1
|
Li Y, Li G, Feng J, Li S, Liu N. Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment. Phytother Res 2025. [PMID: 39844461 DOI: 10.1002/ptr.8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer. Currently, inflammation treatment predominantly relies on chemical drugs. Nevertheless, these existing therapies are constrained by their numerous side effects and slow remission of symptoms. Consequently, there is an urgent need for the discovery and development of new drugs that exhibit minimal side effects while exerting potent anti-inflammatory effects. This article extensively explored the activities and mechanisms of MNPs (covering studies from 2010 to 2024) regulating key signaling pathways and inflammatory mediators in the IME, which establishes a theoretical basis for the further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangjie Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
2
|
Tian XH, Hong LL, Jiao WH, Lin HW. Natural sesquiterpene quinone/quinols: chemistry, biological activity, and synthesis. Nat Prod Rep 2023; 40:718-749. [PMID: 36636914 DOI: 10.1039/d2np00045h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Covering: 2010 to 2021Sesquiterpene quinone/quinols (SQs) are characterized by a C15-sesquiterpenoid unit incorporating a C6-benzoquinone/quinol moiety. Numerous unprecedented carbon skeletons have been constructed with various connection patterns between the two parts. The potent anti-cancer, anti-inflammatory, anti-microbial, anti-viral, and fibrinolytic activities of SQs are associated with their diverse structures. The representative avarol has even entered the stage of clinical phase II research as an anti-HIV agent, and was developed as paramedic medicine against psoriasis. This review provides an overall summary of 558 new natural SQs discovered between 2010 and 2021, including seven groups and sixteen structure-type subgroups, which comprehensively recapitulates their chemical structures, spectral characteristics, source organisms, biological activities, synthesis, and biosynthesis, aiming to expand the application scope of this unique natural product resource.
Collapse
Affiliation(s)
- Xin-Hui Tian
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P. R. China.
| | - Li-Li Hong
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Wei-Hua Jiao
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Hou-Wen Lin
- Marine Drugs Research Center, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| |
Collapse
|
3
|
Silva IVG, Silva KL, Maia RC, Duarte HM, Coutinho R, Neves MHCB, Soares AR, Lopes GPF. Crosstalk between biological and chemical diversity with cytotoxic and cytostatic effects of Aphanothece halophytica in vitro. AN ACAD BRAS CIENC 2022; 94:e20211585. [PMID: 36515327 DOI: 10.1590/0001-3765202220211585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Different solvent extracts from Aphanothece halophytica (A. halophytica) were evaluated for their cytotoxic effects against four human cancer cell lines. The samples demonstrated different percentages of cyanobacteria species populations. The samples containing 100% A. halophytica and 90% A. halophytica showed a significant cytotoxic effect in human breast cancer cells MDA231. The cytostatic effect was demonstrated in MDA231 and human glioblastoma T98G cells regardless of the treatment, resulting in a significant cell cycle arrest in the S phase. The chemical profiles of the extracts were proven to be diverse in qualitative and quantitative compositions. This variability was dependent on the A. halophytica´s abundance in each extract. The 100% A. halophytica extract induced cytotoxic and cytostatic effects in breast cancer cells, and those could be associated with the predominance of fatty acids, hydrocarbons and phthalates, indicating that A. halophytica is an interesting source of novel compound with anticancer effect.
Collapse
Affiliation(s)
- Isabel V G Silva
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Karina L Silva
- Coordenação de Pesquisa, Instituto Nacional de Câncer (INCA), Rua André Cavalcanti, 37, Centro, 20321-050 Rio de Janeiro, RJ, Brazil
| | - Raquel C Maia
- Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, Centro, 20230-130 Rio de Janeiro, RJ, Brazil
| | - Heitor M Duarte
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, São José do Barreto, 27965-045 Macaé, RJ, Brazil
| | - Ricardo Coutinho
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Maria Helena C B Neves
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| | - Angelica R Soares
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Universidade Federal do Rio de Janeiro, Av. São José do Barreto, 764, São José do Barreto, 27965-045 Macaé, RJ, Brazil
| | - Giselle P F Lopes
- Programa Associado de Pós-Graduação em Biotecnologia Marinha, Instituto de Estudos do Mar Almirante Paulo Moreira (IEAPM)/Universidade Federal Fluminense (UFF), Rua Daniel Barreto, s/n, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil.,Instituto de Estudos do Mar Almirante Paulo Moreira, Departamento de Biotecnologia Marinha, Rua Kioto, 253, Praia dos Anjos, 28930-000 Arraial do Cabo, RJ, Brazil
| |
Collapse
|
4
|
Son Y, Quan KT, Shin S, Park S, Na M, Oh S. Lucidin 3-methyl ether from Rubia philippinensis suppresses the proliferation of multiple myeloma cells through the promotion of β-catenin degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153971. [PMID: 35196641 DOI: 10.1016/j.phymed.2022.153971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Constitutive accumulation of β-catenin has been frequently observed in multiple myeloma. Extracts from genus Rubia plants exhibit cytotoxic activity against several types of cancer cells; however, little is known about their chemopreventive mechanisms and bioactive metabolites. PURPOSE Purpose: The study aimed to identify the underlying antiproliferative mechanisms of Rubia philippinensis extract in multiple myeloma cells and the major active metabolites responsible for cytotoxic activity of R. philippinensis. METHODS The effects of R. philippinensis extracts and lucidin 3-methyl ether on the Wnt/β-catenin pathway were determined by cell-based reporter assay, Western blot analysis, and RT-PCR. The antiproliferative activity was evaluated by cell viability assay and apoptosis analysis in RPMI8226 and MM.1S multiple myeloma cells. RESULTS R. philippinensis extracts inhibited Wnt/β-catenin signaling and lucidin 3-methyl ether, an anthraquinone derivative, was identified as the major active metabolite responsible for the inhibition of Wnt/β-catenin signaling. Lucidin 3-methyl ether induced β-catenin phosphorylation at Ser33/Ser37/Thr41 residues and promoted proteasomal degradation of β-catenin via a GSK-3β-independent mechanism, thereby downregulating Wnt3a-induced β-catenin response transcription (CRT). Moreover, lucidin 3-methyl ether repressed the expression of β-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1, c-myc, and axin-2, thus inhibiting MM cell proliferation. Apoptosis was also elicited by lucidin 3-methyl ether, as indicated by the increase in the population of annexin V-FITC positive cells and caspase-3/7 activity in MM cells. CONCLUSION These findings indicate that R. philippinensis and its active metabolite lucidin 3-methyl ether prevent cell proliferation through the suppression of the Wnt/β-catenin pathway and exhibit potential as chemopreventive agents for the treatment of MM.
Collapse
Affiliation(s)
- Younglim Son
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seoul 02707, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Subeen Shin
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seoul 02707, Republic of Korea
| | - Seoyoung Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seoul 02707, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, 77 Jeongneung-ro, Seoul 02707, Republic of Korea.
| |
Collapse
|
5
|
Bajpai VK, Bahuguna A, Kumar V, Khan I, Alrokayan SH, Khan HA, Simal-Gandara J, Xiao J, Na M, Sonwal S, Lee H, Kim M, Suk Huh Y, Han YK, Shukla S. Cellular antioxidant potential and inhibition of foodborne pathogens by a sesquiterpene ilimaquinone in cold storaged ground chicken and under temperature-abuse condition. Food Chem 2022; 373:131392. [PMID: 34742043 DOI: 10.1016/j.foodchem.2021.131392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023]
Abstract
A sesquiterpene quinone, ilimaquinone, was accessed for its cellular antioxidant efficacy and possible antimicrobial mechanism of action against foodborne pathogens (Staphylococcus aureus and Escherichia coli) in vitro and in vivo. Ilimaquinone was found to be protective against H2O2-induced oxidative stress as validated by the reduction in the ROS levels, including increasing expression of SOD1 and SOD2 enzymes. Furthermore, ilimaquinone evoked MIC against S. aureus and E. coli within the range of 125-250 µg/mL. Ilimaquinone established its antimicrobial mode of action against both tested pathogens as evident by bacterial membrane depolarization, loss of nuclear genetic material, potassium ion, and release of extracellular ATP, as well as compromised membrane permeabilization and cellular component damage. Also, ilimaquinone showed no teratogenic effect against zebrafish, suggesting its nontoxic nature. Moreover, ilimaquinone significantly reduced the S. aureus count without affecting the sensory properties and color values of cold-storaged ground chicken meat even under temperature abuse condition.
Collapse
Affiliation(s)
- Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea
| | - Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Salman H Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain; Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China.
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk 38541, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea.
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana 122003, India.
| |
Collapse
|
6
|
Mohammed Ali HSH, Altayb HN, Bayoumi AAM, El Omri A, Firoz A, Chaieb K. In silico screening of the effectiveness of natural compounds from algae as SARS-CoV-2 inhibitors: molecular docking, ADMT profile and molecular dynamic studies. J Biomol Struct Dyn 2022; 41:3129-3144. [PMID: 35253618 DOI: 10.1080/07391102.2022.2046640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Marine species are known as rich sources of metabolites largely involved in the pharmaceutical industry. This study aimed to evaluate in silico the effect of natural compounds identified in algae on the SARS-CoV-2 Main protease, RNA-dependent-RNA polymerase activity (RdRp), endoribonuclease (NSP15) as well as on their interaction with viral spike protein. A total of 45 natural compounds were screened for their possible interaction on SARS-CoV-2 target proteins using Maestro interface for molecular docking, molecular dynamic (MD) simulation to estimate compounds binding affinities. Among the algal compounds screened in this study, three (Laminarin, Astaxanthin and 4'-chlorostypotriol triacetate) exhibited the lowest docking energy and best interaction with SARS-CoV-2 viral proteins (Main protease, RdRp, Nsp15, and spike protein). The complex of the main protease with laminarin shows the most stable RMSD during a 150 ns MD simulation time. Which indicates their possible inhibitory activity on SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hani S H Mohammed Ali
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, king Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham N Altayb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Abdelfatteh El Omri
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad Firoz
- Faculty of Science, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kamel Chaieb
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory of Analysis, Treatment, and valorization of Pollutants of the Environment and Products, Faculty of Pharmacy, Monastir University, Monastir, Tunisia
| |
Collapse
|
7
|
Song GR, Choi YJ, Park SJ, Shin S, Lee G, Choi HJ, Lee DY, Song GY, Oh S. Root Bark of Morus alba L. and Its Bioactive Ingredient, Ursolic Acid, Suppress the Proliferation of Multiple Myeloma Cells by Inhibiting Wnt/β-Catenin Pathway. J Microbiol Biotechnol 2021; 31:1559-1567. [PMID: 34584036 PMCID: PMC9706038 DOI: 10.4014/jmb.2109.09002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022]
Abstract
The root bark of Morus alba L. has cytotoxic activity against several types of cancer cells. However, little is known about its chemopreventive mechanisms and bioactive metabolites. In this study, we showed that M. alba L. root bark extracts (MRBE) suppressed β-catenin response transcription (CRT), which is aberrantly activated in various cancers, by promoting the degradation of β-catenin. In addition, MRBE repressed the expression of the β-catenin/T-cell factor (TCF)-dependent genes, cmyc and cyclin D1, thus inhibiting the proliferation of RPMI-8226 multiple myeloma (MM) cells. MRBE induced apoptosis in MM cells, as evidenced by the increase in the population of annexin VFITC- positive cells and caspase-3/7 activity. We identified ursolic acid in MRBE through LC/mass spectrum (MS) and observed that it also decreased intracellular β-catenin, c-myc, and cyclin D1 levels. Furthermore, it suppressed the proliferation of RPMI-8226 cells by stimulating cell cycle arrest and apoptosis. These findings suggest that MRBE and its active ingredient, ursolic acid, exert antiproliferative activity by promoting the degradation of β-catenin and may have significant chemopreventive potential against MM.
Collapse
Affiliation(s)
- Geu Rim Song
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Yoon Jung Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soo Jin Park
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Subeen Shin
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| | - Giseong Lee
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Hui Ji Choi
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyu-Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
- Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
8
|
Yuan Y, Guo M, Gu C, Yang Y. The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). Am J Transl Res 2021; 13:9932-9949. [PMID: 34650674 PMCID: PMC8507016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Multiple myeloma (MM) is a refractory hematological malignancy characterized by aberrant accumulation of plasma cells. Patients with MM are susceptible to becoming resistant to chemotherapy, eventually leading to relapse. Progression of MM is largely dependent on the bone marrow microenvironment. Stromal cells in the bone marrow microenvironment secrete Wnt ligands to activate Wnt signaling in MM, which is mediated through the transcription regulator β-catenin. In addition, Wnt/β-catenin pathway encourages osteoblast differentiation and bone formation, dysregulation of which is responsible for proliferation and drug resistance of MM cells. As a result, direct inhibition or silencing of β-catenin or associated genes in the Wnt/β-catenin pathway has been proposed to be an effective therapeutic anti-MM strategy. However, the underlying regulatory mechanism of the Wnt/β-catenin pathway in MM remains to be fully elucidated. Herein, we summarized research advances on the specific genes and molecular biology process of Wnt/β-catenin pathway involved in tumorigenesis of MM, as well as the interaction with bone marrow microenvironment. Additionally, comprehensive summaries of drugs or small molecule inhibitors acting on Wnt/β-catenin pathway and targeting MM were introduced. This review intends to provide an overview of theoretical supports for novel Wnt/β-catenin pathway based treatment strategies in MM.
Collapse
Affiliation(s)
- Yuxia Yuan
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Mengjie Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| | - Ye Yang
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese MedicineNanjing 210022, Jiangsu, China
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, Jiangsu, China
| |
Collapse
|
9
|
Guo W, Wang H, Chen P, Shen X, Zhang B, Liu J, Peng H, Xiao X. Identification and Characterization of Multiple Myeloma Stem Cell-Like Cells. Cancers (Basel) 2021; 13:cancers13143523. [PMID: 34298738 PMCID: PMC8306148 DOI: 10.3390/cancers13143523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell tumor of the blood system with high incidence and poor prognosis. With a further understanding of the pathogenesis of MM and the bone marrow microenvironment, a variety of adjuvant cell therapies and new drugs have been developed. However, the drug resistance and high relapse rate of MM have not been fundamentally resolved. Studies have shown that, in patients with MM, there is a type of poorly differentiated progenitor cell (MM stem cell-like cells, MMSCs). Although there is no recognized standard for identification and classification, it is confirmed that they are closely related to the drug resistance and relapse of MM. This article therefore systematically summarizes the latest developments in MMSCs with possible markers of MMSCs, introduces the mechanism of how MMSCs work in MM resistance and recurrence, and discusses the active pathways that related to stemness of MM.
Collapse
Affiliation(s)
- Wancheng Guo
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Haiqin Wang
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Peng Chen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Xiaokai Shen
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Boxin Zhang
- Xiangya Medical School, Central South University, Changsha 410013, China; (P.C.); (X.S.); (B.Z.)
| | - Jing Liu
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
| | - Hongling Peng
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Correspondence: (H.P.); (X.X.); Tel.: +86-731-85295296 (H.P.); +86-731-84805449 (X.X.)
| | - Xiaojuan Xiao
- Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China; (W.G.); (H.W.); (J.L.)
- Correspondence: (H.P.); (X.X.); Tel.: +86-731-85295296 (H.P.); +86-731-84805449 (X.X.)
| |
Collapse
|
10
|
Natural Merosesquiterpenes Activate the DNA Damage Response via DNA Strand Break Formation and Trigger Apoptotic Cell Death in p53-Wild-type and Mutant Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13133282. [PMID: 34209047 PMCID: PMC8268692 DOI: 10.3390/cancers13133282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/19/2021] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bowel cancer is a serious disease, which affects many people worldwide. Unfortunately, the disease is often diagnosed in an advanced stage, which impairs the chance of survival. Furthermore, resistance to therapy occurs frequently. Thus, novel therapeutic approaches are required to improve cancer therapy. Here, we studied whether merosesquiterpenes might be useful for cancer treatment. These compounds occur in marine sponges and were isolated by our group. We were able to identify three compounds with potent cytotoxic activity in different cell lines established from human large bowel cancer. Our experiments provided evidence that the compounds cause DNA damage and trigger cell death, so-called mitochondrial apoptosis, which was attested in cancer cells with expression of wild-type and mutated p53 tumor suppressor. Finally, we show that merosesquiterpenes also kill intestinal tumor organoids, an ex vivo model of large bowel cancer. Abstract Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes. The most cytotoxic compounds were smenospongine > ilimaquinone ≈ dactylospontriol, as shown in different human CRC cell lines. Alkaline Comet assays and γH2AX immunofluorescence microscopy demonstrated DNA strand break formation in CRC cells. Western blot analysis revealed an activation of the DNA damage response with CHK1 phosphorylation, stabilization of p53 and p21, which occurred both in CRC cells with p53 knockout and in p53-mutated CRC cells. This resulted in cell cycle arrest followed by a strong increase in the subG1 population, indicative of apoptosis, and typical morphological alterations. In consistency, cell death measurements showed apoptosis following exposure to merosesquiterpenes. Gene expression studies and analysis of caspase cleavage revealed mitochondrial apoptosis via BAX, BIM, and caspase-9 as the main cell death pathway. Interestingly, the compounds were equally effective in p53-wild-type and p53-mutant CRC cells. Finally, the cytotoxic activity of the merosesquiterpenes was corroborated in intestinal tumor organoids, emphasizing their potential for CRC chemotherapy.
Collapse
|
11
|
Abstract
Possessing the quinone moiety, ilimaquinone (1), a sponge–derived sesquiterpene quinone, has been hypothesised to express its cytotoxicity through a redox cycling process, yielding active product(s) that can cause DNA damage. To determine the DNA damaging effects of 1 and examine whether a redox transformation may participate in its functions, the DNA damaging properties of 1, the corresponding hydroquinone (2) and hydroquinone triacetates (3) and their 5-epimeric counterparts (4–6) were tested and compared. When incubated directly with plasmid DNA, the hydroquinones were the only active species capable of cleaving the DNA. In cell-based assays, however, the quinones and hydroquinone triacetates were active in the same range as that of the corresponding hydroquinones, and all damaged the cellular DNA in a similar manner. The in situ reduction of 1 and 4 were supported by the decreases in the cytotoxicity when cells were pre-exposed to dicoumarol, an NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitor. The results confirmed the DNA damaging activities of the ilimaquinones 1 and 4, and indicated the necessity to undergo an in-situ transformation into the active hydroquinones, thereby exerting the DNA damaging properties as parts of the cytotoxic mechanisms.
Collapse
|
12
|
Antitumor Effects of a Sesquiterpene Derivative from Marine Sponge in Human Breast Cancer Cells. Mar Drugs 2021; 19:md19050244. [PMID: 33925873 PMCID: PMC8144972 DOI: 10.3390/md19050244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, the anti-proliferative effect of ilimaquinone, a sesquiterpene derivative from the marine sponge, in breast cancer cells was investigated. Ilimaquinone inhibited the proliferation of MCF-7 and MDA-MB-231 breast cancer cells with IC50 values of 10.6 μM and 13.5 μM, respectively. Non-tumorigenic human breast epithelial cells were less sensitive to ilimaquinone than breast cancer cells. Flow cytometric and Western blot analysis showed that ilimaquinone induced S-phase arrest by modulating the expression of p-CDC-2 and p21. Ilimaquinone induces apoptosis, which is accompanied by multiple biological biomarkers, including the downregulation of Akt, ERK, and Bax, upregulation of p38, loss of mitochondrial membrane potential, increased reactive oxygen species generation, and induced autophagy. Collectively, these findings suggest that ilimaquinone causes cell cycle arrest as well as induces apoptosis and autophagy in breast cancer cells.
Collapse
|
13
|
Ilimaquinone inhibits neovascular age-related macular degeneration through modulation of Wnt/β-catenin and p53 pathways. Pharmacol Res 2020; 161:105146. [PMID: 32814173 DOI: 10.1016/j.phrs.2020.105146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 11/22/2022]
Abstract
Neovascular age-related macular degeneration (nAMD) is a common cause of irreversible vision loss in the elderly. Anti-vascular endothelial growth factor has been effective in treating pathological ocular neovascularization, but it has limitations including the need for repeated intraocular injections for the maintenance of therapeutic effects in most patients and poor or non-response to this agent in some patients. in vitro cellular studies were conducted using retinal pigment epithelial cell lines (ARPE-19 and hTERT-RPE1), human umbilical vein endothelial cells (HUVECs), and human umbilical vein smooth muscle cells (HUVSMCs). in vivo efficacy of ilimaquinone (IQ) was tested in laser-induced choroidal neovascularization mouse and rabbit models. Tissue distribution study was performed in male C57BL6/J mice. IQ, 4,9-friedodrimane-type sesquiterpenoid isolated from the marine sponge, repressed the expression of angiogenic/inflammatory factors and restored the expression of E-cadherin in retinal pigment epithelial cells by inhibiting the Wnt/β-catenin pathway. In addition, it selectively inhibited proliferation and tube formation of HUVECs by activating the p53 pathway. Topical and intraperitoneal administration of IQ significantly reduced choroidal neovascularization in rabbits and mice with laser-induced choroidal neovascularization. Notably, IQ by the oral route of exposure was highly permeable to the eyes and suppressed abnormal vascular leakage by downregulation of β-catenin and stabilization of p53 in vivo. Our findings demonstrate that IQ functions through regulation of p53 and Wnt/β-catenin pathways with conceivable advantages over existing cytokine-targeted anti-angiogenic therapies.
Collapse
|
14
|
Ilimaquinone Induces Apoptosis and Autophagy in Human Oral Squamous Cell Carcinoma Cells. Biomedicines 2020; 8:biomedicines8090296. [PMID: 32825464 PMCID: PMC7555415 DOI: 10.3390/biomedicines8090296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, the anti-tumor activity of ilimaquinone (IQ), a sesquiterpene quinone isolated from marine sponge Halichondria sp., in oral squamous cell carcinoma (OSCC) cells, was investigated. IQ suppressed the viability of the OSCC cell lines SCC4 and SCC2095 with IC50 values of 7.5 and 8.5 μM, respectively. Flow cytometric analysis demonstrated that IQ induced caspase-dependent apoptosis in SCC4 cells and modulated the expression of several cell growth-related gene products, including Akt, p38, Mcl-1, and p53. Notably, p53 knockdown caused higher resistance to IQ’s anti-tumor activity. In addition, IQ increased reactive oxygen species generation, which was partially reversed by the addition of antioxidants. Furthermore, it triggered autophagy, as evidenced by acidic organelle formation and LC3B-II and Atg5 expression in SCC4 cells. Pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine partially decreased IQ-induced apoptosis, suggesting that IQ induced protective autophagy. In summary, IQ has potential to be used in OSCC therapy.
Collapse
|
15
|
Adarsh Krishna TP, Pandaram S, Chinnasamy S, Ilangovan A. Oxidative radical coupling of hydroquinones and thiols using chromic acid: one-pot synthesis of quinonyl alkyl/aryl thioethers. RSC Adv 2020; 10:19454-19462. [PMID: 35515459 PMCID: PMC9054077 DOI: 10.1039/d0ra01519a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
An efficient, simple and practical protocol for one-pot sequential oxidative radical C-H/S-H cross-coupling of thiols with hydroquinones (HQs) and oxidation leading to the formation of quinonyl alkyl/aryl thioethers using H2CrO4 was developed. This cross-coupling of thiyl and aryl radicals offers mono thioethers in good to moderate yield and works well with a wide variety of thiols. Similarly, this method works well for coupling of 2-amino thiophenol and HQs to form phenothiazine-3-ones 5a-c. C-S bond formation via thioether synthesis was observed using a chromium reagent for the first time. Theoretical studies on the pharmacokinetic properties of compounds 5a-c revealed that due to drug-like properties, compound 5b strongly binds with Alzheimer's disease (AD) associated AChE target sites.
Collapse
Affiliation(s)
- T P Adarsh Krishna
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| | - Sakthivel Pandaram
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| | - Suresh Chinnasamy
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University Tiruchirappalli Tamilnadu-620024 India
| |
Collapse
|
16
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
17
|
Nigam M, Suleria HAR, Farzaei MH, Mishra AP. Marine anticancer drugs and their relevant targets: a treasure from the ocean. Daru 2019; 27:491-515. [PMID: 31165439 PMCID: PMC6593002 DOI: 10.1007/s40199-019-00273-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Marine organisms comprising animals and plants are wealthiest sources of bioactive compounds possessing various pharmacological properties specifically: free radical scavenging, antitumor, antimicrobial, analgesic, neuroprotective and immunomodulatory. Marine drugs provide an alternative source to meet the demand of effective, safe and low-cost drugs that are rising with the continuously growing world population. Cancer is one of the leading reasons of mortality in western nations in contrast to communicable diseases of developing nations. In spite of outstanding developments in cancer therapy in past three decades, there is still an insistent necessity for innovative drugs in the area of cancer biology, especially in the unexplored area of marine anticancer compounds. However, recent technological innovations in structure revelation, synthetic creation of new compounds and biological assays have made possible the isolation and clinical assessment of innumerable unique anticancer compounds from marine environment. This review provides an insight into the anticancer research so far conducted in the area of the marine natural products/synthetic derivatives, their possible molecular targets and the current challenges in the drug development. Graphical abstract.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| | - Hafiz Ansar Rasul Suleria
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216 Australia
- UQ Diamantina Institute, Translational Research Institute, Faculty of Medicine, The University of Queensland, 37 Kent Street Woolloongabba, Brisbane, QLD 4102 Australia
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS 66506 USA
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal, Uttarakhand 246174 India
| |
Collapse
|
18
|
Stereo-Selective Pharmacokinetics of Ilimaquinone Epimers Extracted from a Marine Sponge in Rats. Mar Drugs 2019; 17:md17030171. [PMID: 30884884 PMCID: PMC6472033 DOI: 10.3390/md17030171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023] Open
Abstract
An ilimquinone (IQ) mixture isolated from Hippiospongia metachromia, consisting of IQ and epi-ilimaquinone (epi-IQ), exerts anti-HIV, anti-microbial, anti-inflammatory, and anti-cancer effects. An HPLC-MS/MS method was developed for simultaneous determination of the two epimers in rat plasma, separating them using a biphenyl column. Ascorbic acid is added during the sample preparation to ensure the stability of both isomers. The plasma concentrations of the isomers were monitored following intravenous and oral administration of the IQ mixture in rats as well as the individual epimers that were separately orally administered. Compare to IQ, epi-IQ was much more stable in rat plasma, likely due to its configurations of decalin. Both substances decayed in more than bi-exponential pattern, with an elimination rate constant of 1.2 h−1 for IQ and 1.7 h−1 for epi-IQ. The epi-IQ was distributed more widely than IQ by about two-fold. Consequently, the clearance of epi-IQ was greater than that of IQ by about three-fold. The oral absolute bioavailability for IQ was 38%, and, that for epi-IQ, was 13%. Although the systemic exposure of IQ was greater than that of epi-IQ by ~8.7-fold, the clearance of each isomer was similar when administered either orally or intravenously, when normalized for bioavailability. The stereo-specific behavior of the isomers appears to originate from differences in both their tissue distribution and gastrointestinal permeability.
Collapse
|
19
|
Son H, Noh K, Kang C, Na M, Oh S, Song IS, Kang W. HPLC-MS/MS analysis of ilimaquinone and its application in a pharmacokinetic study in rats. J Pharm Biomed Anal 2019; 166:291-294. [PMID: 30684930 DOI: 10.1016/j.jpba.2019.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/01/2022]
Abstract
Ilimaquinone, a metabolite isolated from the marine sponge Hippiospongia metachromia, has antimicrobial, cytotoxic, anti-HIV, anti-inflammatory, and anti-cancer activities. A new quantitative analytical method for determination of ilimaquinone in rat plasma using HPLC-MS/MS was developed and validated. Ascorbic acid was added to ensure the stability of ilimaquinone in plasma. After protein precipitation using acetonitrile plus diclofenac as an internal standard, the analytes were chromatographed on a biphenyl column with a mobile phase of methanol and water (8:2, v/v, including 0.1% formic acid). This method was successfully applied in a pharmacokinetic study of ilimaquinone after oral administration in rats.
Collapse
Affiliation(s)
- Heebin Son
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Canada
| | - Changhyun Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, South Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, South Korea
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea.
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, South Korea.
| |
Collapse
|
20
|
García PA, Hernández ÁP, San Feliciano A, Castro MÁ. Bioactive Prenyl- and Terpenyl-Quinones/Hydroquinones of Marine Origin †. Mar Drugs 2018; 16:E292. [PMID: 30134616 PMCID: PMC6165040 DOI: 10.3390/md16090292] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The sea is a rich source of biological active compounds, among which terpenyl-quinones/hydroquinones constitute a family of secondary metabolites with diverse pharmacological properties. The chemical diversity and bioactivity of those isolated from marine organisms in the last 10 years are summarized in this review. Aspects related to synthetic approaches towards the preparation of improved bioactive analogues from inactive terpenoids are also outlined.
Collapse
Affiliation(s)
- Pablo A García
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Ángela P Hernández
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Arturo San Feliciano
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| | - Mª Ángeles Castro
- Department of Pharmaceutical Sciences, Pharmaceutical Chemistry Section, CIETUS/IBSAL, Faculty of Pharmacy, University of Salamanca, E-37007 Salamanca, Spain.
| |
Collapse
|
21
|
An Y, Quan KT, Gwak J, Ju BG, Na M, Oh S. Activation of the p53 pathway with digiferrol isolated from Rubia philippinensis induces cell cycle arrest, apoptosis, and autophagy in colon cancer cells. Food Chem Toxicol 2018; 118:514-522. [PMID: 29842910 DOI: 10.1016/j.fct.2018.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Younju An
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 136-702, Republic of Korea
| | - Khong Trong Quan
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jungsug Gwak
- Department of Life Science, Sogang University, Seoul, 121-742, Republic of Korea
| | - Bong Gun Ju
- Department of Life Science, Sogang University, Seoul, 121-742, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 136-702, Republic of Korea.
| |
Collapse
|
22
|
Simithy J, Fuanta NR, Hobrath JV, Kochanowska-Karamyan A, Hamann MT, Goodwin DC, Calderón AI. Mechanism of irreversible inhibition of Mycobacterium tuberculosis shikimate kinase by ilimaquinone. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:731-739. [PMID: 29654976 PMCID: PMC11215815 DOI: 10.1016/j.bbapap.2018.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 01/03/2023]
Abstract
Ilimaquinone (IQ), a marine sponge metabolite, has been considered as a potential therapeutic agent for various diseases due to its broad range of biological activities. We show that IQ irreversibly inactivates Mycobacterium tuberculosis shikimate kinase (MtSK) through covalent modification of the protein. Inactivation occurred with an apparent second-order rate constant of about 60 M-1 s-1. Following reaction with IQ, LC-MS analyses of intact MtSK revealed covalent modification of MtSK by IQ, with the concomitant loss of a methoxy group, suggesting a Michael-addition mechanism. Evaluation of tryptic fragments of IQ-derivatized MtSK by MS/MS demonstrated that Ser and Thr residues were most frequently modified with lesser involvement of Lys and Tyr. In or near the MtSK active site, three residues of the P-loop (K15, S16, and T17) as well as S77, T111, and S44 showed evidence of IQ-dependent derivatization. Accordingly, inclusion of ATP in IQ reactions with MtSK partially protected the enzyme from inactivation and limited IQ-based derivatization of K15 and S16. Additionally, molecular docking models for MtSK-IQ were generated for IQ-derivatized S77 and T111. In the latter, ATP was observed to sterically clash with the IQ moiety. Out of three other enzymes evaluated, lactate dehydrogenase was derivatized and inactivated by IQ, but pyruvate kinase and catalase-peroxidase (KatG) were unaffected. Together, these data suggest that IQ is promiscuous (though not entirely indiscriminant) in its reactivity. As such, the potential of IQ as a lead in the development of antitubercular agents directed against MtSK or other targets is questionable.
Collapse
Affiliation(s)
- Johayra Simithy
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 3306 Walker Building, Auburn University, Auburn, AL 36849, USA
| | - Ngolui Rene Fuanta
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, AL 36849, USA
| | - Judith V Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Anna Kochanowska-Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University HSC, 1300 S. Coulter, Amarillo, TX 79106, USA
| | - Mark T Hamann
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, 179 Chemistry Building, Auburn University, Auburn, AL 36849, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, 3306 Walker Building, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
23
|
Fang Y, Kang Y, Zou H, Cheng X, Xie T, Shi L, Zhang H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia 2017; 124:92-102. [PMID: 29066299 DOI: 10.1016/j.fitote.2017.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022]
Abstract
β-elemene, extracted from Rhizoma zedoariae, has been widely used as a traditional medicine for its antitumor activity against a broad range of cancers. However, the effect of β-elemene in inflammation disorders has yet to be determined. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of β-elemene in lipopolysaccharide (LPS)-induced murine macrophage cells RAW264.7. We found that the production of pro-inflammatory mediators, including interleukin-6(IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induced by LPS was significantly suppressed by β-elemene in a dose-dependent manner in RAW264.7 macrophage cell line. Also, β-elemene inhibited LPS-induced nitric oxide synthase (iNOS) and interleukin-10 (IL-10) expression by RAW264.7, which was related to the down-regulation of Wnt/β-catenin signaling pathway. Importantly, this study demonstrates that β-catenin was significantly inhibited by β-elemene, which appeared to be largely responsible for the down-regulation of Wnt/β-catenin signaling pathway. Accordingly, the deletion of β-catenin in primary macrophages reversed β-catenin-elicited inhibition of immune response. Furthermore, β-catenin expression and Wnt/β-catenin signaling pathway induced by LPS in RAW264.7 was also significantly inhibited by α-humulene, one isomeric sesquiterpene of β-elemene. α-humulene was also found to significantly inhibit LPS-induced production of proinflammatory cytokines. However, α-humulene showed more cytotoxic ability than β-elemene. Collectively, our data illustrated that β-elemene exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of β-catenin, and also demonstrated the protective functions of β-elemene in endotoxin-induced inflammation. β-elemene may serve as potential nontoxic modulatory agents for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yangyi Fang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhua Kang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zou
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaxuan Cheng
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- Institute of Holistic Integrative Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hang Zhang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Choi PJ, O Y, Her JH, Yun E, Song GY, Oh S. Anti-proliferative activity of CGK012 against multiple myeloma cells via Wnt/β-catenin signaling attenuation. Leuk Res 2017; 60:103-108. [PMID: 28772205 DOI: 10.1016/j.leukres.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
The aberrant activation of Wnt/β-catenin signaling is involved in the development of multiple myeloma; thus, this signaling pathway is a potential target for the development of therapeutics for this malignancy. Here, we performed cell-based chemical screening and found that CGK012, a pyranocoumarin compound, suppressed the Wnt3a-CM-mediated activation of β-catenin response transcription. CGK012 induced β-catenin phosphorylation at Ser33/Ser37/Thr41, leading to proteasomal degradation and reducing the level of intracellular β-catenin. Furthermore, CGK012 consistently decreased the amount of β-catenin and repressed the expression of cyclin D1, c-myc, and axin-2 (downstream target genes of β-catenin) in RPMI-8226 multiple myeloma cells. In addition, CGK012 inhibited the proliferation of RPMI-8226 cells and promoted apoptosis, as indicated by the increase in the population of Annexin V-FITC-stained cells and caspase-3/7 activity. These findings suggest that CGK012 could exert antiproliferative activity against multiple myeloma cells by attenuating the Wnt/β-catenin pathway; thus, it may have potential as a therapeutic agent for multiple myeloma treatment.
Collapse
Affiliation(s)
- Pyung Jun Choi
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Yuseok O
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Hyuk Her
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunju Yun
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
25
|
Unified Synthesis of the Marine Sesquiterpene Quinones (+)-Smenoqualone, (-)-Ilimaquinone, (+)-Smenospongine, and (+)-Isospongiaquinone. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
β-Catenin Inhibitor BC2059 Is Efficacious as Monotherapy or in Combination with Proteasome Inhibitor Bortezomib in Multiple Myeloma. Mol Cancer Ther 2017; 16:1765-1778. [DOI: 10.1158/1535-7163.mct-16-0624] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/24/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022]
|
27
|
Smenospongidine suppresses the proliferation of multiple myeloma cells by promoting CCAAT/enhancer-binding protein homologous protein-mediated β-catenin degradation. Arch Pharm Res 2017; 40:592-600. [DOI: 10.1007/s12272-017-0906-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/26/2017] [Indexed: 11/27/2022]
|
28
|
Takeda Y, Narita K, Katoh T. Total Synthesis of Marine Sesquiterpene Quinones (+)-Cyclospongiaquinone-1 and (-)-Dehydrocyclospongiaquinone-1 with a Tetracyclic Benzo[a]xanthene Skeleton. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Takeda
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Koichi Narita
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Tadashi Katoh
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| |
Collapse
|
29
|
Simple avarone mimetics as selective agents against multidrug resistant cancer cells. Eur J Med Chem 2016; 118:107-20. [DOI: 10.1016/j.ejmech.2016.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/23/2016] [Accepted: 04/05/2016] [Indexed: 02/07/2023]
|
30
|
WANG YUE, XIN HUA, HAN ZHIFENG, SUN HONGBING, GAO NAN, YU HAIXIANG. MicroRNA-374a promotes esophageal cancer cell proliferation via Axin2 suppression. Oncol Rep 2015; 34:1988-94. [DOI: 10.3892/or.2015.4182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/18/2015] [Indexed: 11/06/2022] Open
|
31
|
Hwang IH, Oh J, Zhou W, Park S, Kim JH, Chittiboyina AG, Ferreira D, Song GY, Oh S, Na M, Hamann MT. Cytotoxic activity of rearranged drimane meroterpenoids against colon cancer cells via down-regulation of β-catenin expression. JOURNAL OF NATURAL PRODUCTS 2015; 78:453-61. [PMID: 25590830 PMCID: PMC4380199 DOI: 10.1021/np500843m] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Colorectal cancer has emerged as a major cause of death in Western countries. Down-regulation of β-catenin expression has been considered a promising approach for cytotoxic drug formulation. Eight 4,9-friedodrimane-type sesquiterpenoids (1-8) were acquired using the oxidative potential of Verongula rigida on bioactive metabolites from two Smenospongia sponges. Compounds 3 and 4 contain a 2,2-dimethylbenzo[d]oxazol-6(2H)-one moiety as their substituted heterocyclic residues, which is unprecedented in such types of meroterpenoids. Gauge-invariant atomic orbital NMR chemical shift calculations were employed to investigate stereochemical details with support of the application of advanced statistics such as CP3 and DP4. Compounds 2 and 8 and the mixture of 3 and 4 suppressed β-catenin response transcription (CRT) via degrading β-catenin and exhibited cytotoxic activity on colon cancer cells, implying that their anti-CRT potential is, at least in part, one of their underlying antineoplastic mechanisms.
Collapse
Affiliation(s)
- In Hyun Hwang
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joonseok Oh
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
| | - Wei Zhou
- College
of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Seoyoung Park
- Department
of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Joo-Hyun Kim
- Department
of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Amar G. Chittiboyina
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
| | - Daneel Ferreira
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
| | - Gyu Yong Song
- College
of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
| | - Sangtaek Oh
- Department
of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
- Tel: +82 2 910 5732. Fax: +82-2-910-5739. E-mail: (S. Oh)
| | - MinKyun Na
- College
of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 305-764, Republic of Korea
- Tel: +82 42 821 5925. Fax: +82 42 823 6566. E-mail: (M.
Na)
| | - Mark T. Hamann
- Division of Pharmacognosy, Department of BioMolecular
Sciences, and
Research Institute of Pharmaceutical Sciences, School of Pharmacy, and National Center
for Natural Products Research, The University
of Mississippi, University, Mississippi 38677, United States
- Tel: +1 662
915 5730. Fax: +1 662 915 6975. E-mail: (M. T. Hamann)
| |
Collapse
|
32
|
Activation of p53 with ilimaquinone and ethylsmenoquinone, marine sponge metabolites, induces apoptosis and autophagy in colon cancer cells. Mar Drugs 2015; 13:543-57. [PMID: 25603347 PMCID: PMC4306951 DOI: 10.3390/md13010543] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor, p53, plays an essential role in the cellular response to stress through regulating the expression of genes involved in cell cycle arrest, apoptosis and autophagy. Here, we used a cell-based reporter system for the detection of p53 response transcription to identify the marine sponge metabolites, ilimaquinone and ethylsmenoquinone, as activators of the p53 pathway. We demonstrated that ilimaquinone and ethylsmenoquinone efficiently stabilize the p53 protein through promotion of p53 phosphorylation at Ser15 in both HCT116 and RKO colon cancer cells. Moreover, both compounds upregulate the expression of p21WAF1/CIP1, a p53-dependent gene, and suppress proliferation of colon cancer cells. In addition, ilimaquinone and ethylsmenoquinone induced G2/M cell cycle arrest and increased caspase-3 cleavage and the population of cells that positively stained with Annexin V-FITC, both of which are typical biochemical markers of apoptosis. Furthermore, autophagy was elicited by both compounds, as indicated by microtubule-associated protein 1 light chain 3 (LC3) puncta formations and LC3-II turnover in HCT116 cells. Our findings suggest that ilimaquinone and ethylsmenoquinone exert their anti-cancer activity by activation of the p53 pathway and may have significant potential as chemo-preventive and therapeutic agents for human colon cancer.
Collapse
|