1
|
Yamashita A, Kasai H, Maekawa S, Tanaka T, Akaike Y, Ryo A, Enomoto N, Moriishi K. Berberine promotes K 48-linked polyubiquitination of HNF4α, leading to the inhibition of HBV replication. Antiviral Res 2024; 232:106027. [PMID: 39489302 DOI: 10.1016/j.antiviral.2024.106027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The current antiviral agents for the treatment of chronic infection with hepatitis B virus (HBV) do not completely remove covalently closed circular DNA (cccDNA) and integrated viral DNA fragments from patients. Berberine is an isoquinoline alkaloid extracted from various plants and has been reported to inhibit the replication of various types of DNA. In this study, we tested the effects of berberine and its derivatives on HBV infection. Berberine inhibited viral core promoter activity at the highest level among the compounds tested and suppressed HBV production and cccDNA synthesis in primary human hepatocytes and HBV-infected HepG2-NTCP cells at an EC50 value of 3.6 μM and a CC50 value of over 240.0 μM. Compared with other viral promoter activities, berberine treatment potently downregulated core promoter activity and reduced protein levels, but not RNA levels, of hepatic nuclear factor 4α (HNF4α), which primarily enhances enhancer II/core promoter activity. Furthermore, berberine treatment enhanced K48-linked, but not K63-linked, polyubiquitination and subsequent proteasome-dependent degradation of HNF4α. These results suggest that berberine enhances the polyubiquitination- and proteasome-dependent degradation of HNF4α and then inhibits HBV replication via the suppression of core promoter activity. The development of antiviral agents based on berberine may contribute to the amelioration of HBV-related disorders, regardless of the presence of residual cccDNA or integrated viral DNA fragments.
Collapse
Affiliation(s)
- Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Shinya Maekawa
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan
| | - Yasunori Akaike
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Akihide Ryo
- Department of Virology III, National Institute for Infectious Diseases, Tokyo, 208-0011, Japan
| | - Nobuyuki Enomoto
- The First Department of Internal Medicine, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Yamanashi, Japan; Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Hokkaido, 060-0808, Japan; Center for Life Science Research, University of Yamanashi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
2
|
Hayashi Y, Higa N, Yoshida T, Tyas TA, Mori-Yasumoto K, Yasumoto-Hirose M, Tani H, Tanaka J, Jomori T. Onnamide A suppresses the severe acute respiratory syndrome-coronavirus 2 infection without inhibiting 3-chymotrypsin-like cysteine protease. J Biochem 2024; 176:197-203. [PMID: 38776942 DOI: 10.1093/jb/mvae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/25/2024] Open
Abstract
Given the continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the development of new inhibitors is necessary to enhance clinical efficacy and increase the options for combination therapy for the coronavirus disease 2019. Because marine organisms have been a resource for the discovery of numerous bioactive molecules, we constructed an extract library of marine invertebrates collected from the Okinawa Islands. In this study, the extracts were used to identify antiviral molecules against SARS-CoV-2. Using a cytopathic effect (CPE) assay in VeroE6/TMPRSS2 cells, an extract from the marine sponge Theonella swinhoei was found to reduce virus-induced CPE. Eventually, onnamide A was identified as an antiviral compound in the extract using column chromatography and NMR analysis. Onnamide A inhibited several SARS-CoV-2 variant-induced CPEs in VeroE6/TMPRSS2 cells as well as virus production in the supernatant of infected cells. Moreover, this compound blocked the entry of SARS-CoV-2 pseudo-virions. Taken together, these results demonstrate that onnamide A suppresses SARS-CoV-2 infection, which may be partially related to entry inhibition, and is expected to be a candidate lead compound for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Yasuhiro Hayashi
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Nanami Higa
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa 903-0213, Japan
| | - Tetsuro Yoshida
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Trianda Ayuning Tyas
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa 903-0213, Japan
| | - Kanami Mori-Yasumoto
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | - Hideki Tani
- Department of Virology, Toyama Institute of Health, 17-1 Nakataikoyama, Imizu-shi, Toyama 939-0363, Japan
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa 903-0213, Japan
| | - Takahiro Jomori
- Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1-Senbaru, Nishihara, Nakagami, Okinawa 903-0213, Japan
| |
Collapse
|
3
|
Sun Y, Dong Y, Cui X, Guo X, Zhang J, Yu C, Zhang M, Wang H. Effects of Marine Natural Products on Liver Diseases. Mar Drugs 2024; 22:288. [PMID: 39057397 PMCID: PMC11278422 DOI: 10.3390/md22070288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and value in the field of liver disease treatment. Compounds extracted and isolated from marine natural products have a variety of biological activities such as significant antiviral properties, showing potential in the management of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), protection of the liver from fibrosis, protection from liver injury and inhibition of the growth of hepatocellular carcinoma (HCC). This paper summarizes the progress of research on marine natural products for the treatment of liver diseases in the past decade, including the structural types of active substances from different natural products and the mechanisms underlying the modulation of different liver diseases and reviews their future prospects.
Collapse
Affiliation(s)
- Yandi Sun
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Yansong Dong
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Xiaohang Cui
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Xiaohe Guo
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Juan Zhang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Chong Yu
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Man Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
5
|
40 Years of Research on Polybrominated Diphenyl Ethers (PBDEs)-A Historical Overview and Newest Data of a Promising Anticancer Drug. Molecules 2021; 26:molecules26040995. [PMID: 33668501 PMCID: PMC7918430 DOI: 10.3390/molecules26040995] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of molecules with an ambiguous background in literature. PBDEs were first isolated from marine sponges of Dysidea species in 1981 and have been under continuous research to the present day. This article summarizes the two research aspects, (i) the marine compound chemistry research dealing with naturally produced PBDEs and (ii) the environmental toxicology research dealing with synthetically-produced brominated flame-retardant PBDEs. The different bioactivity patterns are set in relation to the structural similarities and dissimilarities between both groups. In addition, this article gives a first structure-activity relationship analysis comparing both groups of PBDEs. Moreover, we provide novel data of a promising anticancer therapeutic PBDE (i.e., 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol; termed P01F08). It has been known since 1995 that P01F08 exhibits anticancer activity, but the detailed mechanism remains poorly understood. Only recently, Mayer and colleagues identified a therapeutic window for P01F08, specifically targeting primary malignant cells in a low µM range. To elucidate the mechanistic pathway of cell death induction, we verified and compared its cytotoxicity and apoptosis induction capacity in Ramos and Jurkat lymphoma cells. Moreover, using Jurkat cells overexpressing antiapoptotic Bcl-2, we were able to show that P01F08 induces apoptosis mainly through the intrinsic mitochondrial pathway.
Collapse
|
6
|
Ito K, Angata K, Kuno A, Okumura A, Sakamoto K, Inoue R, Morita N, Watashi K, Wakita T, Tanaka Y, Sugiyama M, Mizokami M, Yoneda M, Narimatsu H. Screening siRNAs against host glycosylation pathways to develop novel antiviral agents against hepatitis B virus. Hepatol Res 2020; 50:1128-1140. [PMID: 32738016 DOI: 10.1111/hepr.13552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/14/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
AIM Hepatitis B virus (HBV) relies on glycosylation for crucial functions, such as entry into host cells, proteolytic processing and protein trafficking. The aim of this study was to identify candidate molecules for the development of novel antiviral agents against HBV using an siRNA screening system targeting the host glycosylation pathway. METHODS HepG2.2.15.7 cells that consistently produce HBV were employed for our in vitro study. We investigated the effects of siRNAs that target 88 different host glycogenes on hepatitis B surface antigen (HBsAg) and HBV DNA secretion using the siRNA screening system. RESULTS We identified four glycogenes that reduced HBsAg and/or HBV DNA secretion; however, the observed results for two of them may be due to siRNA off-target effects. Knocking down ST8SIA3, a member of the sialyltransferase family, significantly reduced both HBsAg and HBV DNA secretion. Knocking down GALNT7, which transfers N-acetylgalactosamine to initiate O-linked glycosylation in the Golgi apparatus, also significantly reduced both HBsAg and HBV DNA levels. CONCLUSIONS These results showed that knocking down the ST8SIA3 and GALNT7 glycogenes inhibited HBsAg and HBV DNA secretion in HepG2.2.15.7 cells, indicating that the host glycosylation pathway is important for the HBV life cycle and could be a potential target for the development of novel anti-HBV agents.
Collapse
Affiliation(s)
- Kiyoaki Ito
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kiyohiko Angata
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Atsushi Kuno
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Akinori Okumura
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazumasa Sakamoto
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rieko Inoue
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Naoko Morita
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhito Tanaka
- Department of Virology & Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masaya Sugiyama
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Mizokami
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masashi Yoneda
- Department of Gastroenterology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hisashi Narimatsu
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
7
|
Riccio G, Ruocco N, Mutalipassi M, Costantini M, Zupo V, Coppola D, de Pascale D, Lauritano C. Ten-Year Research Update Review: Antiviral Activities from Marine Organisms. Biomolecules 2020; 10:biom10071007. [PMID: 32645994 PMCID: PMC7407529 DOI: 10.3390/biom10071007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 02/08/2023] Open
Abstract
Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.
Collapse
Affiliation(s)
- Gennaro Riccio
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Nadia Ruocco
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Mirko Mutalipassi
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Maria Costantini
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Valerio Zupo
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
| | - Daniela Coppola
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Donatella de Pascale
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP, 80121 Naples, Italy; (G.R.); (N.R.); (M.M.); (M.C.); (V.Z.); (D.C.); (D.d.P.)
- Correspondence: ; Tel.: +39-081-5833-221
| |
Collapse
|
8
|
Marine Pharmacology in 2014-2015: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, Antiviral, and Anthelmintic Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2019; 18:md18010005. [PMID: 31861527 PMCID: PMC7024264 DOI: 10.3390/md18010005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/31/2022] Open
Abstract
The systematic review of the marine pharmacology literature from 2014 to 2015 was completed in a manner consistent with the 1998-2013 reviews of this series. Research in marine pharmacology during 2014-2015, which was reported by investigators in 43 countries, described novel findings on the preclinical pharmacology of 301 marine compounds. These observations included antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral, and anthelmintic pharmacological activities for 133 marine natural products, 85 marine compounds with antidiabetic, and anti-inflammatory activities, as well as those that affected the immune and nervous system, and 83 marine compounds that displayed miscellaneous mechanisms of action, and may probably contribute to novel pharmacological classes upon further research. Thus, in 2014-2015, the preclinical marine natural product pharmacology pipeline provided novel pharmacology as well as new lead compounds for the clinical marine pharmaceutical pipeline, and thus continued to contribute to ongoing global research for alternative therapeutic approaches to many disease categories.
Collapse
|
9
|
Application of an integrated cheminformatics-molecular docking approach for discovery for physicochemically similar analogs of fluoroquinolones as putative HCV inhibitors. Comput Biol Chem 2019; 84:107167. [PMID: 31855781 DOI: 10.1016/j.compbiolchem.2019.107167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 10/02/2019] [Accepted: 11/16/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Hepatitis C Virus (HCV) infection is a major public health concern across the globe. At present, direct-acting antivirals are the treatment of choice. However, the long-term effect of this therapy has yet to be ascertained. Previously, fluoroquinolones have been reported to inhibit HCV replication by targeting NS3 protein. Therefore, it is logical to hypothesize that the natural analogs of fluoroquinolones will exhibit NS3 inhibitory activity with substantially lesser side effects. METHOD In this study, we tested the application of a recently devised integrated in-silico Cheminformatics-Molecular Docking approach to identify physicochemically similar natural analogs of fluoroquinolones from the available databases (Ambinter, Analyticon, Indofines, Specs, and TimTec). Molecular docking and ROC curve analyses were performed, using PatchDock and Graphpad software, respectively, to compare and analyze drug-protein interactions between active natural analogs, Fluoroquinolones, and HCV NS3 protein. RESULT In our analysis, we were able to shortlist 18 active natural analogs, out of 10,399, that shared physicochemical properties with the template drugs (fluoroquinolones). These analogs showed comparable binding efficacy with fluoroquinolones in targeting 32 amino acids in the HCV NS3 active site that are crucial for NS3 activity. Our approach had around 80 % sensitivity and 70 % specificity in identifying physicochemically similar analogs of fluoroquinolones. CONCLUSION Our current data suggest that our approach can be efficiently applied to identify putative HCV drug inhibitors that can be taken for in vitro testing. This approach can be applied to discover physicochemically similar analogs of virtually any drug, thus providing a speedy and inexpensive approach to complement drug discovery and design, which can tremendously economize on time and money spent on the screening of putative drugs.
Collapse
|
10
|
Utkina NK, Likhatskaya GN, Balabanova LA, Bakunina IY. Sponge-derived polybrominated diphenyl ethers and dibenzo-p-dioxins, irreversible inhibitors of the bacterial α-d-galactosidase. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1754-1763. [PMID: 31532404 DOI: 10.1039/c9em00301k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An integrated in vitro and in silico approach was applied to evaluate the potency of hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and spongiadioxins (OH-PBDDs) isolated from Dysidea sponges on the activity of the recombinant α-d-galactosidase of the GH36 family. It was revealed for the first time that all compounds rapidly and apparently irreversibly inhibited the bacterial α-d-galactosidase. The structure-activity relationship study in the series of OH-PBDEs showed that the presence of an additional hydroxyl group in 5 significantly enhanced the potency (IC50 4.26 μM); the increase of bromination in compounds from 1 to 3 increased their potency (IC50 41.8, 36.0, and 16.0 μM, respectively); the presence of a methoxy group decreased the potency (4, IC50 60.5 μM). Spongiadioxins 6, 7, and 8 (IC50 16.6, 33.1, and 28.6 μM, respectively) exhibited inhibitory action comparable to that of monohydroxylated diphenyl ethers 1-3. Docking analysis revealed that all compounds bind in a pocket close to the catalytic amino acid residues. Molecular docking detected significant compound-enzyme interactions in the binding sites of α-d-galactosidase. Superimposition of the enzyme-substrate and the enzyme-inhibitor complexes showed that their binding sites overlap.
Collapse
Affiliation(s)
- Natalia K Utkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690022, Russian Federation.
| | | | | | | |
Collapse
|
11
|
Yasumoto J, Kasai H, Yoshimura K, Otoguro T, Watashi K, Wakita T, Yamashita A, Tanaka T, Takeda S, Moriishi K. Hepatitis B virus prevents excessive viral production via reduction of cell death-inducing DFF45-like effectors. J Gen Virol 2017; 98:1762-1773. [PMID: 28745269 DOI: 10.1099/jgv.0.000813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between hepatitis B virus (HBV) infection and lipid accumulation remains largely unknown. In this study, we investigated the effect of HBV propagation on lipid droplet growth in HBV-infected cells and HBV-producing cell lines, HepG2.2.15 and HBV-inducible Hep38.7-Tet. The amount of intracellular triglycerides was significantly reduced in HBV-infected and HBV-producing cells compared with HBV-lacking control cells. Electron and immunofluorescent microscopic analyses showed that the average size of a single lipid droplet (LD) was significantly less in the HBV-infected and HBV-producing cells than in the HBV-lacking control cells. Cell death-inducing DFF45-like effectors (CIDEs) B and C (CIDEB and CIDEC), which are involved in LD expansion for the improvement of lipid storage, were expressed at a significantly lower level in HBV-infected or HBV-producing cells than in HBV-lacking control cells, while CIDEA was not detected in those cells regardless of HBV production. The activity of the CIDEB and CIDEC gene promoters was impaired in HBV-infected or HBV-producing cells compared to HBV-lacking control cells, while CIDEs potentiated HBV core promoter activity. The amount of HNF4α, that can promote the transcription of CIDEB was significantly lower in HBV-producing cells than in HBV-lacking control cells. Knockout of CIDEB or CIDEC significantly reduced the amount of supernatant HBV DNA, intracellular viral RNA and nucleocapsid-associated viral DNA, while the expression of CIDEB or CIDEC recovered HBV production in CIDEB- or CIDEC-knockout cells. These results suggest that HBV regulates its own viral replication via CIDEB and CIDEC.
Collapse
Affiliation(s)
- Jun Yasumoto
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Hirotake Kasai
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Kentaro Yoshimura
- Department of Anatomy and Cell Biology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Teruhime Otoguro
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Atsuya Yamashita
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo-shi, Yamanashi, Japan
| |
Collapse
|
12
|
Inhibitory effects of metachromin A on hepatitis B virus production via impairment of the viral promoter activity. Antiviral Res 2017; 145:136-145. [PMID: 28827084 DOI: 10.1016/j.antiviral.2017.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 01/12/2023]
Abstract
The currently available antiviral agents for chronic infection with hepatitis B virus (HBV) are pegylated interferon-α and nucleoside/nucleotide analogues, although it has been difficult to completely eliminate covalently closed circular DNA (cccDNA) from patients. To identify an antiviral compound targeting HBV core promoter, 15 terpenes originating from marine organisms were screened using a cell line expressing firefly luciferase under the control of the HBV core promoter. Metachromin A, which is a merosesquiterpene isolated from the marine sponge Dactylospongia metachromia, inhibited the viral promoter activity at the highest level among the tested compounds, and suppressed HBV production with an EC50 value of 0.8 μM regardless of interferon signaling and cytotoxicity. The analysis on the structure-activity relationship revealed that the hydroquinone moiety, and the double bonds at carbon numbers-5 and -9 in metachromin A are crucial for anti-HBV activity. Furthermore, metachromin A reduced the protein level but not the RNA level of hepatic nuclear factor 4α, which mainly upregulates the activities of enhancer I/X promoter and enhancer II/core promoter. These results suggest that metachromin A can inhibit HBV production via impairment of the viral promoter activity. Antiviral agents targeting the viral promoter may ameliorate HBV-related disorders regardless of remaining cccDNA.
Collapse
|
13
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
14
|
Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection. Sci Rep 2017; 7:45698. [PMID: 28374759 PMCID: PMC5379564 DOI: 10.1038/srep45698] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/03/2017] [Indexed: 01/02/2023] Open
Abstract
In order to understand the life cycle of hepatitis B virus (HBV) and to develop efficient anti-HBV drugs, a useful in vitro cell culture system which allows HBV infection and recapitulates virus-host interactions is essential; however, pre-existing in vitro HBV infection models are often problematic. Here, we examined the potential of human induced-pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) as an in vitro HBV infection model. Expression levels of several genes involved in HBV infection, including the sodium taurocholate cotransporting polypeptide (NTCP) gene, were gradually elevated as the differentiation status of human iPS cells proceeded to iPS-HLCs. The mRNA levels of these genes were comparable between primary human hepatocytes (PHHs) and iPS-HLCs. Following inoculation with HBV, we found significant production of HBV proteins and viral RNAs in iPS-HLCs. The three major forms of the HBV genome were detected in iPS-HLCs by Southern blotting analysis. Anti-HBV agents entecavir and Myrcludex-B, which are a nucleoside analogue reverse transcriptase inhibitor and a synthetic pre-S1 peptide, respectively, significantly inhibited HBV infection in iPS-HLCs. These data demonstrate that iPS-HLCs can be used as a promising in vitro HBV infection model.
Collapse
|
15
|
Ahmadi P, Haruyama T, Kobayashi N, de Voogd NJ, Tanaka J. Spongian Diterpenes from the Sponge Hyattella aff. intestinalis. Chem Pharm Bull (Tokyo) 2017; 65:874-877. [DOI: 10.1248/cpb.c17-00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Peni Ahmadi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus
| | | | | | | | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus
| |
Collapse
|
16
|
Arai M, Shin D, Kamiya K, Ishida R, Setiawan A, Kotoku N, Kobayashi M. Marine spongean polybrominated diphenyl ethers, selective growth inhibitors against the cancer cells adapted to glucose starvation, inhibits mitochondrial complex II. J Nat Med 2016; 71:44-49. [PMID: 27449332 DOI: 10.1007/s11418-016-1025-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
In the course of search for selective growth inhibitors against the cancer cells adapted to nutrient starvation, two polybrominated diphenyl ethers, 3,4,5-tribromo-2-(2',4'-dibromophenoxy)-phenol (1) and 3,5-dibromo-2-(2',4'-dibromophenoxy)-phenol (2) were isolated from an Indonesian marine sponge of Dysidea sp. Compounds 1 and 2 showed the anti-proliferative activity against PANC-1 cells under glucose-starved conditions with IC50 values of 2.1 and 3.8 µM, respectively, whereas no growth inhibition was observed up to 30 µM in the general culture conditions. The further mechanistic analysis indicated that compound 1 might act mainly by inhibiting complex II in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.
| | - Dayoung Shin
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Kentaro Kamiya
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Ryosuke Ishida
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Andi Setiawan
- Department of Chemistry, Faculty of Science, Lampung University, Jl. Prof. Dr. Sumantri Brodjonegoro No. 1, Bandar Lampung, 35145, Indonesia
| | - Naoyuki Kotoku
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan
| | - Motomasa Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Shingaki M, Wauke T, Ahmadi P, Tanaka J. Four Cytotoxic Spongian Diterpenes from the Sponge Dysidea cf. arenaria. Chem Pharm Bull (Tokyo) 2016; 64:272-5. [DOI: 10.1248/cpb.c15-00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mika Shingaki
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus
| | - Tsuyoshi Wauke
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus
| | - Peni Ahmadi
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus
| |
Collapse
|