1
|
Vigil T, Spangler LC. Understanding Biomineralization Mechanisms to Produce Size-Controlled, Tailored Nanocrystals for Optoelectronic and Catalytic Applications: A Review. ACS APPLIED NANO MATERIALS 2024; 7:18626-18654. [PMID: 39206356 PMCID: PMC11348323 DOI: 10.1021/acsanm.3c04277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 09/04/2024]
Abstract
Biomineralization, the use of biological systems to produce inorganic materials, has recently become an attractive approach for the sustainable manufacturing of functional nanomaterials. Relying on proteins or other biomolecules, biomineralization occurs under ambient temperatures and pressures, which presents an easily scalable, economical, and environmentally friendly method for nanoparticle synthesis. Biomineralized nanocrystals are quickly approaching a quality applicable for catalytic and optoelectronic applications, replacing materials synthesized using expensive traditional routes. Here, we review the current state of development for producing functional nanocrystals using biomineralization and distill the wide variety of biosynthetic pathways into two main approaches: templating and catalysis. Throughout, we compare and contrast biomineralization and traditional syntheses, highlighting optimizations from traditional syntheses that can be implemented to improve biomineralized nanocrystal properties such as size and morphology, making them competitive with chemically synthesized state-of-the-art functional nanomaterials.
Collapse
Affiliation(s)
- Toriana
N. Vigil
- University
of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah C. Spangler
- Virginia
Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
2
|
Kozak F, Brandis D, Pötzl C, Epasto LM, Reichinger D, Obrist D, Peterlik H, Polyansky A, Zagrovic B, Daus F, Geyer A, Becker CFW, Kurzbach D. An Atomistic View on the Mechanism of Diatom Peptide-Guided Biomimetic Silica Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401239. [PMID: 38874418 PMCID: PMC11321707 DOI: 10.1002/advs.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Deciphering nature's remarkable way of encoding functions in its biominerals holds the potential to enable the rational development of nature-inspired materials with tailored properties. However, the complex processes that convert solution-state precursors into solid biomaterials remain largely unknown. In this study, an unconventional approach is presented to characterize these precursors for the diatom-derived peptides R5 and synthetic Silaffin-1A1 (synSil-1A1). These molecules can form defined supramolecular assemblies in solution, which act as templates for solid silica structures. Using a tailored structural biology toolbox, the structure-function relationships of these self-assemblies are unveiled. NMR-derived constraints are employed to enable a recently developed fractal-cluster formalism and then reveal the architecture of the peptide assemblies in atomistic detail. Finally, by monitoring the self-assembly activities during silica formation at simultaneous high temporal and residue resolution using real-time spectroscopy, the mechanism is elucidated underlying template-driven silica formation. Thus, it is demonstrated how to exercise morphology control over bioinorganic solids by manipulating the template architectures. It is found that the morphology of the templates is translated into the shape of bioinorganic particles via a mechanism that includes silica nucleation on the solution-state complexes' surfaces followed by complete surface coating and particle precipitation.
Collapse
Affiliation(s)
- Fanny Kozak
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dörte Brandis
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christopher Pötzl
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Ludovica M. Epasto
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dominik Obrist
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Herwig Peterlik
- Faculty of PhysicsUniversity of ViennaBoltzmanngasse 5Vienna1090Austria
| | - Anton Polyansky
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Bojan Zagrovic
- Department of Structural and Computational BiologyMax Perutz LabsUniversity of ViennaCampus Vienna Biocenter 5ViennaA‐1030Austria
| | - Fabian Daus
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Armin Geyer
- Faculty of ChemistryPhilipps‐Universität Marburg35032MarburgGermany
| | - Christian FW Becker
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological Chemistry, Faculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
3
|
Rubio-Camacho M, Cuestas-Ayllón C, Torres-Herrero B, Martínez-Tomé MJ, de la Fuente JM, Mateo CR. Harnessing the power of thermosensitive liposomes with gold nanoprisms and silica for controlled drug delivery in combined chemotherapy and phototherapy. RSC Adv 2024; 14:23073-23082. [PMID: 39040708 PMCID: PMC11261576 DOI: 10.1039/d4ra03359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
In recent years, the scientific community has tried to address the treatment of complex diseases such as cancer in a more appropriate and promising way. Regarding this and benefiting from the unique optical properties of gold nanoprisms (AuNPRs), the physicochemical properties of thermosensitive liposomes (TSLs), and the tunable drug encapsulation and release properties of silica nanoparticles (BioSi@NPs), this study has developed two nanoformulations. These nanoformulations have the potential to integrate chemotherapy and photothermal therapy within a single entity. Once their components were synthesized and characterized separately, two strategies were taken in order to develop these multifunctional nanoformulations: (1) covalent binding of AuNPRs to TSLs and (2) co-encapsulation of both components within BioSi@NPs, without modifying the optical and physicochemical properties of AuNPRs and TSLs. Finally, the suitability of both nanoformulations to carry and release hydrophilic drugs when triggered by a 1064 nm NIR laser has been explored by using the fluorescent probe 5(6)-carboxyfluorescein (CF) as a hydrophilic drug model. Different laser power and time of exposure were also tested evidencing that hydrophilic drugs were only released from TSLs in the presence of AuNPRs and that the drug release profile was dependent on the type of nanoformulation and irradiation conditions used. In conclusion, these multifunctional nanoformulations exhibit promising potential for controlled drug delivery in combined chemotherapy and phototherapy, with the capability to precisely control the release kinetics based on specific therapeutic needs.
Collapse
Affiliation(s)
- Marta Rubio-Camacho
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| | - Carlos Cuestas-Ayllón
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - María José Martínez-Tomé
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| | - Jesús M de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza (UNIZAR), CIBER-BBN c/Pedro Cerbuna s/n 50009 Zaragoza Spain
| | - C Reyes Mateo
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández (UMH) c/Avenida de la Universidad de Elche s/n 03202 Elche Alicante Spain
| |
Collapse
|
4
|
Thomassen AB, Jansen TLC, Weidner T. The secondary structure of diatom silaffin peptide R5 determined by two-dimensional infrared spectroscopy. Phys Chem Chem Phys 2024; 26:18538-18546. [PMID: 38888161 DOI: 10.1039/d4cp00970c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Diatoms, unicellular marine organisms, harness short peptide repeats of the protein silaffin to transform silicic acid into biosilica nanoparticles. This process has been a white whale for material scientists due to its potential in biomimetic applications, ranging from medical to microelectronic fields. Replicating diatom biosilicification will depend on a thorough understanding of the silaffin peptide structure during the reaction, yet existing models in the literature offer conflicting views on peptide folding during silicification. In our study, we employed two-dimensional infrared spectroscopy (2DIR) within the amide I region to determine the secondary structure of the silaffin repeat unit 5 (R5), both pre- and post-interaction with silica. The 2DIR experiments are complemented by molecular dynamics (MD) simulations of pure R5 reacting with silicate. Subsequently, theoretical 2DIR spectra calculated from these MD trajectories allowed us to compare calculated spectra with experimental data, and to determine the diverse structural poses of R5. Our findings indicate that unbound R5 predominantly forms β-strand structures alongside various atypical secondary structures. Post-silicification, there's a noticeable shift: a decrease in β-strands coupled with an increase in turn-type and bend-type configurations. We theorize that this structural transformation stems from silicate embedding within R5's hydrogen-bond network, prompting the peptide backbone to contract and adapt around the biosilica precursors.
Collapse
Affiliation(s)
- Asger Berg Thomassen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark.
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials, University of Groningen, Groningen 9747 AG, The Netherlands.
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C 8000, Denmark.
| |
Collapse
|
5
|
Abdul Rahman A, Mohd Isa IL, Tofail SAM, Bartlomiej L, Rodriguez BJ, Biggs MJ, Pandit A. Modification of Living Diatom, Thalassiosira weissflogii, with a Calcium Precursor through a Calcium Uptake Mechanism: A Next Generation Biomaterial for Advanced Delivery Systems. ACS APPLIED BIO MATERIALS 2024; 7:4102-4115. [PMID: 38758756 PMCID: PMC11190972 DOI: 10.1021/acsabm.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The diatom's frustule, characterized by its rugged and porous exterior, exhibits a remarkable biomimetic morphology attributable to its highly ordered pores, extensive surface area, and unique architecture. Despite these advantages, the toxicity and nonbiodegradable nature of silica-based organisms pose a significant challenge when attempting to utilize these organisms as nanotopographically functionalized microparticles in the realm of biomedicine. In this study, we addressed this limitation by modulating the chemical composition of diatom microparticles by modulating the active silica metabolic uptake mechanism while maintaining their intricate three-dimensional architecture through calcium incorporation into living diatoms. Here, the diatom Thalassiosira weissflogii was chemically modified to replace its silica composition with a biodegradable calcium template, while simultaneously preserving the unique three-dimensional (3D) frustule structure with hierarchical patterns of pores and nanoscale architectural features, which was evident by the deposition of calcium as calcium carbonate. Calcium hydroxide is incorporated into the exoskeleton through the active mechanism of calcium uptake via a carbon-concentrating mechanism, without altering the microstructure. Our findings suggest that calcium-modified diatoms hold potential as a nature-inspired delivery system for immunotherapy through antibody-specific binding.
Collapse
Affiliation(s)
- Asrizal Abdul Rahman
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Isma Liza Mohd Isa
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Syed A. M. Tofail
- Materials
and Surface Science Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lukasz Bartlomiej
- Conway
Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin 4, Ireland
| | - Brian J. Rodriguez
- Conway
Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin 4, Ireland
| | - Manus J. Biggs
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| | - Abhay Pandit
- CÚRAM,
SFI Research Centre for Medical Devices, University of Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
6
|
Kim SH, Ki MR, Han Y, Pack SP. Biomineral-Based Composite Materials in Regenerative Medicine. Int J Mol Sci 2024; 25:6147. [PMID: 38892335 PMCID: PMC11173312 DOI: 10.3390/ijms25116147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Regenerative medicine aims to address substantial defects by amplifying the body's natural regenerative abilities and preserving the health of tissues and organs. To achieve these goals, materials that can provide the spatial and biological support for cell proliferation and differentiation, as well as the micro-environment essential for the intended tissue, are needed. Scaffolds such as polymers and metallic materials provide three-dimensional structures for cells to attach to and grow in defects. These materials have limitations in terms of mechanical properties or biocompatibility. In contrast, biominerals are formed by living organisms through biomineralization, which also includes minerals created by replicating this process. Incorporating biominerals into conventional materials allows for enhanced strength, durability, and biocompatibility. Specifically, biominerals can improve the bond between the implant and tissue by mimicking the micro-environment. This enhances cell differentiation and tissue regeneration. Furthermore, biomineral composites have wound healing and antimicrobial properties, which can aid in wound repair. Additionally, biominerals can be engineered as drug carriers, which can efficiently deliver drugs to their intended targets, minimizing side effects and increasing therapeutic efficacy. This article examines the role of biominerals and their composite materials in regenerative medicine applications and discusses their properties, synthesis methods, and potential uses.
Collapse
Affiliation(s)
- Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea
| | - Youngji Han
- Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea;
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Republic of Korea; (S.H.K.); (M.-R.K.)
| |
Collapse
|
7
|
Tan V, Berg F, Maleki H. Diatom-inspired silicification process for development of green flexible silica composite aerogels. Sci Rep 2024; 14:6973. [PMID: 38521812 PMCID: PMC10960801 DOI: 10.1038/s41598-024-57257-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
In this study, we have developed novel biomimetic silica composite aerogels and cryogels for the first time, drawing inspiration from the natural diatom's silicification process. Our biomimetic approach involved the modification of tyrosinase-mediated oxidized silk fibroin (SFO) surfaces with polyethyleneimine (PEI). This modification introduced ample amine groups onto the SF polymer, which catalyzed the silicification of the SFO-PEI gel surface with silicic acid. This process emulates the catalytic function of long-chain polyamines and silaffin proteins found in diatoms, resulting in a silica network structure on the primary SFO-PEI network gel's surface. The SFO-PEI gel matrix played a dual role in this process: (1) It provided numerous amine functional groups that directly catalyzed the silicification of silicic acid on the porous structure's exterior surface, without encapsulating the created silica network in the gel. (2) It served as a flexible mechanical support facilitating the creation of the silica network. As a result, the final ceramic composite exhibits a mechanically flexible nature (e.g., cyclic compressibility up to 80% strain), distinguishing it from conventional composite aerogels. By mimicking the diatom's silicification process, we were able to simplify the development of silica-polymer composite aerogels. It eliminates the need for surfactants, multi-step procedures involving solvent exchange, and gel washing. Instead, the reaction occurs under mild conditions, streamlining the composite aerogels fabrication process.
Collapse
Affiliation(s)
- Valerie Tan
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstresse 6, 50939, Cologne, Germany
| | - Florian Berg
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstresse 6, 50939, Cologne, Germany
| | - Hajar Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstresse 6, 50939, Cologne, Germany.
- Center for Molecular Medicine Cologne, CMMC Research Center, Robert-Koch-Str. 21, 50931, Cologne, Germany.
| |
Collapse
|
8
|
Dey N, Mohny FP, Betsy Reshma G, Rao D, Ganguli M, Santhiya D. Bioinspired synthesis of bioactive glass nanocomposites for hyaluronic acid delivery to bone and skin. Int J Biol Macromol 2023; 253:127262. [PMID: 37813216 DOI: 10.1016/j.ijbiomac.2023.127262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
In this study, we present nanocomposites of bioactive glass (BG) and hyaluronic acid (HA) (nano-BGHA) for effective delivery of HA to skin and bone. The synthesis of the nanocomposites has been carried out through the bio-inspired method, which is a modification of the traditional Stober's synthesis as it avoids using ethanol, ammonia, synthetic surfactants, or high-temperature calcination. This environmentally friendly, bio-inspired route allowed the synthesis of mesoporous nanocomposites with an average hydrodynamic radius of ∼190 nm and an average net surface charge of ∼-21 mV. Most nanocomposites are amorphous and bioactive in nature with over 70 % cellular viability for skin and bone cell lines even at high concentrations, along with high cellular uptake (90-100 %). Furthermore, the nanocomposites could penetrate skin cells in a transwell set-up and artificial human skin membrane (StratM®), thus depicting an attractive strategy for the delivery of HA to the skin. The purpose of the study is to develop nanocomposites of HA and BG that can have potential applications in non-invasive treatments that require the delivery of high molecular weight HA such as in the case of osteoarthritis, sports injury treatments, eye drops, wound healing, and some anticancer treatments, if further investigated. The presence of BG further enhances the range to bone-related applications. Additionally, the nanocomposites can have potential cosmeceutical applications where HA is abundantly used, for instance in moisturizers, dermal fillers, shampoos, anti-wrinkle creams, etc.
Collapse
Affiliation(s)
- Namit Dey
- Delhi Technological University, Shahbad Daulatpur, Delhi, India
| | - Franklin Pulikkottil Mohny
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - G Betsy Reshma
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Rao
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Munia Ganguli
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road Campus, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Deenan Santhiya
- Delhi Technological University, Shahbad Daulatpur, Delhi, India.
| |
Collapse
|
9
|
Shchipunov Y. Biomimetic Sol-Gel Chemistry to Tailor Structure, Properties, and Functionality of Bionanocomposites by Biopolymers and Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 17:224. [PMID: 38204077 PMCID: PMC10779932 DOI: 10.3390/ma17010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Biosilica, synthesized annually only by diatoms, is almost 1000 times more abundant than industrial silica. Biosilicification occurs at a high rate, although the concentration of silicic acid in natural waters is ~100 μM. It occurs in neutral aqueous solutions, at ambient temperature, and under the control of proteins that determine the formation of hierarchically organized structures. Using diatoms as an example, the fundamental differences between biosilicification and traditional sol-gel technology, which is performed with the addition of acid/alkali, organic solvents and heating, have been identified. The conditions are harsh for the biomaterial, as they cause protein denaturation and cell death. Numerous attempts are being made to bring sol-gel technology closer to biomineralization processes. Biomimetic synthesis must be conducted at physiological pH, room temperature, and without the addition of organic solvents. To date, significant progress has been made in approaching these requirements. The review presents a critical analysis of the approaches proposed to date for the silicification of biomacromolecules and cells, the formation of bionanocomposites with controlled structure, porosity, and functionality determined by the biomaterial. They demonstrated the broad capabilities and prospects of biomimetic methods for creating optical and photonic materials, adsorbents, catalysts and biocatalysts, sensors and biosensors, and biomaterials for biomedicine.
Collapse
Affiliation(s)
- Yury Shchipunov
- Institute of Chemistry, Far East Department, Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
10
|
Osorio-Rodriguez D, Metcalfe KS, McGlynn SE, Yu H, Dekas AE, Ellisman M, Deerinck T, Aristilde L, Grotzinger JP, Orphan VJ. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation. Proc Natl Acad Sci U S A 2023; 120:e2302156120. [PMID: 38079551 PMCID: PMC10743459 DOI: 10.1073/pnas.2302156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al., Sci. Rep. 4, 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al., Appl. Environ. Microbiol. 88, e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al., Geology 48, 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies.
Collapse
Affiliation(s)
- Daniela Osorio-Rodriguez
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Kyle S. Metcalfe
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Shawn E. McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo152-8550, Japan
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- College of Urban and Environmental Sciences, Peking University, Beijing100871, China
| | - Anne E. Dekas
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Tom Deerinck
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, School of Medicine, La Jolla, CA92093
| | - Ludmilla Aristilde
- Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL60208
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
11
|
Ki MR, Kim SH, Park TI, Pack SP. Self-Entrapment of Antimicrobial Peptides in Silica Particles for Stable and Effective Antimicrobial Peptide Delivery System. Int J Mol Sci 2023; 24:16423. [PMID: 38003614 PMCID: PMC10671715 DOI: 10.3390/ijms242216423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising solution to tackle bacterial infections and combat antibiotic resistance. However, their vulnerability to protease degradation and toxicity towards mammalian cells has hindered their clinical application. To overcome these challenges, our study aims to develop a method to enhance the stability and safety of AMPs applicable to effective drug-device combination products. The KR12 antimicrobial peptide was chosen, and in order to further enhance its delivery and efficacy the human immunodeficiency virus TAT protein-derived cell-penetrating peptide (CPP) was fused to form CPP-KR12. A new product, CPP-KR12@Si, was developed by forming silica particles with self-entrapped CPP-KR12 peptide using biomimetic silica precipitability because of its cationic nature. Peptide delivery from CPP-KR12@Si to bacteria and cells was observed at a slightly delivered rate, with improved stability against trypsin treatment and a reduction in cytotoxicity compared to CPP-KR12. Finally, the antimicrobial potential of the CPP-KR12@Si/bone graft substitute (BGS) combination product was demonstrated. CPP-KR12 is coated in the form of submicron-sized particles on the surface of the BGS. Self-entrapped AMP in silica nanoparticles is a safe and effective AMP delivery method that will be useful for developing a drug-device combination product for tissue regeneration.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Tae In Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
12
|
Strobl J, Kozak F, Kamalov M, Reichinger D, Kurzbach D, Becker CFW. Understanding Self-Assembly of Silica-Precipitating Peptides to Control Silica Particle Morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207586. [PMID: 36509953 PMCID: PMC11475327 DOI: 10.1002/adma.202207586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The most advanced materials are those found in nature. These evolutionary optimized substances provide highest efficiencies, e.g., in harvesting solar energy or providing extreme stability, and are intrinsically biocompatible. However, the mimicry of biological materials is limited to a few successful applications since there is still a lack of the tools to recreate natural materials. Herein, such means are provided based on a peptide library derived from the silaffin protein R5 that enables rational biomimetic materials design. It is now evident that biomaterials do not form via mechanisms observed in vitro. Instead, the material's function and morphology are predetermined by precursors that self-assemble in solution, often from a combination of protein and salts. These assemblies act as templates for biomaterials. The RRIL peptides used here are a small part of the silica-precipitation machinery in diatoms. By connecting RRIL motifs via varying central bi- or trifunctional residues, a library of stereoisomers is generated, which allows characterization of different template structures in the presence of phosphate ions by combining residue-resolved real-time NMR spectroscopy and molecular dynamics (MD) simulations. Understanding these templates in atomistic detail, the morphology of silica particles is controlled via manipulation of the template precursors.
Collapse
Affiliation(s)
- Johannes Strobl
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Fanny Kozak
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Meder Kamalov
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Daniela Reichinger
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Dennis Kurzbach
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Christian FW Becker
- Institute of Biological ChemistryFaculty of ChemistryUniversity of ViennaWähringer Str. 38Vienna109Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| |
Collapse
|
13
|
Gungormus M. Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:280-290. [PMID: 36895442 PMCID: PMC9989680 DOI: 10.3762/bjnano.14.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Achieving scalable and economic methods for manufacturing ordered structures of nanoparticles is an ongoing challenge. Ordered structures of SiO2 nanoparticles have gained increased attention due to the great potential they offer in filtering, separation, drug delivery, optics, electronics, and catalysis. Biomolecules, such as peptides and proteins, have been demonstrated to be useful in the synthesis and self-assembly of inorganic nanostructures. Herein, we describe a simple Stöber-based method wherein both the synthesis and the self-assembly of SiO2 nanoparticles can be facilitated by a silica-binding peptide (SiBP). We demonstrate that the SiBP acts as a multirole agent when used alone or in combination with a strong base catalyst (NH3). When used alone, SiBP catalyzes the hydrolysis of precursor molecules in a dose-dependent manner and produces 17-20 nm SiO2 particles organized in colloidal gels. When used in combination with NH3, the SiBP produces smaller and more uniformly distributed submicrometer particles. The SiBP also improves the long-range self-assembly of the as-grown particles into an opal-like structure by changing the surface charge, without any need for further modification or processing of the particles. The results presented here provide a biomimetic route to the single-step synthesis and assembly of SiO2 nanoparticles into colloidal gels or opal-like structures.
Collapse
Affiliation(s)
- Mustafa Gungormus
- Biomedical Engineering, School of Engineering and Natural Sciences, Ankara Yildirim Beyazit University, Ankara, Türkiye
- MERLAB Application and Research Center, Ankara Yildirim Beyazit University, Ankara, Türkiye
| |
Collapse
|
14
|
Reichinger D, Reithofer M, Hohagen M, Drinic M, Tobias J, Wiedermann U, Kleitz F, Jahn-Schmid B, Becker CFW. A Biomimetic, Silaffin R5-Based Antigen Delivery Platform. Pharmaceutics 2022; 15:pharmaceutics15010121. [PMID: 36678751 PMCID: PMC9866965 DOI: 10.3390/pharmaceutics15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023] Open
Abstract
Nature offers a wide range of evolutionary optimized materials that combine unique properties with intrinsic biocompatibility and that can be exploited as biomimetic materials. The R5 and RRIL peptides employed here are derived from silaffin proteins that play a crucial role in the biomineralization of marine diatom silica shells and are also able to form silica materials in vitro. Here, we demonstrate the application of biomimetic silica particles as a vaccine delivery and adjuvant platform by linking the precipitating peptides R5 and the RRIL motif to a variety of peptide antigens. The resulting antigen-loaded silica particles combine the advantages of biomaterial-based vaccines with the proven intracellular uptake of silica particles. These particles induce NETosis in human neutrophils as well as IL-6 and TNF-α secretion in murine bone marrow-derived dendritic cells.
Collapse
Affiliation(s)
- Daniela Reichinger
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Mariam Hohagen
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
- Department of Inorganic Chemistry–Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Mirjana Drinic
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Joshua Tobias
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Freddy Kleitz
- Department of Inorganic Chemistry–Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Str. 42, 1090 Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christian F. W. Becker
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
15
|
Kırpat Konak BM, Bakar ME, Ahan RE, Özyürek EU, Dökmeci S, Şafak Şeker UÖ. A living material platform for the biomineralization of biosilica. Mater Today Bio 2022; 17:100461. [PMID: 36278145 PMCID: PMC9583595 DOI: 10.1016/j.mtbio.2022.100461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Nature has a vast array of biomineralization mechanisms. The commonly shared mechanism by many living organisms to form hardened tissues is the nucleation of mineral structures via proteins. Living materials, thanks to synthetic biology, are providing many opportunities to program cells for many functionalities. Here we have demonstrated a living material system for biosilicification. Silaffins are utilized to synthesize silicified cell walls by one of the most abundant organism groups called diatoms. The R5 peptide motif of the silaffins is known for its ability to precipitate silica in ambient conditions. Therefore, various studies have been conducted to implement the silicification activity of R5 in different application areas, such as regenerative medicine and tissue engineering. However, laborious protein purification steps are required prior to silica nanoparticle production in recombinant approaches. In this study, we aimed to engineer an alternative bacterial platform to achieve silicification using released and bacteria-intact forms of R5-attached fluorescent proteins (FP). Hence, we displayed R5-FP hybrids on the cell surface of E. coli via antigen 43 (Ag43) autotransporter system and managed to demonstrate heat-controllable release from the surface. We also showed that the bacteria cells displaying R5-FP can be used in silicification reactions. Lastly, considering the stimulating effect of silica on osteogenic differentiation, we treated human dental pulp stem cells (hDPSCs) with the silica aggregates formed via R5-FP hybrids. Earlier calcium crystal deposition around the hDPSCs was observed. We envision that our platform can serve as a faster and more economical alternative for biosilicification applications, including endodontics.
Collapse
Affiliation(s)
- Büşra Merve Kırpat Konak
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Mehmet Emin Bakar
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Recep Erdem Ahan
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey
| | - Emel Uzunoğlu Özyürek
- Department of Endodontics, Dental Faculty, Hacettepe University, Ankara, 06100, Turkey
| | - Serap Dökmeci
- Department of Medical Biology, Medical Faculty, Hacettepe University, Ankara, 06100, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM - Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey,Corresponding author.
| |
Collapse
|
16
|
Patil S, Sastry M, Bharde A. Size and Shape Directed Novel Green Synthesis of Plasmonic Nanoparticles Using Bacterial Metabolites and Their Anticancer Effects. Front Microbiol 2022; 13:866849. [PMID: 35495716 PMCID: PMC9040069 DOI: 10.3389/fmicb.2022.866849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
The growing need for developing new synthesis methods of plasmonic nanoparticles (PNPs) stems from their various applications in nanotechnology. As a result, a variety of protocols have been developed for the synthesis of PNPs of different shapes, sizes, and compositions. Though widely practiced, the chemical synthesis of PNPs demands stringent control over the experimental conditions, often employs environmentally hazardous chemicals for surface stabilization, and is frequently energy-intensive. Additionally, chemically obtained PNPs require subsequent surface engineering steps for various optoelectronic and biomedicine applications to minimize the toxic effects and render them useful for targeted drug delivery, sensing, and imaging. Considering the pressing need to develop environmentally-friendly technology solutions, “greener” methods of nanoparticle synthesis are gaining importance. Here, we report on the biological synthesis of plasmonic nanoparticles using bacterial metabolites. A peptide-based siderophore pyoverdine and a blue-green pigment pyocyanin obtained from a marine strain of Pseudomonas aeruginosa rapidly produced plasmonic nanoparticles of gold and silver in an aqueous environment. The morphology of plasmonic nanoparticles could be modulated by tuning the concentration of these metabolites and the reaction time. The exposure of pyoverdine to chloroauric acid resulted in anisotropic gold nanoparticles. On the other hand, pyocyanin produced a highly monodispersed population of gold nanoparticles and anisotropic silver nanoparticles. Biologically obtained gold and silver nanoparticles retained pyoverdine and pyocyanin on the nanoparticle surface and were stable for an extended period of time. The biologically obtained gold and silver plasmonic nanoparticles displayed potent anticancer activities against metastatic lung cancer cells. Biogenic nanoparticles were rapidly internalized by cancer cells in high quantity to affect the cellular organization, and karyoplasmic ratio, indicating the potential of these nanoparticles for cancer nanomedicine.
Collapse
Affiliation(s)
- Snehal Patil
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Murali Sastry
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Atul Bharde
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
17
|
Ki MR, Kim SH, Nguyen TKM, Son RG, Jun SH, Pack SP. BMP2-Mediated Silica Deposition: An Effective Strategy for Bone Mineralization. ACS Biomater Sci Eng 2022; 9:1823-1833. [PMID: 35090106 DOI: 10.1021/acsbiomaterials.1c01095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combined use of an osteogenic factor, such as bone morphogenetic protein 2 (BMP2), with a bone scaffold was quite functional for the reconstruction of bone defects. Although many studies using BMP2 have been done, there is still a need to develop an efficient way to apply BMP2 in the bone scaffold. Here, we reported an interesting fact that BMP2 has a silica deposition ability in the presence of silicic acid and proposed that such an ability of BMP2 can effectively immobilize and transport itself by a kind of coprecipitation of BMP2 with a silica matrix. The presence of BMP2 in the resulting silica was proved by SEM and EDS and was visualized by FITC-labeled BMP2. The delivery efficacy of BMP2 of silica-entrapped BMP2 on osteoblast differentiation and mineralization using MC3T3 E1 preosteoblast cells was evaluated in vitro. The coprecipitated BMP2 with silica exhibited osteogenesis at a low concentration that was insufficient to give an osteoinductive signal as the free form. Expectedly, the silica-entrapped BMP2 exhibited thermal stability over free BMP2. When applied to bone graft substitution, e.g., hydroxyapatite granules (HA), silica-entrapped BMP 2 laden HA (BMP2@Si/HA) showed sustained BMP2 release, whereas free BMP2 adsorbed HA by a simple dipping method (BMP2/HA) displayed a burst release of BMP2 at an initial time. In the rat critical-size calvarial defect model, BMP2@Si/HA showed better bone regeneration than BMP2/HA by about 10%. The BMP2/silica hybrid deposited on a carrier surface via BMP2-mediated silica precipitation demonstrated an increase in the loading efficiency, a decrease in the burst release of BMP2, and an increase in bone regeneration. Taken together, the coprecipitated BMP2 with a silica matrix has the advantages of not only being able to immobilize BMP2 efficiently without compromising its function but also serving as a stable carrier for BMP2 delivery.
Collapse
Affiliation(s)
- Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea.,Institution of Industrial Technology, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Sung Ho Kim
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Thi Khoa My Nguyen
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| | - Sang Ho Jun
- Departmtnt of Oral and Maxillofacial Surgery, Korea University Anam Hospital, 73 Goryeodae-ro, Seoul 02841, Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, 2511 Sejong-ro, Sejong 30019, Korea
| |
Collapse
|
18
|
Zhang J, Ji Y, Wang Z, Jia Y, Zhu Q. Effective improvements to the live-attenuated Newcastle disease virus vaccine by polyethylenimine-based biomimetic silicification. Vaccine 2022; 40:886-896. [PMID: 34991927 DOI: 10.1016/j.vaccine.2021.12.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Live and killed vaccines impart a significant role in preventing of Newcastle disease (ND) in China. Vaccine efficacy could be ameliorated by improving vaccine-induced cellular immunity and antibody persistency. Previous studies substantiated the potency of silicon dioxide (SiO2) in the control-release of drugs and as a vaccine adjuvant, and polyethylenimine (PEI) merits as a mucosal adjuvanticity with electro-positivity. The present study employed SiO2 and PEI to prepare biomimetic silicon mineralized nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M vaccines of G7M, a candidate for live attenuated vaccine of genotype VII Newcastle disease virus (NDV). The zeta potential experiment confirmed the significant increase in the average zeta potential of the nanoparticle G7M@SiO2-PEI and microparticle (SiO2 + PEI)@G7M relative to G7M before mineralization. The results of RT-qPCR revealed more than 99% mineralization efficiency of the G7M@SiO2-PEI and (SiO2 + PEI)@G7M. The morphology detected by transmission electron microscopy reported that the diameters of G7M@SiO2-PEI were similar to those of G7M, while for (SiO2 + PEI)@G7M, it was about five times larger than that of G7M. Silicon was detected on the surface of both mineralization particles, except for G7M, as observed from the elemental distribution detected by elemental mapping and energy dispersive X-ray spectrogram. Indirect immunofluorescence assays validated that mineralization virus have replicated ability in BHK-21F cells. In vivo experiments revealed higher than 5.50 log2 of antibody in nanoparticles G7M@SiO2-PEI group until 10-week post-vaccination, and significant proliferation of antigen-specific CD3+CD4+ in nanoparticles G7M@SiO2-PEI immunized group corroborated improved cellular immune responses. Vaccines provided full protection to the immunized chickens, whereas all the chickens receiving mock immunizations succumbed to the disease. Overall, our study concluded the efficacy of biomimetic mineralization of live attenuated vaccine in nanoparticles to improve humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jinjin Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanhong Ji
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
19
|
Marella TK, Saxena A, Tiwari A, Datta A, Dixit S. Treating agricultural non-point source pollutants using periphyton biofilms and biomass volarization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113869. [PMID: 34619588 DOI: 10.1016/j.jenvman.2021.113869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Untreated domestic wastewater and agricultural runoff are emerging as a potent cause of non-point source (NPS) pollutants which are a major threat to aquatic ecosystems. Periphyton biofilm-based technologies due to their high growth rate, energy efficiency and low input costs offer promising solutions for controlling nutrient pollution in agricultural systems. In this study we employed periphyton floway to treat NPS pollution from the agricultural watershed. The process performance of outdoor single pass algae floway (AFW) was evaluated. Steady state average biomass concentration of 11.73 g m-2 d-1 and removal rate of nitrogen: 0.60 g m-2 d-1, phosphorus: 0.27 g m-2d-1, arsenic: 9.26 mg m-2 d-1, chromium: 255.3 mg m-2 d-1 and lead: 238.6 mg m-2 d-1 was achieved. In addition, the microalgae and their associated bacterial diversity and dynamics were analyzed. The results revealed a high diversity and rapid variations in the microbiome structure with diatom and cyanobacteria dominance combined with high N fixing and P solubilizing bacteria during most of the operational period. Elemental analysis of periphyton biomass was done for its safe use as slow-release fertilizer. Biofuel feedstock potential and nanoparticle generation potential of the biomass were analyzed. This work highlights the potential use of periphyton biofilms in remediation and recycling of NPS pollutants with simultaneous resource recovery.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 313, India.
| | - Aviraj Datta
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State, India
| | - Sreenath Dixit
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru, 502 324, Telangana State, India
| |
Collapse
|
20
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
21
|
Li K, Li Y, Wang X, Cui M, An B, Pu J, Liu J, Zhang B, Ma G, Zhong C. Diatom-inspired multiscale mineralization of patterned protein-polysaccharide complex structures. Natl Sci Rev 2021; 8:nwaa191. [PMID: 34691703 PMCID: PMC8363331 DOI: 10.1093/nsr/nwaa191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 01/11/2023] Open
Abstract
Marine diatoms construct their hierarchically ordered, three-dimensional (3D) external structures called frustules through precise biomineralization processes. Recapitulating the remarkable architectures and functions of diatom frustules in artificial materials is a major challenge that has important technological implications for hierarchically ordered composites. Here, we report the construction of highly ordered, mineralized composites based on fabrication of complex self-supporting porous structures-made of genetically engineered amyloid fusion proteins and the natural polysaccharide chitin-and performing in situ multiscale protein-mediated mineralization with diverse inorganic materials, including SiO2, TiO2 and Ga2O3. Subsequently, using sugar cubes as templates, we demonstrate that 3D fabricated porous structures can become colonized by engineered bacteria and can be functionalized with highly photoreactive minerals, thereby enabling co-localization of the photocatalytic units with a bacteria-based hydrogenase reaction for a successful semi-solid artificial photosynthesis system for hydrogen evolution. Our study thus highlights the power of coupling genetically engineered proteins and polysaccharides with biofabrication techniques to generate hierarchically organized mineralized porous structures inspired by nature.
Collapse
Affiliation(s)
- Ke Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yingfeng Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mengkui Cui
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bolin An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiahua Pu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jintao Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Boyang Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao Zhong
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
22
|
Growth of Bacillus amyloliquefaciens as influence by Si nutrition. Arch Microbiol 2021; 203:4329-4336. [PMID: 34114085 DOI: 10.1007/s00203-021-02421-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The aim of study was to determine the influence of soluble and solid forms of Si on the growth of B. amyloliquefaciens. The experiment was conducted at two regimes: under sterile conditions (without B. amyloliquefaciens) and infected conditions (with B. amyloliquefaciens). New formed silica gel, diatomite and monosilicic acid at 1 mM Si and 2 mM Si were used as source of Si. The concentration of monosilicic acid in the solution was measured on second and tenth days of experiment. The total carbon in the solution before and after centrifugation was determined on day 10 of the experiment. The experiment has demonstrated a significant positive effect (by 4.7-41.2%) on B. amyloliquefaciens growth in water system. The presence of B. amyloliquefaciens in Si-rich solution reduced the concentration of monosilicic acid in the solution up to 16.2%. About 13.5-30.7% of B. amyloliquefaciens can be attached to the Si-rich surface without formation of cell clusters. Si can be classified as a beneficial nutrient for B. amyloliquefaciens. The tested strain of Bacillus can form channels in silica gel. The presence of monosilicic acid resulted in the formation of an aligned positioning of cells in water-based solution. This study is the first to demonstrate the direct influence of active Si forms on bacteria growth. The research showed that monosilicic acid or Si-rich solid substances with high solubility on Si can be recommended to increase B. amyloliquefaciens growth in soil, water or reactors.
Collapse
|
23
|
Can sustainable, monodisperse, spherical silica be produced from biomolecules? A review. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01869-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Sachin K, Karn SK. Microbial Fabricated Nanosystems: Applications in Drug Delivery and Targeting. Front Chem 2021; 9:617353. [PMID: 33959586 PMCID: PMC8093762 DOI: 10.3389/fchem.2021.617353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
The emergence of nanosystems for different biomedical and drug delivery applications has drawn the attention of researchers worldwide. The likeness of microorganisms including bacteria, yeast, algae, fungi, and even viruses toward metals is well-known. Higher tolerance to toxic metals has opened up new avenues of designing microbial fabricated nanomaterials. Their synthesis, characterization and applications in bioremediation, biomineralization, and as a chelating agent has been well-documented and reviewed. Further, these materials, due to their ability to get functionalized, can also be used as theranostics i.e., both therapeutic as well as diagnostic agents in a single unit. Current article attempts to focus particularly on the application of such microbially derived nanoformulations as a drug delivery and targeting agent. Besides metal-based nanoparticles, there is enough evidence wherein nanoparticles have been formulated using only the organic component of microorganisms. Enzymes, peptides, polysaccharides, polyhydroxyalkanoate (PHA), poly-(amino acids) are amongst the most used biomolecules for guiding crystal growth and as a capping/reducing agent in the fabrication of nanoparticles. This has promulgated the idea of complete green chemistry biosynthesis of nano-organics that are most sought after in terms of their biocompatibility and bioavailability.
Collapse
Affiliation(s)
- Kumar Sachin
- Department of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Santosh Kumar Karn
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun, India
| |
Collapse
|
25
|
Cassarino L, Curnow P, Hendry KR. A biomimetic peptide has no effect on the isotopic fractionation during in vitro silica precipitation. Sci Rep 2021; 11:9698. [PMID: 33958622 PMCID: PMC8102562 DOI: 10.1038/s41598-021-88881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/14/2021] [Indexed: 11/25/2022] Open
Abstract
The stable isotopic composition of diatom silica is used as a proxy for nutrient utilisation in natural waters. This approach provides essential insight into the current and historic links between biological production, carbon cycling and climate. However, estimates of isotopic fractionation during diatom silica production from both laboratory and field studies are variable, and the biochemical pathways responsible remain unknown. Here, we investigate silicon isotopic fractionation through a series of chemical precipitation experiments that are analogous to the first stages of intracellular silica formation within the diatom silicon deposition vesicle. The novelty of our experiment is the inclusion of the R5 peptide, which is closely related to a natural biomolecule known to play a role in diatom silicification. Our results suggest that the presence of R5 induces a systematic but non-significant difference in fractionation behaviour. It thus appears that silicon isotopic fractionation in vitro is largely driven by an early kinetic fractionation during rapid precipitation that correlates with the initial amount of dissolved silica in the system. Our findings raise the question of how environmental changes might impact silicon isotopic fractionation in diatoms, and whether frustule archives record information in addition to silica consumption in surface water.
Collapse
Affiliation(s)
- Lucie Cassarino
- University of Bristol, School of Earth Sciences, Wills Memorial Building, Queen's Road, Brsitol, BS8 1RJ, UK.
| | - Paul Curnow
- University of Bristol, School of Biochemistry, Medical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Katharine R Hendry
- University of Bristol, School of Earth Sciences, Wills Memorial Building, Queen's Road, Brsitol, BS8 1RJ, UK
| |
Collapse
|
26
|
Curley R, Banta RA, Garvey S, Holmes JD, Flynn EJ. Biomimetic spherical silica production using phosphatidylcholine and soy lecithin. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01839-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Green Production of Cladribine by Using Immobilized 2'-Deoxyribosyltransferase from Lactobacillus delbrueckii Stabilized through a Double Covalent/Entrapment Technology. Biomolecules 2021; 11:biom11050657. [PMID: 33947162 PMCID: PMC8146660 DOI: 10.3390/biom11050657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to the traditional multistep and environmentally harmful chemical processes. Herein we report the enzymatic synthesis of cladribine by a novel 2'-deoxyribosyltransferase (NDT)-based combined biocatalyst. To this end, Lactobacillus delbrueckii NDT (LdNDT) was successfully immobilized through a two-step immobilization methodology, including a covalent immobilization onto glutaraldehyde-activated biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate. The resulting immobilized derivative, SiGPEI 25000-LdNDT-Alg, displayed 98% retained activity and was shown to be active and stable in a broad range of pH (5-9) and temperature (30-60 °C), but also displayed an extremely high reusability (up to 2100 reuses without negligible loss of activity) in the enzymatic production of cladribine. Finally, as a proof of concept, SiGPEI 25000-LdNDT-Alg was successfully employed in the green production of cladribine at mg scale.
Collapse
|
28
|
Irie R, Miyako K, Matsunaga S, Sakai R, Oikawa M. Structure Revision of Protoaculeine B, a Post-translationally Modified N-Terminal Residue in the Peptide Toxin Aculeine B. JOURNAL OF NATURAL PRODUCTS 2021; 84:1203-1209. [PMID: 33787261 DOI: 10.1021/acs.jnatprod.0c01280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structure of protoaculeine B, the N-terminal residue of the marine peptide toxin aculeine B, is revised to the cis-1,3-disubstituted tetrahydro-β-carboline framework. We prepared two truncated model compounds that lack a long-chain polyamine using the one-step Pictet-Spengler reaction of tryptophan and compared their NMR, mass spectra, and chemical reactivity with those of the natural protoaculeine B. The synthetic models reproduced the profiles of the natural product well, which confirmed the appropriateness of the structure revision.
Collapse
Affiliation(s)
- Raku Irie
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kei Miyako
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Satoko Matsunaga
- National Institute of Technology, Hakodate College, Hakodate 042-8501, Japan
| | - Ryuichi Sakai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Masato Oikawa
- Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
29
|
Lei Q, Guo J, Kong F, Cao J, Wang L, Zhu W, Brinker CJ. Bioinspired Cell Silicification: From Extracellular to Intracellular. J Am Chem Soc 2021; 143:6305-6322. [PMID: 33826324 DOI: 10.1021/jacs.1c00814] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, biosilicification directs the formation of elaborate amorphous silica exoskeletons that provide diatoms mechanically strong, chemically inert, non-decomposable silica armor conferring chemical and thermal stability as well as resistance to microbial attack, without changing the optical transparency or adversely effecting nutrient and waste exchange required for growth. These extraordinary silica/cell biocomposites have inspired decades of biomimetic research aimed at replication of diatoms' hierarchically organized exoskeletons, immobilization of cells or living organisms within silica matrices and coatings to protect them against harmful external stresses, genetic re-programming of cellular functions by virtue of physico-chemical confinement within silica, cellular integration into devices, and endowment of cells with non-native, abiotic properties through facile silica functionalization. In this Perspective, we focus our discussions on the development and concomitant challenges of bioinspired cell silicification ranging from "cells encapsulated within 3D silica matrices" and "cells encapsulated within 2D silica shells" to extra- and intracellular silica replication, wherein all biomolecular interfaces are encased within nanoscopic layers of amorphous silica. We highlight notable examples of advances in the science and technology of biosilicification and consider challenges to advancing the field, where we propose cellular "mineralization" with arbitrary nanoparticle exoskeletons as a generalizable means to impart limitless abiotic properties and functions to cells, and, based on the interchangeability of water and silicic acid and analogies between amorphous ice and amorphous silica, we consider "freezing" cells within amorphous silica as an alternative to cryo-preservation.
Collapse
Affiliation(s)
- Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fanhui Kong
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
30
|
Cao J, Zaremba OT, Lei Q, Ploetz E, Wuttke S, Zhu W. Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS NANO 2021; 15:3900-3926. [PMID: 33656324 DOI: 10.1021/acsnano.0c10144] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synergistic union of nanomaterials with biomaterials has revolutionized synthetic chemistry, enabling the creation of nanomaterial-based biohybrids with distinct properties for biomedical applications. This class of materials has drawn significant scientific interest from the perspective of functional extension via controllable coupling of synthetic and biomaterial components, resulting in enhancement of the chemical, physical, and biological properties of the obtained biohybrids. In this review, we highlight the forefront materials for the combination with biomacromolecules and living organisms and their advantageous properties as well as recent advances in the rational design and synthesis of artificial biohybrids. We further illustrate the incredible diversity of biomedical applications stemming from artificially bioaugmented characteristics of the nanomaterial-based biohybrids. Eventually, we aim to inspire scientists with the application horizons of the exciting field of synthetic augmented biohybrids.
Collapse
Affiliation(s)
- Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Orysia T Zaremba
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- University of California-Berkeley, Berkeley, California 94720, United States
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Evelyn Ploetz
- Ludwig-Maximilians-Universität (LMU) Munich, Munich 81377, Germany
| | - Stefan Wuttke
- Basque Center for Materials, UPV/EHU Science Park, Leioa 48940, Spain
- Basque Foundation for Science, Bilbao 48009, Spain
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
31
|
In-situ green synthesis of fluorescent silica-silver conjugate nanodendrites using nanoporous frustules of diatoms: an unprecedented approach. Bioprocess Biosyst Eng 2021; 44:1263-1273. [PMID: 33620558 DOI: 10.1007/s00449-021-02536-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Generally, nanodendrite synthesis is chemical mediated and expensive. The biogenesis of such hierarchical structures is still in its nascent stage. The present study aimed at exploiting the nanoporous frustules of Halamphora subturgida, as a source of biosilica for the biosynthesis and stabilization of conjugate nanodendrites of silica and silver. These minute diatom frustules when exposed to 9 mM of silver nitrate solution, a highly crystalline nanohybride dendrites were synthesized. The nanohybrid dendrite synthesis was initially confirmed by the formation of greyish-brown frustules after 72 h of exposure. The composite dendrites were thoroughly characterized by standard techniques. Electron microscopic images illustrated that the process began with the formation of isotropic hybrid nanospheres with an internal diameter of 20 nm and continued to develop anisotropic nanocrystals with time. The nanodendrites externally formed on the siliceous frustules, acting as a template for the former. They were characterized by distinct 100 nm wide and 1-2 µm long trunks and 70-100 nm wide and 220-220 nm long branches on either side of the trunk. The optical measurement revealed the fluorescence property of the nanostructures owing to the photoluminescent efficiency of the frustules. Both the externally derived hybrid nanodendrites and internally synthesized nanospheres possessed superior stability in the suspension with a zeta potential value of - 35.7 mV and - 24.8 mV, respectively. Thus, this method is eco-friendly and provides a new dimension for nanodendrite synthesis with minimal cost and maximal yield compared to its non-biologically synthesized counterparts that involve several other drawbacks like chemical hazards and high energy consumption.
Collapse
|
32
|
Lee JH, You SM, Luo K, Ko JS, Jo AH, Kim YR. Synthetic Ligand-Coated Starch Magnetic Microbeads for Selective Extraction of Food Additive Silicon Dioxide from Commercial Processed Food. NANOMATERIALS 2021; 11:nano11020532. [PMID: 33669702 PMCID: PMC7922398 DOI: 10.3390/nano11020532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
The amorphous form of silicon dioxide has long been regarded as a safe food additive (E551) that is widely used in commercially processed food as an anticaking agent. However, starting with titanium dioxide, there have been growing safety concerns regarding to the use of nanoscale silicon dioxide particles in food as food additives. The size, morphology, and chemical properties of inorganic food materials are important parameters to determine its potential toxicity. Therefore, an effective means of extracting an intact form of SiO2 from food without altering the physicochemical property of SiO2 particles is of great need to accurately monitor its characteristics. Here, we report on an effective magnetic separation method to extract food additive SiO2 from food by utilizing a diatom-originated peptide with a specific affinity to SiO2 particles. The affinity-based magnetic separation was found to be specific to SiO2 particles over other types of inorganic food additives such as titanium dioxide and zinc oxide. The size and morphology of SiO2 were shown to not be affected by the extraction processes. This method was successfully applied to extract and characterize the food additive SiO2 from six different types of commercial food.
Collapse
|
33
|
Yeh YQ, Su CJ, Wang CA, Lai YC, Tang CY, Di Z, Frielinghaus H, Su AC, Jeng US, Mou CY. Diatom-inspired self-assembly for silica thin sheets of perpendicular nanochannels. J Colloid Interface Sci 2021; 584:647-659. [PMID: 33198979 DOI: 10.1016/j.jcis.2020.10.114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Multistage silicate self-organization into light-weight, high-strength, hierarchically patterned diatom frustules carries hints for innovative silica-based nanomaterials. With sodium silicate in a biomimetic sol-gel system templated by a tri-surfactant system of hexadecyltrimethylammonium bromide, sodium dodecylsulfate, and poly(oxyethylene-b-oxypropylene-b-oxyethylene) (P123), mesoporous silica nanochannel plates with perpendicular channel orientation are synthesized. The formation process, analogous to that of diatom frustules, is postulated to be directed by an oriented self-assembly of the block copolymer micelles shelled with charged catanionic surfactants upon silication. EXPERIMENTS The postulated formation process for the oriented silica nanochannel plates was investigated using time-resolved small-angle X-ray and neutron scattering (SAXS/SANS) and freeze fracture replication transmission electron microscopy (FFR-TEM). FINDINGS With fine-tuned molar ratios of the anionic, cationic, and nonionic surfactants, the catanionic combination and the nonionic copolymer form charged, prolate ternary micelles in aqueous solutions, which further develop into prototype monolayered micellar plates. The prolate shape and maximized surfactant adsorption of the complex micelles, revealed from combined SAXS/SANS analysis, are of critical importance in the subsequent micellar self-assembly upon silicate deposition. Time-resolved SAXS and FFR-TEM indicate that the silicate complex micelles coalesce laterally into the prototype micellar nanoplates, which further fuse with one another into large sheets of monolayered silicate micelles of in-plane lamellar packing. Upon silica polymerization, the in-plane lamellar packing of the micelles further transforms to 2D hexagonal packing of vertically oriented silicate channels. The unveiled structural features and their evolution not only elucidate the previously unresolved self-assembly process of through-thickness silica nanochannels but also open a new line of research mimicking free-standing frustules of diatoms.
Collapse
Affiliation(s)
- Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan; Department of Chemistry and Center of Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Chen-An Wang
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Ying-Chu Lai
- Department of Chemistry and Center of Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Yuan Tang
- Instrumentation Center, National Taiwan University, Taipei 10617, Taiwan
| | - Zhenyu Di
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Outstation at MLZ, Garching 85747, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS, Outstation at MLZ, Garching 85747, Germany
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan; Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chung-Yuan Mou
- Department of Chemistry and Center of Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
34
|
Abdelhamid MAA, Pack SP. Biomimetic and bioinspired silicifications: Recent advances for biomaterial design and applications. Acta Biomater 2021; 120:38-56. [PMID: 32447061 DOI: 10.1016/j.actbio.2020.05.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022]
Abstract
The rational design and controllable synthesis of functional silica-based materials have gained increased interest in a variety of biomedical and biotechnological applications due to their unique properties. The current review shows that marine organisms, such as siliceous sponges and diatoms, could be the inspiration for the fabrication of advanced biohybrid materials. Several biomolecules were involved in the molecular mechanism of biosilicification in vivo. Mimicking their behavior, functional silica-based biomaterials have been generated via biomimetic and bioinspired silicification in vitro. Additionally, several advanced technologies were developed for in vitro and in vivo immobilization of biomolecules with potential applications in biocatalysis, biosensors, bioimaging, and immunoassays. A thin silica layer could coat a single living cell or virus as a protective shell offering new opportunities in biotechnology and nanomedicine fields. Promising nanotechnologies have been developed for drug encapsulation and delivery in a targeted and controlled manner, in particular for poorly soluble hydrophobic drugs. Moreover, biomimetic silica, as a morphogenetically active biocompatible material, has been utilized in the field of bone regeneration and in the development of biomedical implantable devices. STATEMENT OF SIGNIFICANCE: In nature, silica-based biomaterials, such as diatom frustules and sponge spicules, with high mechanical and physical properties were created under biocompatible conditions. The fundamental knowledge underlying the molecular mechanisms of biosilica formation could inspire engineers and chemists to design novel hybrid biomaterials using molecular biomimetic strategies. The production of such biohybrid materials brings the biosilicification field closer to practical applications. This review starts with the biosilicification process of sponges and diatoms with recently updated researches. Then, this article covers recent advances in the design of silica-based biomaterials and their potential applications in the fields of biotechnology and nanomedicine, highlighting several promising technologies for encapsulation of functional proteins and living cells, drug delivery and the preparation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Mohamed A A Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea; Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea.
| |
Collapse
|
35
|
Douloudi M, Nikoli E, Katsika T, Vardavoulias M, Arkas M. Dendritic Polymers as Promising Additives for the Manufacturing of Hybrid Organoceramic Nanocomposites with Ameliorated Properties Suitable for an Extensive Diversity of Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E19. [PMID: 33374206 PMCID: PMC7823723 DOI: 10.3390/nano11010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
As the field of nanoscience is rapidly evolving, interest in novel, upgraded nanomaterials with combinatory features is also inevitably increasing. Hybrid composites, offer simple, budget-conscious and environmental-friendly solutions that can cater multiple needs at the same time and be applicable in many nanotechnology-related and interdisciplinary studies. The physicochemical idiocrasies of dendritic polymers have inspired their implementation as sorbents, active ingredient carriers and templates for complex composites. Ceramics are distinguished for their mechanical superiority and absorption potential that render them ideal substrates for separation and catalysis technologies. The integration of dendritic compounds to these inorganic hosts can be achieved through chemical attachment of the organic moiety onto functionalized surfaces, impregnation and absorption inside the pores, conventional sol-gel reactions or via biomimetic mediation of dendritic matrices, inducing the formation of usually spherical hybrid nanoparticles. Alternatively, dendritic polymers can propagate from ceramic scaffolds. All these variants are covered in detail. Optimization techniques as well as established and prospected applications are also presented.
Collapse
Affiliation(s)
- Marilina Douloudi
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | - Eleni Nikoli
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | - Theodora Katsika
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| | | | - Michael Arkas
- Institute of Nanoscience Nanotechnology, NCSR “Demokritos”, Patriarchou Gregoriou Street, 15310 Athens, Greece; (E.N.); (T.K.)
| |
Collapse
|
36
|
Jiang Q, Wu L, Zheng Y, Xia X, Zhang P, Lu T, Li J. Biomimetic micellar mesoporous silica xerogel performs superior nitrendipine dissolution, systemic stability and cellular transmembrane transport. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111372. [PMID: 33254988 DOI: 10.1016/j.msec.2020.111372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
To combine the advantages of micelles and biomimetic silica materials, biomimetic micellar mesoporous silica xerogel (BM-SX) was initially established, biomimetic silica xerogel (B-SX) was also studied as control and nitrendipine (NDP) was taken as model drug. The content mainly focused on drug dissolution, systemic stability and cellular transmembrane transport of NDP loaded B-SX and NDP loaded BM-SX. With extra mesopores formed due to HPMC E50 micelles, the mean pore diameter, surface area and pore volume of BM-SX were all larger than B-SX. After loading NDP into the two carriers, crystal NDP changed to amorphous phase, leading to enhanced NDP dissolution. BM-SX presented superior abilities not only for its higher drug dissolution compared to B-SX but also for its capacity in remaining high amorphous drug phase and therefore no drug dissolution reduction can be observed. The dynamic contact angle result confirmed the strong power of HPMC E50 micelles in maintaining amorphous NDP in the carrier to improve high systemic stability. Both B-SX and BM-SX could increase drug absorption permeability and exert function as drug efflux inhibitor to inhibit the efflux effect of p-gp drug pump and promote NDP absorption and transport, and BM-SX was superior owing to micelles in the system.
Collapse
Affiliation(s)
- Qiankun Jiang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lingqiong Wu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Yue Zheng
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Xiaojie Xia
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Ping Zhang
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Tong Lu
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Jing Li
- School of Pharmacy, Shenyang Medical College, Shenyang, China.
| |
Collapse
|
37
|
Mishra B, Saxena A, Tiwari A. Biosynthesis of silver nanoparticles from marine diatoms Chaetoceros sp., Skeletonema sp., Thalassiosira sp., and their antibacterial study. ACTA ACUST UNITED AC 2020; 28:e00571. [PMID: 33312881 PMCID: PMC7721619 DOI: 10.1016/j.btre.2020.e00571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/03/2020] [Accepted: 11/20/2020] [Indexed: 11/29/2022]
Abstract
Marine Diatoms have been envisaged for AgNP synthesis. The average size of AgNP ranges from 150 to 350 nm. Diatom based AgNP exhibits excellent biocidal activity. These AgNP showed inhibition against both Gram-positive and Gram negative bacteria.
Diatoms are a reservoir of metabolites with diverse applications and silver nanoparticle (AgNP) from diatoms holds immense therapeutic potentials against pathogenic microbes owing to their silica frustules. In the present study, Chaetoceros sp., Skeletonema sp., and Thalassiosira sp were used for synthesis of AgNP. The average particle size of AgNP synthesized was 149.03 ± 3.0 nm, 186.73 ± 4.9 nm, and 239.46 ± 44.3 nm as reported in DLS whereas 148.3 ± 46.8 nm, 238.0 ± 60.9 nm, and 359.8 ± 92.33 nm in SEM respectively. EDX analysis strongly indicates the confirmation of AgNP displaying a sharp peak of Ag+ ions within the spectra. High negative zeta potential values indicate a substantial degree of stabilization even after three months. The antibacterial efficacy of biosynthesized AgNP tested against Aeromonas sp., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Streptococcus pneumonia exhibits broad-spectrum antibacterial activity. This study encourages the synthesis of diatom based AgNP for a variety of applications owing least toxicity and biodegradable nature.
Collapse
Affiliation(s)
- Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201313, India
| |
Collapse
|
38
|
Buckle EL, Sampath J, Michael N, Whedon SD, Leonen CJA, Pfaendtner J, Drobny GP, Chatterjee C. Trimethylation of the R5 Silica-Precipitating Peptide Increases Silica Particle Size by Redirecting Orthosilicate Binding. Chembiochem 2020; 21:3208-3211. [PMID: 32596917 PMCID: PMC8604655 DOI: 10.1002/cbic.202000264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/27/2020] [Indexed: 12/29/2022]
Abstract
The unmodified R5 peptide from silaffin in the diatom Cylindrotheca fusiformis rapidly precipitates silica particles from neutral aqueous solutions of orthosilicic acid. A range of post-translational modifications found in R5 contribute toward tailoring silica morphologies in a species-specific manner. We investigated the specific effect of R5 lysine side-chain trimethylation, which adds permanent positive charges, on silica particle formation. Our studies revealed that a doubly trimethylated R5K3,4me3 peptide has reduced maximum activity yet, surprisingly, generates larger silica particles. Molecular dynamics simulations of R5K3,4me3 binding by the precursor orthosilicate anion revealed that orthosilicate preferentially associates with unmodified lysine side-chain amines and the peptide N terminus. Thus, larger silica particles arise from reduced orthosilicate association with trimethylated lysine side chains and their redirection to the N terminus of the R5 peptide.
Collapse
Affiliation(s)
- Erika L Buckle
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Janani Sampath
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Nina Michael
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Samuel D Whedon
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Calvin J A Leonen
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Gary P Drobny
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
39
|
Kanno KYF, Karp SG, Rodrigues C, de Andrade Tanobe VO, Soccol CR, da Costa Cardoso LA. Influence of organic solvents in the extraction and purification of torularhodin from Sporobolomyces ruberrimus. Biotechnol Lett 2020; 43:89-98. [PMID: 33064227 DOI: 10.1007/s10529-020-03023-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/05/2020] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This work aimed at evaluating the influence of organic solvents and stationary phases in the extraction with glass beads and chromatographic purification of carotenoids, especially torularhodin, from Sporobolomyces ruberrimus. RESULTS The combinations of acetone:hexane (1:1 v/v) and acetone:ethyl ether (1:1 v/v) yielded 171.74 and 172.19 μg of total carotenoids.g of cells-1, respectively. The first blend resulted in the highest percent of cell lysis of 57.4%. Among different proportions of acetone:hexane, the 9:1 v/v mixture showed a significant difference (p < 0.05), resulting in a recovery of total carotenoids of 221.88 μg.g of cells-1. The purification of carotenoids was made by preparative chromatography and the yield of the silica-containing stationary phase was higher (24 μg torularhodin.g cells-1). The analyses of the purified fractions in thin layer chromatography and high performance liquid chromatography indicated that the purification of carotenoids, especially of torularhodin, was successfully performed. CONCLUSIONS The combination of polar (acetone) and non-polar solvents (hexane) and the use of silica as stationary phase was efficient to recover and purify torularhodin from the intracellular pigments of Sporobolomyces ruberrimus.
Collapse
Affiliation(s)
- Karen Yuri Feitosa Kanno
- Doctorate and Master's Degree Graduation Program in Industrial Biotechnology, Universidade Positivo, Curitiba, PR, Brazil
| | - Susan Grace Karp
- Graduate Program in Bioprocess Engineering and Biotechnology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Cristine Rodrigues
- Graduate Program in Bioprocess Engineering and Biotechnology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Carlos Ricardo Soccol
- Graduate Program in Bioprocess Engineering and Biotechnology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Ligia Alves da Costa Cardoso
- Doctorate and Master's Degree Graduation Program in Industrial Biotechnology, Universidade Positivo, Curitiba, PR, Brazil.
| |
Collapse
|
40
|
Velasco-Lozano S, Jackson E, Ripoll M, López-Gallego F, Betancor L. Stabilization of ω-transaminase from Pseudomonas fluorescens by immobilization techniques. Int J Biol Macromol 2020; 164:4318-4328. [PMID: 32898544 DOI: 10.1016/j.ijbiomac.2020.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
Transaminases are a class of enzymes with promising applications for the preparation and resolution of a vast diversity of valued amines. Their poor operational stability has fueled many investigations on its stabilization due to their biotechnological relevance. In this work, we screened the stabilization of the tetrameric ω-transaminase from Pseudomonas fluorescens (PfωTA) through both carrier-bound and carrier-free immobilization techniques. The best heterogeneous biocatalyst was the PfωTA immobilized as cross-linked enzyme aggregates (PfωTA-CLEA) which resulted after studying different parameters as the precipitant, additives and glutaraldehyde concentrations. The best conditions for maximum recovered activity (29 %) and maximum thermostability at 60 ºC and 70 ºC (100 % and 71 % residual activity after 1 h, respectively) were achieved by enzyme precipitation with 90% acetone or ethanol, in presence of BSA (100 mg/mL) and employing glutaraldehyde (100 mM) as cross-linker. Studies on different conditions for PfωTA-CLEA preparation yielded a biocatalyst that exhibited 31 and 4.6 times enhanced thermal stability at 60 °C and 70 °C, respectively, compared to its soluble counterpart. The PfωTA-CLEA was successfully used in the bioamination of 4-hydroxybenzaldehyde to 4-hydroxybenzylamine. To the best of our knowledge, this is the first report describing a transaminase cross-linked enzyme aggregates as immobilization strategy to generate a biocatalyst with outstanding thermostability.
Collapse
Affiliation(s)
- Susana Velasco-Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain.
| | - Erienne Jackson
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay
| | - Magdalena Ripoll
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay
| | - Fernando López-Gallego
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), University of Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza, Spain; Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE Basque Research and Technology Alliance (BRTA), Paseo de Miramón, 182, 20014 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Universidad ORT Uruguay, Cuareim 1441, 11100 Montevideo, Uruguay.
| |
Collapse
|
41
|
Hakala T, Bialas F, Toprakcioglu Z, Bräuer B, Baumann KN, Levin A, Bernardes GJL, Becker CFW, Knowles TPJ. Continuous Flow Reactors from Microfluidic Compartmentalization of Enzymes within Inorganic Microparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32951-32960. [PMID: 32589387 PMCID: PMC7383928 DOI: 10.1021/acsami.0c09226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Compartmentalization and selective transport of molecular species are key aspects of chemical transformations inside the cell. In an artificial setting, the immobilization of a wide range of enzymes onto surfaces is commonly used for controlling their functionality but such approaches can restrict their efficacy and expose them to degrading environmental conditions, thus reducing their activity. Here, we employ an approach based on droplet microfluidics to generate enzyme-containing microparticles that feature an inorganic silica shell that forms a semipermeable barrier. We show that this porous shell permits selective diffusion of the substrate and product while protecting the enzymes from degradation by proteinases and maintaining their functionality over multiple reaction cycles. We illustrate the power of this approach by synthesizing microparticles that can be employed to detect glucose levels through simultaneous encapsulation of two distinct enzymes that form a controlled reaction cascade. These results demonstrate a robust, accessible, and modular approach for the formation of microparticles containing active but protected enzymes for molecular sensing applications and potential novel diagnostic platforms.
Collapse
Affiliation(s)
- Tuuli
A. Hakala
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Friedrich Bialas
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Zenon Toprakcioglu
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Birgit Bräuer
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Kevin N. Baumann
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Aviad Levin
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Medicina Molecular, Faculdade de Medicina
de Universidad de Lisboa, 1649-028 Lisboa, Portugal
| | - Christian F. W. Becker
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Street 38, 1090 Vienna, Austria
| | - Tuomas P. J. Knowles
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
42
|
Abstract
β-Glucuronidases are a class of enzymes that catalyze the breakdown of complex carbohydrates. They have well documented biocatalytic applications in synthesis, therapeutics, and analytics that could benefit from enzyme immobilization and stabilization. In this work, we have explored a number of immobilization strategies for Patella vulgata β-Glucuronidase that comprised a tailored combination of biomimetic silica (Si) and magnetic nanoparticles (MNPs). The individual effect of each material on the enzyme upon immobilization was first tested. Three different immobilization strategies for covalent attachment on MNPs and different three catalysts for the deposition of Si particles were tested. We produced nine different immobilized preparations and only two of them presented negligible activity. All the preparations were in the micro-sized range (from 1299 ± 52 nm to 2101 ± 67 nm of hydrodynamic diameter). Their values for polydispersity index varied around 0.3, indicating homogeneous populations of particles with low probability of agglomeration. Storage, thermal, and operational stability were superior for the enzyme immobilized in the composite material. At 80 °C different preparations with Si and MNPs retained 40% of their initial activity after 6 h of incubation whereas the soluble enzyme lost 90% of its initial activity within 11 min. Integration of MNPs provided the advantage of reusing the biocatalyst via magnetic separation up to six times with residual activity. The hybrid material produced herein demonstrated its versatility and robustness as a support for β-Glucuronidases immobilization.
Collapse
|
43
|
Wang Y, Cui W, Liu R, Tian Y, Ni W, Zhou C. Silicone Oil-Associated Extensive Intraocular Ossification: A case report. Eur J Ophthalmol 2020; 31:NP53-NP56. [PMID: 32498551 DOI: 10.1177/1120672120925785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Intraocular ossification is an uncommon calcium deposition process associated with trauma, chronic inflammation, tumor, and long-standing retinal detachment. This is the first reported extensive intraocular bone formation associated with silicone oil. CASE PRESENTATION A 30-year-old Han Chinese man came to us with complaint of red, painful blind right eye. He had a history of ocular trauma, retinal detachment, and two failed retinal reattachment surgeries with silicone oil left in the eye. On examination, conjunctiva congestion, band keratopathy, silicone oil emulsification, and limbus neovascularization were found. B-scan ultrasound and computed tomography scanning demonstrated retinal detachment and calcification of the eyeball wall. Histopathological analysis indicated ossification overlying the choroid. Evisceration was finally operated to relieve the pain. CONCLUSION The retention of silicone oil in the eye probably accelerates the ossification. Timely silicone oil removal and evisceration should be recommended if necessary for phthisis bulbi.
Collapse
Affiliation(s)
- Yinhao Wang
- Peking University Third Hospital, Beijing, China
| | - Wei Cui
- Benxi Central Hospital, Benxi, China
| | - Rongjun Liu
- Peking University Third Hospital, Beijing, China
| | - Yanjie Tian
- Peking University Third Hospital, Beijing, China
| | - Wei Ni
- Peking University Third Hospital, Beijing, China
| | - Changlei Zhou
- Wenshang County Hospital of Traditional Chinese Medicine, Shandong, China
| |
Collapse
|
44
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
45
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [PMID: 33071711 DOI: 10.1002/adfm.201909539] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
46
|
Toprakcioglu Z, Hakala TA, Levin A, Becker CFW, Bernandes GGL, Knowles TPJ. Multi-scale microporous silica microcapsules from gas-in water-in oil emulsions. SOFT MATTER 2020; 16:3082-3087. [PMID: 32140697 DOI: 10.1039/c9sm02274k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Controlling the surface area, pore size and pore volume of microcapsules is crucial for modulating their activity in applications including catalytic reactions, delivery strategies or even cell culture assays, yet remains challenging to achieve using conventional bulk techniques. Here we describe a microfluidics-based approach for the formation of monodisperse silica-coated micron-scale porous capsules of controllable sizes. Our method involves the generation of gas-in water-in oil emulsions, and the subsequent rapid precipitation of silica which forms around the encapsulated gas bubbles resulting in hollow silica capsules with tunable pore sizes. We demonstrate that by varying the gas phase pressure, we can control both the diameter of the bubbles formed and the number of internal bubbles enclosed within the silica microcapsule. Moreover, we further demonstrate, using optical and electron microscopy, that these silica capsules remain stable under particle drying. Such a systematic manner of producing silica-coated microbubbles and porous microparticles thus represents an attractive class of biocompatible material for biomedical and pharmaceutical related applications.
Collapse
Affiliation(s)
- Zenon Toprakcioglu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
In this chapter we describe different strategies for enzyme immobilization in biomimetic silica nanoparticles. Synthesis of this type of support is performed under mild and biocompatible conditions and has been proven suitable for the immobilization and stabilization of a range of enzymes and enzymatic systems in nanostructured particles. Immobilization occurs by entrapment while the silica matrix is formed via catalysis of a polyamine molecule and the presence of silicic acid. Parameters such as enzyme, polyamine molecule, or source of Si concentration have been tailored in order to maximize enzymatic loads, stabilities, and specific activities of the catalysts. We provide different approaches for the immobilization and co-immobilization of enzymes that could be potentially extensible to other biocatalysts.
Collapse
Affiliation(s)
- Erienne Jackson
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay
| | - Sonali Correa
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay.
| |
Collapse
|
48
|
Compartment-restricted and rate-controlled dual drug delivery system using a biosilica-enveloped ferritin cage. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Andersson Trojer M, Olsson C, Bengtsson J, Hedlund A, Bordes R. Directed self-assembly of silica nanoparticles in ionic liquid-spun cellulose fibers. J Colloid Interface Sci 2019; 553:167-176. [PMID: 31202053 DOI: 10.1016/j.jcis.2019.05.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/01/2019] [Accepted: 05/25/2019] [Indexed: 11/25/2022]
Abstract
The application range of man-made cellulosic fibers is limited by the absence of cost- and manufacturing-efficient strategies for anisotropic hierarchical functionalization. Overcoming these bottlenecks is therefore pivotal in the pursuit of a future bio-based economy. Here, we demonstrate that colloidal silica nanoparticles (NPs), which are cheap, biocompatible and easy to chemically modify, enable the control of the cross-sectional morphology and surface topography of ionic liquid-spun cellulose fibers. These properties are tailored by the silica NPs' surface chemistry and their entry point during the wet-spinning process (dope solution DSiO2 or coagulation bath CSiO2). For CSiO2-modified fibers, the coagulation mitigator dimethylsulphoxide allows for controlling the surface topography and the amalgamation of the silica NPs into the fiber matrix. For dope-modified fibers, we hypothesize that cellulose chains act as seeds for directed silica NP self-assembly. This results for DSiO2 in discrete micron-sized rods, homogeneously distributed throughout the fiber and for glycidoxy-surface modified DSiO2@GLYEO in nano-sized surface aggregates and a cross-sectional core-shell fiber morphology. Furthermore, the dope-modified fibers display outstanding strength and toughness, which are both characteristic features of biological biocomposites.
Collapse
Affiliation(s)
| | - Carina Olsson
- Department of Materials, Bio-based fibres, RISE IVF, 431 53 Mölndal, Sweden
| | - Jenny Bengtsson
- Department of Chemistry and Chemical Engineering, Forest Products and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Arthur Hedlund
- Department of Chemistry and Chemical Engineering, Forest Products and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Romain Bordes
- Department of Chemistry and Chemical Engineering, Applied Surface Chemistry, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
50
|
Nguyen TKM, Ki MR, Lee CS, Pack SP. Nanosized and tunable design of biosilica particles using novel silica-forming peptide-modified chimeric ferritin templates. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|