI. The histopathological study culminated in preserved white mater and motor neurons beyond the injury level in rostral and caudal parts. The results show the potential of AST to inhibit glutamate-initiated signaling pathway and inflammatory reactions in the secondary phase of SCI, and suggest it as a promising candidate to enhance functional recovery after SCI.
Collapse
|
31
|
Zhang X, Lu Y, Wu Q, Dai H, Li W, Lv S, Zhou X, Zhang X, Hang C, Wang J. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll‐like receptor 4 signaling pathway. FASEB J 2018; 33:722-737. [DOI: 10.1096/fj.201800642rr] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangsheng Zhang
- Department of NeurosurgeryNanjing Drum Tower HospitalSchool of MedicineNanjing University Nanjing China
- Department of AnesthesiologyCritical Care MedicineJohns Hopkins University School of Medicine Baltimore Maryland USA
| | - Yue Lu
- Department of NeurosurgeryNanjing Drum Tower HospitalSchool of MedicineNanjing University Nanjing China
| | - Qi Wu
- Department of NeurosurgeryJinling HospitalSchool of MedicineNanjing University Nanjing China
| | - Haibin Dai
- Department of NeurosurgeryNanjing Drum Tower HospitalSchool of MedicineNanjing University Nanjing China
| | - Wei Li
- Department of NeurosurgeryNanjing Drum Tower HospitalSchool of MedicineNanjing University Nanjing China
| | - Shengyin Lv
- Department of NeurosurgeryJinling HospitalSchool of MedicineNanjing University Nanjing China
| | - Xiaoming Zhou
- Department of NeurosurgeryChangzheng HospitalSchool of MedicineSecond Military Medical University Shanghai China
| | - Xin Zhang
- Department of AnesthesiologyCritical Care MedicineJohns Hopkins University School of Medicine Baltimore Maryland USA
| | - Chunhua Hang
- Department of NeurosurgeryNanjing Drum Tower HospitalSchool of MedicineNanjing University Nanjing China
| | - Jian Wang
- Department of AnesthesiologyCritical Care MedicineJohns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
32
|
Galasso C, Orefice I, Pellone P, Cirino P, Miele R, Ianora A, Brunet C, Sansone C. On the Neuroprotective Role of Astaxanthin: New Perspectives? Mar Drugs 2018; 16:md16080247. [PMID: 30042358 PMCID: PMC6117702 DOI: 10.3390/md16080247] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
Astaxanthin is a carotenoid with powerful antioxidant and anti-inflammatory activity produced by several freshwater and marine microorganisms, including bacteria, yeast, fungi, and microalgae. Due to its deep red-orange color it confers a reddish hue to the flesh of salmon, shrimps, lobsters, and crayfish that feed on astaxanthin-producing organisms, which helps protect their immune system and increase their fertility. From the nutritional point of view, astaxanthin is considered one of the strongest antioxidants in nature, due to its high scavenging potential of free radicals in the human body. Recently, astaxanthin is also receiving attention for its effect on the prevention or co-treatment of neurological pathologies, including Alzheimer and Parkinson diseases. In this review, we focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms to counteract neurological diseases, mainly based on its capability to cross the blood-brain barrier and its oxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Christian Galasso
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Ida Orefice
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Paola Pellone
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Paola Cirino
- Research Infrastructures for marine biological resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Roberta Miele
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Adrianna Ianora
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Christophe Brunet
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| | - Clementina Sansone
- Marine BiotechnologyDepartment, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.
| |
Collapse
|
33
|
Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4120458. [PMID: 29849893 PMCID: PMC5926482 DOI: 10.1155/2018/4120458] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/22/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022]
Abstract
Carotenoids, symmetrical tetraterpenes with a linear C40 hydrocarbon backbone, are natural pigment molecules produced by plants, algae, and fungi. Carotenoids have important functions in the organisms (including animals) that obtain them from food. Due to their characteristic structure, carotenoids have bioactive properties, such as antioxidant, anti-inflammatory, and autophagy-modulatory activities. Given the protective function of carotenoids, their levels in the human body have been significantly associated with the treatment and prevention of various diseases, including neurodegenerative diseases. In this paper, we review the latest studies on the effects of carotenoids on neurodegenerative diseases in humans. Furthermore, animal and cellular model studies on the beneficial effects of carotenoids on neurodegeneration are also reviewed. Finally, we discuss the possible mechanisms and limitations of carotenoids in the treatment and prevention of neurological diseases.
Collapse
|
34
|
Sharma K, Sharma D, Sharma M, Sharma N, Bidve P, Prajapati N, Kalia K, Tiwari V. Astaxanthin ameliorates behavioral and biochemical alterations in in-vitro and in-vivo model of neuropathic pain. Neurosci Lett 2018; 674:162-170. [PMID: 29559419 DOI: 10.1016/j.neulet.2018.03.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/03/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
Abstract
Despite considerable advances in understanding mechanisms involved in chronic pain, effective treatment remains limited. Astaxanthin, a marine natural drug, having potent anti-oxidant and anti-inflammatory activities is known to possess neuroprotective effects. However, effects of astaxanthin against nerve injury induce chronic pain remains unknown. Overactivity of glutamatergic NMDARs results in excitotoxicity which may participate in astrocytic and microglial activation during pathology which further contribute to the development of neuropathic pain. In this study, we investigate the effects of astaxanthin on oxido-inflammatory and NMDA receptor down-regulation pathway by using in-silico, in-vitro and in-vivo models of neuropathic pain. In-silico molecular docking study ascertained the binding affinity of astaxanthin to NMDA receptors and showed antagonistic effects. Data from in-vitro studies suggest that astaxanthin significantly reduces the oxidative stress induced by the lipopolysaccharides in C6 glial cells. In male Sprague dawley rats, a significant attenuation of neuropathic pain behavior was observed in Hargreaves test and von Frey hair test after astaxanthin treatment. Findings from the current study suggest that astaxanthin can be used as potential alternative in the treatment of chronic neuropathic pain. However, more detailed investigations are required to further probe the in-depth mechanism of action of astaxanthin.
Collapse
Affiliation(s)
- Kuhu Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Dilip Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Monika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Nishant Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Pankaj Bidve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Namrata Prajapati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar 382355, Gujarat, India; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
35
|
Grimmig B, Daly L, Subbarayan M, Hudson C, Williamson R, Nash K, Bickford PC. Astaxanthin is neuroprotective in an aged mouse model of Parkinson's disease. Oncotarget 2017. [PMID: 29535814 PMCID: PMC5828206 DOI: 10.18632/oncotarget.23737] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and prevalence increases with age. Normal physiological changes that occur during the aging process reflect the pathological characteristics of Parkinson's disease. It is also recognized that age related changes significantly interact with the pathological mechanisms that underlie the neurodegeneration in PD and perpetuate the disease process. Despite the fact that aging is considered to be a primary risk factor for developing PD, the use of aged animal models are still under-utilized in pre-clinical research, thus reducing the translatability of experimental findings. Here, we use a natural compound astaxanthin (AXT) with multiple biological activities to attenuate neurotoxicity in a mouse model of Parkinson's disease in both young and aged mice. We observed that AXT preserved neurons in the substantia nigra of both young and aged mice that were exposed to the MPTP neurotoxin. However, AXT was less efficacious in the aged animals, as AXT was not able to protect against the MPTP induced loss of tyrosine hydroxylase (TH) throughout the aged nigro-striatal circuit. This disparity in the neuroprotective effect of AXT suggests that aging is a critical factor to consider during the development of novel therapeutics for neurodegenerative diseases and should be more rigorously evaluated in preclinical models.
Collapse
Affiliation(s)
- Beth Grimmig
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, 33612 FL.,Department of Molecular Pharmacology and Physiology, USF Morsani College of Medicine, Tampa, 33612 FL
| | - Lauren Daly
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, 33612 FL
| | - Meena Subbarayan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, 33612 FL.,Department of Molecular Pharmacology and Physiology, USF Morsani College of Medicine, Tampa, 33612 FL
| | - Ched Hudson
- Research Service, James A Haley Veterans Hospital, Tampa, 33620 FL
| | - Robert Williamson
- Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, 32827 FL
| | - Kevin Nash
- Department of Molecular Pharmacology and Physiology, USF Morsani College of Medicine, Tampa, 33612 FL.,USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, 33613 FL
| | - Paula C Bickford
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, USF Morsani College of Medicine, Tampa, 33612 FL.,Department of Molecular Pharmacology and Physiology, USF Morsani College of Medicine, Tampa, 33612 FL.,Research Service, James A Haley Veterans Hospital, Tampa, 33620 FL
| |
Collapse
|
36
|
Sun HJ, Wang Y, Hao T, Wang CY, Wang QY, Jiang XX. Efficient GSH delivery using PAMAM-GSH into MPP-induced PC12 cellular model for Parkinson's disease. Regen Biomater 2016; 3:299-307. [PMID: 27699060 PMCID: PMC5043156 DOI: 10.1093/rb/rbw032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 12/11/2022] Open
Abstract
Glutathione (GSH) depletion has been an important contributor to the dysfunction of dopamine neurons. Polyamidoamine-GSH (PAMAM-GSH) was synthesized and the delivery effect of GSH into PC12 cells was tested. MTT assessment for cytotoxicity and reactive oxygen species (ROS) as well as nitrite oxide (NO) and intracelluar superoxide dismutase (SOD) detection for antioxidative ability were performed. Furthermore, the antiapoptotic ability was analysed by assessing caspase-3, JNK1/2 and Erk1/2 expression. Our data indicated that PAMAM-GSH is an effective agent to replenish GSH into PC12 cells. PAMAM-GSH developed its antioxidative and protective ability for 1-methyl-4-phenylpyridinium (MPP)-induced PC12 cells by reducing the intracellular levels of ROS and SOD activity as well as decreasing the release of NO. Meanwhile, PAMAM-GSH could inhibit caspase-3 activation and might show its antiapoptotic ability to MPP-induced PC12 cells through JNK2/Erk1/2 pathway. In summary, these studies suggest that PAMAM-GSH conjugate has an intrinsic ability to penetrate PC12 cells and deliver GSH into these cells which may provide a new strategy for clinical applications in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Hong-Ji Sun
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Yan Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Tong Hao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Chang-Yong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Qi-Yu Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, Beijing 100850, People's Republic of China
| |
Collapse
|
37
|
Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin. Int J Mol Sci 2016; 17:ijms17010103. [PMID: 26784174 PMCID: PMC4730345 DOI: 10.3390/ijms17010103] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 01/08/2023] Open
Abstract
Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.
Collapse
|
38
|
Wu H, Niu H, Shao A, Wu C, Dixon BJ, Zhang J, Yang S, Wang Y. Astaxanthin as a Potential Neuroprotective Agent for Neurological Diseases. Mar Drugs 2015; 13:5750-66. [PMID: 26378548 PMCID: PMC4584352 DOI: 10.3390/md13095750] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 11/16/2022] Open
Abstract
Neurological diseases, which consist of acute injuries and chronic neurodegeneration, are the leading causes of human death and disability. However, the pathophysiology of these diseases have not been fully elucidated, and effective treatments are still lacking. Astaxanthin, a member of the xanthophyll group, is a red-orange carotenoid with unique cell membrane actions and diverse biological activities. More importantly, there is evidence demonstrating that astaxanthin confers neuroprotective effects in experimental models of acute injuries, chronic neurodegenerative disorders, and neurological diseases. The beneficial effects of astaxanthin are linked to its oxidative, anti-inflammatory, and anti-apoptotic characteristics. In this review, we will focus on the neuroprotective properties of astaxanthin and explore the underlying mechanisms in the setting of neurological diseases.
Collapse
Affiliation(s)
- Haijian Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Huanjiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Cheng Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA..
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.
| | - Shuxu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| | - Yirong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
39
|
Zhang Y, Wang W, Hao C, Mao X, Zhang L. Astaxanthin protects PC12 cells from glutamate-induced neurotoxicity through multiple signaling pathways. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
40
|
Maertens A, Luechtefeld T, Kleensang A, Hartung T. MPTP's pathway of toxicity indicates central role of transcription factor SP1. Arch Toxicol 2015; 89:743-55. [PMID: 25851821 DOI: 10.1007/s00204-015-1509-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 03/16/2015] [Indexed: 01/15/2023]
Abstract
Deriving a Pathway of Toxicity from transcriptomic data remains a challenging task. We explore the use of weighted gene correlation network analysis (WGCNA) to extract an initial network from a small microarray study of MPTP toxicity in mice. Five modules were statistically significant; each module was analyzed for gene signatures in the Chemical and Genetic Perturbation subset of the Molecular Signatures Database as well as for over-represented transcription factor binding sites and WGCNA clustered probes by function and captured pathways relevant to neurodegenerative disorders. The resulting network was analyzed for transcription factor candidates, which were narrowed down via text-mining for relevance to the disease model, and then combined with the large-scale interaction FANTOM4 database to generate a genetic regulatory network. Modules were enriched for transcription factors relevant to Parkinson's disease. Transcription factors significantly improved the number of genes that could be connected in a given component. For each module, the transcription factor that had, by far, the highest number of interactions was SP1, and it also had substantial experimental evidence of interactions. This analysis both captures much of the known biology of MPTP toxicity and suggests several candidates for further study. Furthermore, the analysis strongly suggests that SP1 plays a central role in coordinating the cellular response to MPTP toxicity.
Collapse
Affiliation(s)
- Alexandra Maertens
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | |
Collapse
|
41
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
42
|
Barbosa M, Valentão P, Andrade PB. Bioactive compounds from macroalgae in the new millennium: implications for neurodegenerative diseases. Mar Drugs 2014; 12:4934-72. [PMID: 25257784 PMCID: PMC4178484 DOI: 10.3390/md12094934] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/05/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022] Open
Abstract
Marine environment has proven to be a rich source of structurally diverse and complex compounds exhibiting numerous interesting biological effects. Macroalgae are currently being explored as novel and sustainable sources of bioactive compounds for both pharmaceutical and nutraceutical applications. Given the increasing prevalence of different forms of dementia, researchers have been focusing their attention on the discovery and development of new compounds from macroalgae for potential application in neuroprotection. Neuroprotection involves multiple and complex mechanisms, which are deeply related. Therefore, compounds exerting neuroprotective effects through different pathways could present viable approaches in the management of neurodegenerative diseases, such as Alzheimer's and Parkinson's. In fact, several studies had already provided promising insights into the neuroprotective effects of a series of compounds isolated from different macroalgae species. This review will focus on compounds from macroalgae that exhibit neuroprotective effects and their potential application to treat and/or prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariana Barbosa
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Paula B Andrade
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| |
Collapse
|
43
|
Li S, Chen G, Zhang C, Wu M, Wu S, Liu Q. Research progress of natural antioxidants in foods for the treatment of diseases. FOOD SCIENCE AND HUMAN WELLNESS 2014. [DOI: 10.1016/j.fshw.2014.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Grosso C, Valentão P, Ferreres F, Andrade PB. Bioactive marine drugs and marine biomaterials for brain diseases. Mar Drugs 2014; 12:2539-89. [PMID: 24798925 PMCID: PMC4052305 DOI: 10.3390/md12052539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/10/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022] Open
Abstract
Marine invertebrates produce a plethora of bioactive compounds, which serve as inspiration for marine biotechnology, particularly in drug discovery programs and biomaterials development. This review aims to summarize the potential of drugs derived from marine invertebrates in the field of neuroscience. Therefore, some examples of neuroprotective drugs and neurotoxins will be discussed. Their role in neuroscience research and development of new therapies targeting the central nervous system will be addressed, with particular focus on neuroinflammation and neurodegeneration. In addition, the neuronal growth promoted by marine drugs, as well as the recent advances in neural tissue engineering, will be highlighted.
Collapse
Affiliation(s)
- Clara Grosso
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| | - Federico Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS (CSIC), P.O. Box 164, Campus University Espinardo, Murcia 30100, Spain.
| | - Paula B Andrade
- REQUIMTE/Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
45
|
Ouazia D, Levros LC, Rassart E, Desrosiers RR. Dopamine down-regulation of protein L-isoaspartyl methyltransferase is dependent on reactive oxygen species in SH-SY5Y cells. Neuroscience 2014; 267:263-76. [PMID: 24631677 DOI: 10.1016/j.neuroscience.2014.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 02/18/2014] [Accepted: 03/02/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurological disorder that is characterized by the loss of dopaminergic neurons in the substantia nigra. Dopamine, via the oxidative stress that it generates in the cytosol, could contribute to the selective loss of neurons observed in PD. Protein L-isoaspartyl methyltransferase (PIMT) is an enzyme that repairs L-isoaspartyl-containing proteins and possesses anti-apoptotic properties. PIMT expression has been shown to decrease with age. Together, these observations prompted us to investigate whether dopamine can regulate PIMT expression in SH-SY5Y neuroblastoma cells. Here, we report that dopamine down-regulated PIMT at both gene and protein levels. The same inhibition of PIMT protein level was caused by the electron transport chain inhibitor, rotenone, which was accompanied, in both cases, by an increase in cell death and reactive oxygen species (ROS) production. In fact, pre-treatment with the antioxidant N-acetyl cysteine blocked PIMT dopamine-associated down-regulation. PCMT1 promoter mapping experiments allowed the identification of two regions that showed different sensitivity to DA action. A first region localized between 61 and 94bp upstream of transcription start site was very sensitive to dopamine inhibition while a second region between 41 and 61bp appeared more resistant to dopamine inhibitory effect. The inhibition of PCMT1 promoter activity was mediated by dopamine-induced ROS since it was prevented by the hydroxyl radical scavenger N,N'-dimethylthiourea. Conversely, H2O2 inhibited in a dose-dependent manner the transcriptional activity of PCMT1 promoter. Therefore, our findings identified new molecular mechanisms, cytosolic dopamine and its resulting ROS, as inhibitors of PIMT expression. This suggests that ROS generated from cytosolic dopamine could reduce both the PCMT1 gene promoter activity and the PIMT protein level thus decreasing its capacity to repair proteins involved in apoptosis and could contribute to neuronal cell death observed in PD.
Collapse
Affiliation(s)
- D Ouazia
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - L-C Levros
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - E Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| | - R R Desrosiers
- Université du Québec à Montréal, Département de chimie, C.P. 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| |
Collapse
|
46
|
Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease. Neuromolecular Med 2014; 16:217-30. [DOI: 10.1007/s12017-014-8294-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/03/2014] [Indexed: 01/05/2023]
|