1
|
Salazar-Hamm PS, Homan FE, Good SA, Hathaway JJM, Clements AE, Haugh EG, Caesar LK. Subterranean marvels: microbial communities in caves and underground mines and their promise for natural product discovery. Nat Prod Rep 2025; 42:592-622. [PMID: 39950737 DOI: 10.1039/d4np00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Covering: 2014 to 2024Since the dawn of human history, caves have played an intimate role in our existence. From our earliest ancestors seeking shelter from the elements to more recent generations harnessing cave substances for medicinal purposes, caves have served as essential resources and havens. The last 40 years of geomicrobiology research has replaced the outdated perception of subterranean environments as lifeless and unchanging with the realization that vibrant microbial communities have adapted to thrive in extreme conditions over millions of years. The ability of subterranean microbial communities to withstand nutrient deprivation and darkness creates a unique reservoir of untapped biosynthetic potential. These communities offer exciting prospects for medicine (e.g., antimicrobial and antitumor therapies) and biotechnology (e.g., redox chemical properties and biomineralization). This article highlights the significance of caves and mines as reservoirs of microbial diversity, the potential impact of their bioactive compounds on the fields of healthcare and biotechnology, and the significant challenges that must be overcome to access and harness the biotechnological potential of subterranean microbial communities. Additionally, it emphasizes the conservation efforts needed to protect these delicate ecosystems, ensuring the preservation of both ancient traditions and tomorrow's medicines.
Collapse
Affiliation(s)
| | - Frances E Homan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Shyleigh A Good
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | | | - Ashley E Clements
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Evelyn G Haugh
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| | - Lindsay K Caesar
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA, USA.
| |
Collapse
|
2
|
Semmler F, Regis Belisário-Ferrari M, Kulosa M, Kaysser L. The Metabolic Potential of the Human Lung Microbiome. Microorganisms 2024; 12:1448. [PMID: 39065215 PMCID: PMC11278768 DOI: 10.3390/microorganisms12071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The human lung microbiome remains largely underexplored, despite its potential implications in the pharmacokinetics of inhaled drugs and its involvement in lung diseases. Interactions within these bacterial communities and with the host are complex processes which often involve microbial small molecules. In this study, we employed a computational approach to describe the metabolic potential of the human lung microbiome. By utilizing antiSMASH and BiG-SCAPE software, we identified 1831 biosynthetic gene clusters for the production of specialized metabolites in a carefully compiled genome database of lung-associated bacteria and fungi. It was shown that RiPPs represent the largest class of natural products within the bacteriome, while NRPs constitute the largest class of natural products in the lung mycobiome. All predicted BGCs were further categorized into 767 gene cluster families, and a subsequent network analysis highlighted that these families are widely distributed and contain many uncharacterized members. Moreover, in-depth annotation allowed the assignment of certain gene clusters to putative lung-specific functions within the microbiome, such as osmoadaptation or surfactant synthesis. This study establishes the lung microbiome as a prolific source for secondary metabolites and lays the groundwork for detailed investigation of this unique environment.
Collapse
Affiliation(s)
| | | | | | - Leonard Kaysser
- Department of Pharmaceutical Biology, Institute for Drug Discovery, University of Leipzig, 04317 Leipzig, Germany; (F.S.); (M.R.B.-F.); (M.K.)
| |
Collapse
|
3
|
Hanessian S. My 50-Plus Years of Academic Research Collaborations with Industry. A Retrospective. J Org Chem 2024; 89:9147-9186. [PMID: 38865159 DOI: 10.1021/acs.joc.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A retrospective is presented highlighting the synthesis of selected "first-in-kind" natural products, their synthetic analogues, structure elucidations, and rationally designed bioactive synthetic compounds that were accomplished because of collaborations with past and present pharmaceutical and agrochemical companies. Medicinal chemistry projects involving structure-based design exploiting cocrystal structures of small molecules with biologically relevant enzymes, receptors, and bacterial ribosomes with synthetic small molecules leading to marketed products, clinical candidates, and novel drug prototypes were realized in collaboration. Personal reflections, historical insights, behind the scenes stories from various long-term projects are shared in this retrospective article.
Collapse
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, P.O. Box 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
- Department of Pharmaceutical Sciences, University of California, Irvine, California 91266, United States
| |
Collapse
|
4
|
Mang Q, Gao J, Li Q, Sun Y, Xu G, Xu P. Integrative analysis of metagenome and metabolome provides new insights into intestinal health protection in Coilia nasus larvae via probiotic intervention. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101230. [PMID: 38643745 DOI: 10.1016/j.cbd.2024.101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
With the development of large-scale intensive feeding, growth performance and animal welfare have attracted more and more attention. Exogenous probiotics can promote the growth performance of fish through improving intestinal microbiota; however, it remains unclear whether intestinal microbiota influence physiological biomarkers. Therefore, we performed metagenomic and metabolomic analysis to investigate the effects of a 90-day Lactiplantibacillus plantarum supplementation to a basal diet (1.0 × 108 CFU/g) on the growth performance, intestinal microbiota and their metabolites, and physiological biomarkers in Coilia nasus larvae. The results showed that the probiotic supplementation could significantly increase weight and body length. Moreover, it could also enhance digestive enzymes and tight junctions, and inhibit oxidative stress and inflammation. The metagenomic analysis showed that L. plantarum supplementation could significantly decrease the relative abundance of Proteobacteria and increase the relative abundance of Firmicutes. Additionally, pathogenic bacteria (Aeromonadaceae, Aeromonas, and Enterobacterales) were inhibited and beneficial bacteria (Bacillales) were promoted. The metabolome analysis showed that acetic acid and propanoic acid were significantly elevated, and were associated with Kitasatospora, Seonamhaeicola, and Thauera. A correlation analysis demonstrated that the digestive enzymes, tight junction, oxidative stress, and inflammation effects were significantly associated with the increased acetic acid and propanoic acid levels. These results indicated that L. plantarum supplementation could improve intestinal microbial community structure and function, which could raise acetic acid and propanoic acid levels to protect intestinal health and improve growth performance in C. nasus larvae.
Collapse
Affiliation(s)
- Qi Mang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Jun Gao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Quanjie Li
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Yi Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
5
|
Bawane P, Deshpande S, Yele S. Industrial and Pharmaceutical Applications of Microbial Diversity of Hypersaline Ecology from Lonar Soda Crater. Curr Pharm Biotechnol 2024; 25:1564-1584. [PMID: 38258768 DOI: 10.2174/0113892010265978231109085224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/24/2024]
Abstract
The unidentified geochemical and physiochemical characteristics of Soda Lakes across the globe make it a novel reservoir and bring attention to scientific civic for its conceivable industrial and pharmaceutical applications. In India, in the Maharashtra state, Lonar Lake is a naturally created Soda Lake by a meteorite impact. Phylogenetic data from this lake explored a diverse array of microorganisms like haloalkaliphilic bacteria and Archaea. Previously reported studies postulated the major microbial communities present in this lake ecosystem are Proteobacteria, Actinobacteria, Firmicutes, and Cyanobacteria. Furthermore, it also contains Bacteroidetes, Nitrospirae, and Verrucomicrobia. This lake is also rich in phytoplankton, with the predominant presence of the Spirulina plantensis. Unique microbial strains from Lonar Lake ecosystems have fascinated consideration as a source of biological molecules with medicinal, industrial, and biotechnological potential. Recent literature revealed the isolation of antibioticproducing bacteria and alkaline proteases-producing alkaliphilic bacterium, as well as novel species of rare methylotrophs, other bacterial strains involved in producing vital enzymes, and unique actinomycetes are also reported. It indicates that the novel bacterial assemblage not reached hitherto may exist in this modified and unique ecology. This comprehensive review provides information about microbial diversity and its industrial and pharmaceutical interests that exist in Lonar Lake, which could be the future source of bioactive enzymes, biosurfactants, and biofuel and also useful in bioremediation. Furthermore, the novel species of microorganisms isolated from Lonar Lake have applications in the biosynthesis of medicines like antibiotics, antivirals, antifungals, anti-inflammatory agents, and precursors for synthesising valuable products. Data consolidated in the present review will cater to the needs of emerging industrial sectors for their commercial and therapeutic applications.
Collapse
Affiliation(s)
- Pradip Bawane
- Department of Pharmacognosy, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, Mumbai, 400056, India
- Department of Pharmacognosy, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, India
| | - Shirish Deshpande
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| | - Santosh Yele
- Department of Pharmacognosy, SVKM's NMIMS, School of Pharmacy & Technology Management, Telangana Hyderabad, 509301, India
| |
Collapse
|
6
|
Núñez-Montero K, Rojas-Villalta D, Barrientos L. Antarctic Sphingomonas sp. So64.6b showed evolutive divergence within its genus, including new biosynthetic gene clusters. Front Microbiol 2022; 13:1007225. [DOI: 10.3389/fmicb.2022.1007225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
IntroductionThe antibiotic crisis is a major human health problem. Bioprospecting screenings suggest that proteobacteria and other extremophile microorganisms have biosynthetic potential for the production novel antimicrobial compounds. An Antarctic Sphingomonas strain (So64.6b) previously showed interesting antibiotic activity and elicitation response, then a relationship between environmental adaptations and its biosynthetic potential was hypothesized. We aimed to determine the genomic characteristics in So64.6b strain related to evolutive traits for the adaptation to the Antarctic environment that could lead to its diversity of potentially novel antibiotic metabolites.MethodsThe complete genome sequence of the Antarctic strain was obtained and mined for Biosynthetic Gene Clusters (BGCs) and other unique genes related to adaptation to extreme environments. Comparative genome analysis based on multi-locus phylogenomics, BGC phylogeny, and pangenomics were conducted within the closest genus, aiming to determine the taxonomic affiliation and differential characteristics of the Antarctic strain.Results and discussionThe Antarctic strain So64.6b showed a closest identity with Sphingomonas alpina, however containing a significant genomic difference of ortholog cluster related to degradation multiple pollutants. Strain So64.6b had a total of six BGC, which were predicted with low to no similarity with other reported clusters; three were associated with potential novel antibiotic compounds using ARTS tool. Phylogenetic and synteny analysis of a common BGC showed great diversity between Sphingomonas genus but grouping in clades according to similar isolation environments, suggesting an evolution of BGCs that could be linked to the specific ecosystems. Comparative genomic analysis also showed that Sphingomonas species isolated from extreme environments had the greatest number of predicted BGCs and a higher percentage of genetic content devoted to BGCs than the isolates from mesophilic environments. In addition, some extreme-exclusive clusters were found related to oxidative and thermal stress adaptations, while pangenome analysis showed unique resistance genes on the Antarctic strain included in genetic islands. Altogether, our results showed the unique genetic content on Antarctic strain Sphingomonas sp. So64.6, −a probable new species of this genetically divergent genus–, which could have potentially novel antibiotic compounds acquired to cope with Antarctic poly-extreme conditions.
Collapse
|
7
|
Ghotbi M, Kelting O, Blümel M, Tasdemir D. Gut and Gill-Associated Microbiota of the Flatfish European Plaice ( Pleuronectes platessa): Diversity, Metabolome and Bioactivity against Human and Aquaculture Pathogens. Mar Drugs 2022; 20:md20090573. [PMID: 36135762 PMCID: PMC9500656 DOI: 10.3390/md20090573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Similar to other marine holobionts, fish are colonized by complex microbial communities that promote their health and growth. Fish-associated microbiota is emerging as a promising source of bioactive metabolites. Pleuronectes platessa (European plaice, plaice), a flatfish with commercial importance, is common in the Baltic Sea. Here we used a culture-dependent survey followed by molecular identification to identify microbiota associated with the gills and the gastrointestinal tract (GIT) of P. platessa, then profiled their antimicrobial activity and metabolome. Altogether, 66 strains (59 bacteria and 7 fungi) were isolated, with Proteobacteria being the most abundant phylum. Gill-associated microbiota accounted for higher number of isolates and was dominated by the Proteobacteria (family Moraxellaceae) and Actinobacteria (family Nocardiaceae), whereas Gram-negative bacterial families Vibrionaceae and Shewanellaceae represented the largest group associated with the GIT. The EtOAc extracts of the solid and liquid media cultures of 21 bacteria and 2 fungi representing the diversity of cultivable plaice-associated microbiota was profiled for their antimicrobial activity against three fish pathogens, human bacterial pathogen panel (ESKAPE) and two human fungal pathogens. More than half of all tested microorganisms, particularly those originating from the GIT epithelium, exhibited antagonistic effect against fish pathogens (Lactococcus garvieae, Vibrio ichthyoenteri) and/or human pathogens (Enterococcus faecium, methicillin-resistant Staphylococcus aureus). Proteobacteria represented the most active isolates. Notably, the solid media extracts displayed higher activity against fish pathogens, while liquid culture extracts were more active against human pathogens. Untargeted metabolomics approach using feature-based molecular networking showed the high chemical diversity of the liquid extracts that contained undescribed clusters. This study highlights plaice-associated microbiota as a potential source of antimicrobials for the control of human and the aquaculture-associated infections. This is the first study reporting diversity, bioactivity and chemical profile of culture-dependent microbiota of plaice.
Collapse
Affiliation(s)
- Marjan Ghotbi
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Ole Kelting
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Product Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-600-4430
| |
Collapse
|
8
|
Abstract
Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters (‘Candidatus Eudoremicrobiaceae’) that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments. Global ocean microbiome survey reveals the bacterial family ‘Candidatus Eudoremicrobiaceae’, which includes some of the most biosynthetically diverse microorganisms in the ocean environment.
Collapse
|
9
|
Qian D, Liu H, Hu F, Song S, Chen Y. Extracellular electron transfer-dependent Cr(VI)/sulfate reduction mediated by iron sulfide nanoparticles. J Biosci Bioeng 2022; 134:153-161. [PMID: 35690565 DOI: 10.1016/j.jbiosc.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 01/18/2023]
Abstract
The slow electron transfer rate is a bottleneck to the biological wastewater treatment. This study evaluated the concomitant biotransformation and nonenzymatic reduction of Cr(VI) mediated by sulfate reducing bacteria (SRB), especially for the reinforcing Cr(VI) reduction via accelerating the electron transfer by the in-situ biosynthesized iron sulfide nanoparticles (FeS NPs). The kinetic results showed that 10 mg/L Cr(VI) was completely removed by pre-cultured FeS NPs within 7 h with kCr(VI) of 2.6 × 10-4 s-1, one magnitude higher than that without FeS NPs. Despite its competing electron to postpone sulfate reduction, the reduction of Cr(VI) was markedly improved via nonenzymatic reactions by the sulfide, the product of sulfate reduction. In the reinforcing system (bio-FeS NP@SRB), the bio-FeS NPs served as an electronic bypass conduit for CoQ could significantly amplify the electron flux, and switch the Cr(VI) reduction from intracellular space to extracellular environment, which had a great detoxification effect on the microorganisms, eventually markedly promoted electron transfer extracellularly and the reduction of Cr(VI). After the long-term acclimatization, Desulfovibrio became the dominant bacteria at the genus level and accounted for the relative abundance of 32%. This study provides an alternative to use biogenic FeS NPs for Cr(VI) remediation.
Collapse
Affiliation(s)
- Danshi Qian
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Huimin Liu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fan Hu
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Song Song
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yuancai Chen
- Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
10
|
Jiang Y, Li Q, Mao W, Tang W, White JF, Li H. Endophytic bacterial community of Stellera chamaejasme L. and its role in improving host plants' competitiveness in grasslands. Environ Microbiol 2022; 24:3322-3333. [PMID: 35001475 DOI: 10.1111/1462-2920.15897] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 01/02/2023]
Abstract
Stellera chamaejasme has become a problematic weed in northern and south-western grasslands of China. To evaluate a possible role of endophytes in its strong competitive capacity, the endophytic bacterial community of S. chamaejasme was investigated by culture-dependent and independent methods, and the growth-promoting traits of some culturable isolates as well as the benefit of endophyte ST3CS3 (Brevundimonas sp.) on host plants growth were studied. The results showed that 823 OTUs were generated with a 97% similarity level in the culture-independent study. They were classified into 29 phyla, 61 classes, 147 orders, 237 families and 440 genera. Among them, Pseudomonas and Ralstonia were the most dominant genera in belowground parts (G) (64.25%) and aboveground parts (S) (26.54%) respectively. The diversity and species richness of endophytes in S were significantly higher than that of G (P < 0.001, t-test). Contrary to this, the number of culturable bacteria in S was a little lower than that of G (P > 0.05, t-test). Totally, 176 isolates belonging to 30 morphotypes were obtained in the culture-dependent study. Among them, Acinetobacter was the most dominant genus in G (51.30%), then followed by Pseudomonas (6.09%) and Brevundimonas (6.09%), while Lysinibacillus (21.31%) was the most dominant genus in S, followed by Pseudomonas (11.48%). Growth-promoting trait tests indicated that 93.65% of the tested isolates (63) exhibited nitrogen-fixing, IAA-synthesizing, phosphorus or potassium solubilizing capacity, in which 77.97% belonged to Proteobacteria, a phylum found to contain more active isolates. Pot experiments demonstrated that endophyte ST3CS3 can significantly improve host plants growth and increase its nitrogen and chlorophyll content (P < 0.01, t-test). Therefore, we suggest that strong competitiveness of S. chamaejasme may in part be due to possession of high ratios of plant growth-promoting proteobacterial endophytes such as Pseudomonas, Acinetobacter and Brevundimonas.
Collapse
Affiliation(s)
- Yuejuan Jiang
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| | - Qiaohong Li
- The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Wenqin Mao
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| | - Wengting Tang
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| | - James F White
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Haiyan Li
- Medical School of Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
11
|
Naureen Z, Gilani SA, Benny BK, Sadia H, Hafeez FY, Khanum A. Metabolomic Profiling of Plant Growth-Promoting Rhizobacteria for Biological Control of Phytopathogens. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ho XY, Katermeran NP, Deignan LK, Phyo MY, Ong JFM, Goh JX, Ng JY, Tun K, Tan LT. Assessing the Diversity and Biomedical Potential of Microbes Associated With the Neptune's Cup Sponge, Cliona patera. Front Microbiol 2021; 12:631445. [PMID: 34267732 PMCID: PMC8277423 DOI: 10.3389/fmicb.2021.631445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
Marine sponges are known to host a complex microbial consortium that is essential to the health and resilience of these benthic invertebrates. These sponge-associated microbes are also an important source of therapeutic agents. The Neptune's Cup sponge, Cliona patera, once believed to be extinct, was rediscovered off the southern coast of Singapore in 2011. The chance discovery of this sponge presented an opportunity to characterize the prokaryotic community of C. patera. Sponge tissue samples were collected from the inner cup, outer cup and stem of C. patera for 16S rRNA amplicon sequencing. C. patera hosted 5,222 distinct OTUs, spanning 26 bacterial phyla, and 74 bacterial classes. The bacterial phylum Proteobacteria, particularly classes Gammaproteobacteria and Alphaproteobacteria, dominated the sponge microbiome. Interestingly, the prokaryotic community structure differed significantly between the cup and stem of C. patera, suggesting that within C. patera there are distinct microenvironments. Moreover, the cup of C. patera had lower diversity and evenness as compared to the stem. Quorum sensing inhibitory (QSI) activities of selected sponge-associated marine bacteria were evaluated and their organic extracts profiled using the MS-based molecular networking platform. Of the 110 distinct marine bacterial strains isolated from sponge samples using culture-dependent methods, about 30% showed quorum sensing inhibitory activity. Preliminary identification of selected QSI active bacterial strains revealed that they belong mostly to classes Alphaproteobacteria and Bacilli. Annotation of the MS/MS molecular networkings of these QSI active organic extracts revealed diverse classes of natural products, including aromatic polyketides, siderophores, pyrrolidine derivatives, indole alkaloids, diketopiperazines, and pyrone derivatives. Moreover, potential novel compounds were detected in several strains as revealed by unique molecular families present in the molecular networks. Further research is required to determine the temporal stability of the microbiome of the host sponge, as well as mining of associated bacteria for novel QS inhibitors.
Collapse
Affiliation(s)
- Xin Yi Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Nursheena Parveen Katermeran
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Lindsey Kane Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ma Yadanar Phyo
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Ji Fa Marshall Ong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Jun Xian Goh
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Juat Ying Ng
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Karenne Tun
- National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
13
|
Leinberger J, Holste J, Bunk B, Freese HM, Spröer C, Dlugosch L, Kück AC, Schulz S, Brinkhoff T. High Potential for Secondary Metabolite Production of Paracoccus marcusii CP157, Isolated From the Crustacean Cancer pagurus. Front Microbiol 2021; 12:688754. [PMID: 34262548 PMCID: PMC8273931 DOI: 10.3389/fmicb.2021.688754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Secondary metabolites are key components in microbial ecology by mediating interactions between bacteria and their environment, neighboring species or host organisms. Bioactivities can be beneficial for both interaction partners or provide a competitive advantage only for the producer. Colonizers of confined habitats such as biofilms are known as prolific producers of a great number of bioactive secondary metabolites and are a potential source for novel compounds. We investigated the strain Paracoccus marcusii CP157, which originates from the biofilm on the carapace of a shell disease-affected Cancer pagurus specimen, for its potential to produce bioactive secondary metabolites. Its closed genome contains 22 extrachromosomal elements and several gene clusters potentially involved in biosynthesis of bioactive polyketides, bacteriocins, and non-ribosomal peptides. Culture extracts of CP157 showed antagonistic activities against bacteria from different phyla, but also against microalgae and crustacean larvae. Different HPLC-fractions of CP157 culture extracts had antibacterial properties, indicating that several bioactive compounds are produced by CP157. The bioactive extract contains several small, antibacterial compounds that partially withstand elevated temperatures, extreme pH values and exposure to proteolytic enzymes, providing high stability toward environmental conditions in the natural habitat of CP157. Further, screening of 17 Paracoccus spp. revealed that antimicrobial activity, hemolysis and production of N-acyl homoserine lactones are common features within the genus. Taking into account the large habitat diversity and phylogenetic distance of the tested strains, we hypothesize that bioactive secondary metabolites play a central role in the ecology of Paracoccus spp. in their natural environments.
Collapse
Affiliation(s)
- Janina Leinberger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Jonas Holste
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Heike M. Freese
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Anna-Carlotta Kück
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
14
|
Ancient Bacterial Class Alphaproteobacteria Cytochrome P450 Monooxygenases Can Be Found in Other Bacterial Species. Int J Mol Sci 2021; 22:ijms22115542. [PMID: 34073951 PMCID: PMC8197338 DOI: 10.3390/ijms22115542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450 monooxygenases (CYPs/P450s), heme-thiolate proteins, are well-known players in the generation of chemicals valuable to humans and as a drug target against pathogens. Understanding the evolution of P450s in a bacterial population is gaining momentum. In this study, we report comprehensive analysis of P450s in the ancient group of the bacterial class Alphaproteobacteria. Genome data mining and annotation of P450s in 599 alphaproteobacterial species belonging to 164 genera revealed the presence of P450s in only 241 species belonging to 82 genera that are grouped into 143 P450 families and 214 P450 subfamilies, including 77 new P450 families. Alphaproteobacterial species have the highest average number of P450s compared to Firmicutes species and cyanobacterial species. The lowest percentage of alphaproteobacterial species P450s (2.4%) was found to be part of secondary metabolite biosynthetic gene clusters (BGCs), compared other bacterial species, indicating that during evolution large numbers of P450s became part of BGCs in other bacterial species. Our study identified that some of the P450 families found in alphaproteobacterial species were passed to other bacterial species. This is the first study to report on the identification of CYP125 P450, cholesterol and cholest-4-en-3-one hydroxylase in alphaproteobacterial species (Phenylobacterium zucineum) and to predict cholesterol side-chain oxidation capability (based on homolog proteins) by P. zucineum.
Collapse
|
15
|
Msomi NN, Padayachee T, Nzuza N, Syed PR, Kryś JD, Chen W, Gront D, Nelson DR, Syed K. In Silico Analysis of P450s and Their Role in Secondary Metabolism in the Bacterial Class Gammaproteobacteria. Molecules 2021; 26:1538. [PMID: 33799696 PMCID: PMC7998510 DOI: 10.3390/molecules26061538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of lifestyle on shaping the genome content of an organism is a well-known phenomenon and cytochrome P450 enzymes (CYPs/P450s), heme-thiolate proteins that are ubiquitously present in organisms, are no exception. Recent studies focusing on a few bacterial species such as Streptomyces, Mycobacterium, Cyanobacteria and Firmicutes revealed that the impact of lifestyle affected the P450 repertoire in these species. However, this phenomenon needs to be understood in other bacterial species. We therefore performed genome data mining, annotation, phylogenetic analysis of P450s and their role in secondary metabolism in the bacterial class Gammaproteobacteria. Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging to 161 genera revealed that only 169 species belonging to 41 genera have P450s. A total of 277 P450s found in 169 species grouped into 84 P450 families and 105 P450 subfamilies, where 38 new P450 families were found. Only 18% of P450s were found to be involved in secondary metabolism in Gammaproteobacterial species, as observed in Firmicutes as well. The pathogenic or commensal lifestyle of Gammaproteobacterial species influences them to such an extent that they have the lowest number of P450s compared to other bacterial species, indicating the impact of lifestyle on shaping the P450 repertoire. This study is the first report on comprehensive analysis of P450s in Gammaproteobacteria.
Collapse
Affiliation(s)
- Ntombizethu Nokuphiwa Msomi
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Justyna Dorota Kryś
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| |
Collapse
|
16
|
Daniotti S, Re I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar Drugs 2021; 19:61. [PMID: 33530360 PMCID: PMC7912129 DOI: 10.3390/md19020061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Biotechnology is an essential tool for the sustainable exploitation of marine resources, although the full development of their potential is complicated by a series of cognitive and technological limitations. Thanks to an innovative systematic approach that combines the meta-analysis of 620 articles produced worldwide with 29 high TRL (Technology Readiness Level) European funded projects, the study provides an assessment of the growth prospects of blue biotechnologies, with a focus on pharmaceutical and food applications, and the most promising technologies to overcome the main challenges in the commercialization of marine products. The results show a positive development trend, with publications more than doubled from 2010 (36) to 2019 (70). Biochemical and molecular characterization, with 150 studies, is the most widely used technology. However, the emerging technologies in basic research are omics technologies, pharmacological analysis and bioinformatics, which have doubled the number of publications in the last five years. On the other hand, technologies for optimizing the conditions of cultivation, harvesting and extraction are central to most business models with immediate commercial exploitation (65% of high-TRL selected projects), especially in food and nutraceutical applications. This research offers a starting point for future research to overcome all those obstacles that restrict the marketing of products derived from organisms.
Collapse
|
17
|
Chakraborty K, Kizhakkekalam VK, Joy M. Chemical mining of heterotrophic Shewanella algae reveals anti-infective potential of macrocyclic polyketides against multidrug-resistant pathogens. Bioorg Chem 2020; 108:104533. [PMID: 33342567 DOI: 10.1016/j.bioorg.2020.104533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
Heterotrophic Gamma-proteobacterium Shewanella algae MTCC 12715, associated with an intertidal red algae Hypnea valentiae, presented broad-spectra of antibacterial activities against pathogenic bacteria bringing about nosocomial infection. Bioassay-guided fractionation of the bacterial crude extract resulted in two undescribed macrocyclic polyketide analogs, with anti-infective activities against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis (MIC 3.1-5.0 µg/mL). In order to identify the polyketide biosynthetic machinery termed type-I polyketide synthase (pks-I) encoding biologically active secondary metabolites in this strain, the ketosynthase-coding regions of DNA with ≈700 bp size, were amplified, and the partial sequence was submitted in the GenBank (accession number MH157093). The titled compounds were classified under macrocyclic polyketides bearing dodecahydropyrano-trioxacyclooctadecine-dione and trioxo-octadecahydro-1H-benzo[o]tetraoxacyclopentacosine-carboxylate functionalities. Structure-activity correlation analysis displayed that hydrophobic descriptor of the studied compounds could play a prominent role in its anti-infective property against the opportunistic pathogens. Further, in silico molecular docking studies were performed in the allosteric sites of penicillin-binding protein (PBP2a) coded by mecA genes of MRSA, and the best binding pose for each compound (docking score -8.47 kcal/mol and -9.58 kcal/mol, respectively) could be correlated with their in vitro antibacterial activities. The pks-I assisted biosynthetic pathway of macrocyclic polyketides through step-wise decarboxylative condensation initiated by malonate-acyl carrier protein corroborated their structural attributes. Chemical mining of the studied macroalgae-associated heterotrophic bacterium thus revealed the promising antagonistic properties of macrocyclic polyketides isolated from Shewanella algae MTCC 12715 against multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| | - Vinaya Kizhakkepatt Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India; Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala State, India
| | - Minju Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| |
Collapse
|
18
|
Guesmi S, Pujic P, Nouioui I, Dubost A, Najjari A, Ghedira K, Igual JM, Miotello G, Cherif A, Armengaud J, Klenk HP, Normand P, Sghaier H. Ionizing-radiation-resistant Kocuria rhizophila PT10 isolated from the Tunisian Sahara xerophyte Panicum turgidum: Polyphasic characterization and proteogenomic arsenal. Genomics 2020; 113:317-330. [PMID: 33279651 DOI: 10.1016/j.ygeno.2020.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/17/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.
Collapse
Affiliation(s)
- Sihem Guesmi
- National Agronomy Institute of Tunisia, 43, Avenue Charles Nicolle, 1082 Tunis, Mahrajène, Tunisia; Laboratory ″Energy and Matter for Development of Nuclear Sciences″ (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020, Tunisia.
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, Lyon, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Afef Najjari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Microorganismes et Biomolécules Actives, 2092 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Guylaine Miotello
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | | | - Haïtham Sghaier
- Laboratory ″Energy and Matter for Development of Nuclear Sciences″ (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020, Tunisia; Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
19
|
Chakraborty K, Kizhakkekalam VK, Joy M. Macrocyclic polyketides with siderophore mode of action from marine heterotrophic Shewanella algae: Prospective anti-infective leads attenuate drug-resistant pathogens. J Appl Microbiol 2020; 130:1552-1570. [PMID: 33006801 DOI: 10.1111/jam.14875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/19/2020] [Accepted: 09/24/2020] [Indexed: 02/01/2023]
Abstract
AIMS Biotechnological and chemical characterization of previously undescribed homologous siderophore-type macrocyclic polyketides from heterotrophic Shewanella algae Microbial Type Culture Collection (MTCC) 12715 affiliated with Rhodophycean macroalga Hypnea valentiae of marine origin, with significant anti-infective potential against drug-resistant pathogens. METHODS AND RESULTS The heterotrophic bacterial strain in symbiotic association with intertidal macroalga H. valentiae was isolated to homogeneity in a culture-dependent method and screened for bioactivities by spot-over-lawn assay. The bacterial organic extract was purified and characterized by extensive chromatographic and spectroscopic methods, respectively, and was assessed for antibacterial activities with disc diffusion and microtube dilution methods. The macrocyclic polyketide compounds exhibited wide-spectrum of anti-infective potential against clinically significant vancomycin-resistant Enterococcus faecalis (VREfs), methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Klebsiella pneumonia with minimum inhibitory concentration of about 1-3 µg ml-1 , insomuch as the antibiotics chloramphenicol and ampicillin were active at ≥6·25 µg ml-1 . The studied compounds unveiled Fe3+ chelating activity, which designated that their prospective anti-infective activities against the pathogens could be due to their siderophore mechanism of action. In support of that, the bacterium exhibited siderophore production on bioassay involving the cast upon culture agar plate, and the presence of siderophore biosynthetic gene (≈1000 bp) (MF 981936) further corroborated the inference. In silico molecular modelling with penicillin-binding protein (PBP2a) coded by mecA genes of MRSA (docking score -11·68 to -12·69 kcal mol-1 ) verified their in vitro antibacterial activities. Putative biosynthetic pathway of macrocyclic polyketides through stepwise decarboxylative condensation initiated by malonate-acyl carrier protein further validated their structural and molecular attributes. CONCLUSIONS The studied siderophore-type macrocyclic polyketides from S. algae MTCC 12715 with significant anti-infective potential could be considered as promising candidates for pharmaceutical and biotechnological applications, especially against emerging multidrug-resistant pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This study exhibited the heterotrophic bacteria in association with intertidal macroalga as propitious biological resources to biosynthesize novel antibacterial agents.
Collapse
Affiliation(s)
- K Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Cochin University of Science and Technology, Kerala State, Lakeside Campus, Cochin, India
| | - V K Kizhakkekalam
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Cochin University of Science and Technology, Kerala State, Lakeside Campus, Cochin, India
| | - M Joy
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.,Faculty of Marine Sciences, Cochin University of Science and Technology, Kerala State, Lakeside Campus, Cochin, India
| |
Collapse
|
20
|
Atencio LA, Boya P. CA, Martin H. C, Mejía LC, Dorrestein PC, Gutiérrez M. Genome Mining, Microbial Interactions, and Molecular Networking Reveals New Dibromoalterochromides from Strains of Pseudoalteromonas of Coiba National Park-Panama. Mar Drugs 2020; 18:md18090456. [PMID: 32899199 PMCID: PMC7551054 DOI: 10.3390/md18090456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023] Open
Abstract
The marine bacterial genus Pseudoalteromonas is known for their ability to produce antimicrobial compounds. The metabolite-producing capacity of Pseudoalteromonas has been associated with strain pigmentation; however, the genomic basis of their antimicrobial capacity remains to be explained. In this study, we sequenced the whole genome of six Pseudoalteromonas strains (three pigmented and three non-pigmented), with the purpose of identifying biosynthetic gene clusters (BGCs) associated to compounds we detected via microbial interactions along through MS-based molecular networking. The genomes were assembled and annotated using the SPAdes and RAST pipelines and mined for the identification of gene clusters involved in secondary metabolism using the antiSMASH database. Nineteen BGCs were detected for each non-pigmented strain, while more than thirty BGCs were found for two of the pigmented strains. Among these, the groups of genes of nonribosomal peptide synthetases (NRPS) that code for bromoalterochromides stand out the most. Our results show that all strains possess BGCs for the production of secondary metabolites, and a considerable number of distinct polyketide synthases (PKS) and NRPS clusters are present in pigmented strains. Furthermore, the molecular networking analyses revealed two new molecules produced during microbial interactions: the dibromoalterochromides D/D' (11-12).
Collapse
Affiliation(s)
- Librada A. Atencio
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (C.A.B.P.); (C.M.H.)
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| | - Cristopher A. Boya P.
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (C.A.B.P.); (C.M.H.)
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| | - Christian Martin H.
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (C.A.B.P.); (C.M.H.)
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| | - Luis C. Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (C.A.B.P.); (C.M.H.)
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama City 0843-03092, Panama
- Correspondence: (L.C.M.); (M.G.); Tel.: +507-517-0700 (L.C.M. & M.G.); Fax: +507-517-0701 (L.C.M. & M.G.)
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA;
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama City 0843-01103, Panama; (L.A.A.); (C.A.B.P.); (C.M.H.)
- Correspondence: (L.C.M.); (M.G.); Tel.: +507-517-0700 (L.C.M. & M.G.); Fax: +507-517-0701 (L.C.M. & M.G.)
| |
Collapse
|
21
|
Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food Chem Toxicol 2020; 141:111373. [DOI: 10.1016/j.fct.2020.111373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023]
|
22
|
An enumeration of natural products from microbial, marine and terrestrial sources. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The discovery of a new drug is a multidisciplinary and very costly task. One of the major steps is the identification of a lead compound, i.e. a compound with a certain degree of potency and that can be chemically modified to improve its activity, metabolic properties, and pharmacokinetics profiles. Terrestrial sources (plants and fungi), microbes and marine organisms are abundant resources for the discovery of new structurally diverse and biologically active compounds. In this chapter, an attempt has been made to quantify the numbers of known published chemical structures (available in chemical databases) from natural sources. Emphasis has been laid on the number of unique compounds, the most abundant compound classes and the distribution of compounds in terrestrial and marine habitats. It was observed, from the recent investigations, that ~500,000 known natural products (NPs) exist in the literature. About 70 % of all NPs come from plants, terpenoids being the most represented compound class (except in bacteria, where amino acids, peptides, and polyketides are the most abundant compound classes). About 2,000 NPs have been co-crystallized in PDB structures.
Collapse
|
23
|
Genome Mining as New Challenge in Natural Products Discovery. Mar Drugs 2020; 18:md18040199. [PMID: 32283638 PMCID: PMC7230286 DOI: 10.3390/md18040199] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Drug discovery is based on bioactivity screening of natural sources, traditionally represented by bacteria fungi and plants. Bioactive natural products and their secondary metabolites have represented the main source for new therapeutic agents, used as drug leads for new antibiotics and anticancer agents. After the discovery of the first biosynthetic genes in the last decades, the researchers had in their hands the tool to understand the biosynthetic logic and genetic basis leading to the production of these compounds. Furthermore, in the genomic era, in which the number of available genomes is increasing, genome mining joined to synthetic biology are offering a significant help in drug discovery. In the present review we discuss the importance of genome mining and synthetic biology approaches to identify new natural products, also underlining considering the possible advantages and disadvantages of this technique. Moreover, we debate the associated techniques that can be applied following to genome mining for validation of data. Finally, we review on the literature describing all novel natural drugs isolated from bacteria, fungi, and other living organisms, not only from the marine environment, by a genome-mining approach, focusing on the literature available in the last ten years.
Collapse
|
24
|
Antibacterial and antioxidant aryl-enclosed macrocyclic polyketide from intertidal macroalgae associated heterotrophic bacterium Shewanella algae. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02468-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Nappi J, Soldi E, Egan S. Diversity and Distribution of Bacteria Producing Known Secondary Metabolites. MICROBIAL ECOLOGY 2019; 78:885-894. [PMID: 31016338 DOI: 10.1007/s00248-019-01380-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
There is an increasing interest in the utilisation of marine bioactive compounds as novel biopharmaceuticals and agrichemicals; however, little is known about the environmental distribution for many of these molecules. Here, we aimed to elucidate the environmental distribution and to detect the biosynthetic gene clusters in environmental samples of four bioactive compounds, namely violacein, tropodithietic acid (TDA), tambjamine and the antibacterial protein AlpP. Our database analyses revealed high bacterial diversity for AlpP and violacein producers, while TDA-producing bacteria were mostly associated with marine surfaces and all belonged to the roseobacter group. In contrast, the tambjamine cluster was only found in the genomes of two Pseudoalteromonas species and in one terrestrial species belonging to the Cupriavidus genus. Using a PCR-based screen of different marine samples, we detected TDA and violacein genes associated with the microbiome of Ulva and Protohyale niger and tambjamine genes associated with Nodilittorina unifasciata; however, alpP was not detected. These results highlight the variable distribution of the genes encoding these four bioactive compounds, including their detection from the surface of multiple marine eukaryotic hosts. Determining the natural distribution of these gene clusters will help to understand the ecological importance of these metabolites and the bacteria that produce them.
Collapse
Affiliation(s)
- Jadranka Nappi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Erika Soldi
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales Sydney, Sydney, NSW, Australia.
| |
Collapse
|
26
|
Advances in microbial culturing conditions to activate silent biosynthetic gene clusters for novel metabolite production. ACTA ACUST UNITED AC 2019; 46:1381-1400. [DOI: 10.1007/s10295-019-02198-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023]
Abstract
Abstract
Natural products (NPs) produced by bacteria and fungi are often used as therapeutic agents due to their complex structures and wide range of bioactivities. Enzymes that build NPs are encoded by co-localized biosynthetic gene clusters (BGCs), and genome sequencing has recently revealed that many BGCs are “silent” under standard laboratory conditions. There are numerous methods used to activate “silent” BGCs that rely either upon altering culture conditions or genetic modification. In this review, we discuss several recent microbial cultivation methods that have been used to expand the scope of NPs accessible in the laboratory. These approaches are divided into three categories: addition of a physical scaffold, addition of small molecule elicitors, and co-cultivation with another microbe.
Collapse
|
27
|
Perry CK, Fulton MG, Lindsley CW. Total synthesis of violaceimides A–E and consideration of the reported stereochemistry. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Agrawal P, Salomons TT, Chiriac DS, Ross AC, Oleschuk RD. Facile Actuation of Organic and Aqueous Droplets on Slippery Liquid-Infused Porous Surfaces for the Application of On-Chip Polymer Synthesis and Liquid-Liquid Extraction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28327-28335. [PMID: 31291086 DOI: 10.1021/acsami.9b08849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Digital microfluidics employs water-repellant surfaces to exquisitely manipulate droplets of water for chemical analysis. However, the actuation and manipulation of organic droplets is still relatively unexplored as it is significantly more difficult to synthesize organic-repellent surfaces compared to water-repellent surfaces. Here, we present the fabrication of slippery liquid-infused porous surfaces (SLIPS) based on a porous polymer monolithic approach. The synthesized SLIPS were able to repel organic liquids such as hexane and methanol with a contact angle of 42.1 ± 0.4° and 69.0 ± 1.8°, respectively, as well as water with a contact angle of 115.8 ± 0.8°. More importantly for digital microfluidic applications, the sliding angle of liquids tested was between 4° and 6°. As a result, droplets containing magnetically susceptible material could be facilely manipulated on the SLIPS surface. A systematic actuation study was carried out to explore how actuation parameters including speed, paramagnetic particle (PMP) concentrations, and droplet volume impacted the outcomes (droplet actuation, disengagement, and PMP extraction). Two different applications were used to demonstrate the utility of actuating organic droplets on SLIPS surfaces including on-chip liquid-liquid extractions of natural products (NPs) from marine bacteria and droplet-based polymer synthesis with different polymerization conditions. Both applications employ an aqueous droplet and organic droplet interface at which either phase transfer or a chemical reaction is carried out. Two NPs (prodigiosin from Pseudoalteromonas rubra and violacein from Pseudoalteromonas luteoviolacea) were extracted, from aqueous droplets containing the bacteria, into butanol droplets and characterized with matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS). Nylon 6,6 was synthesized on-chip via magnetic actuation of organic droplets containing adipoyl chloride and hexamethylamine. Relative intensities of the characteristic polymer masses suggest that droplet-based microfluidic synthesis on slips can be used to probe reaction conditions. The compatibility of SLIPS with both aqueous and organic solutions opens up a wider number of droplet-based sample preparation protocols and chemical transformations.
Collapse
Affiliation(s)
- Prashant Agrawal
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | - Timothy T Salomons
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | - Dragos S Chiriac
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | - Avena Clara Ross
- Department of Chemistry , Queen's University , Kingston K7L 3N6 , Ontario , Canada
| | | |
Collapse
|
29
|
Individual Physiological Adaptations Enable Selected Bacterial Taxa To Prevail during Long-Term Incubations. Appl Environ Microbiol 2019; 85:AEM.00825-19. [PMID: 31152013 DOI: 10.1128/aem.00825-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incubation itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were combined to evaluate bacterial communities derived from marine, mesohaline, and oligohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic carbon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the manipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacterium Spongiibacter In the oligohaline enclosures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously described grazing resistance, may enable the gammaproteobacterium Spongiibacter to prevail in long-time incubations. Under oligohaline conditions, the utilization of external recalcitrant carbon appeared to be more important (hgc-I). Enclosure experiments with complex natural microbial communities are important tools to investigate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.IMPORTANCE In microbial ecology, enclosure studies are often used to investigate the effect of single environmental factors on complex bacterial communities. However, in addition to the manipulation, unintended effects ("bottle effect") may occur due to the enclosure itself. In this study, we analyzed the bacterial communities that originated from three different salinities of the Baltic Sea, comparing their compositions and physiological activities both at the early stage and after 55 days of incubation. Our results suggested that internal carbon storage strategies impact the success of certain bacterial species, independent of the experimental manipulation. Thus, while enclosure experiments remain valid tools in environmental research, microbial community composition shifts must be critically followed. This investigation of the metaproteome during long-term batch enclosures expanded our current understanding of the so-called "bottle effect," which is well known to occur during enclosure experiments.
Collapse
|
30
|
Jayanetti DR, Braun DR, Barns KJ, Rajski SR, Bugni TS. Bulbiferates A and B: Antibacterial Acetamidohydroxybenzoates from a Marine Proteobacterium, Microbulbifer sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1930-1934. [PMID: 31181927 PMCID: PMC6660402 DOI: 10.1021/acs.jnatprod.9b00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Here we report the discovery of two new 3-acetamido-4-hydroxybenzoate esters, bulbiferates A (1) and B (2), isolated from Microbulbifer sp. cultivated from the marine tunicate Ecteinascidia turbinata. The structures of 1 and 2 were determined by analysis of 2D NMR and MS data. Additionally, three synthetic analogues (3-5), differing in ester sizes/lengths, were prepared for the purposes of evaluating potential structure-activity relationships; no clear correlations tying ester lengths to activity were evident. Bulbiferates A (1) and B (2) demonstrated antibacterial activity against both Escherichia coli (E. coli) and methicillin-sensitive Staphylococcus aureus (MSSA), whereas the synthetic analogues 3 and 4 displayed activity only against MSSA.
Collapse
Affiliation(s)
- Dinith R. Jayanetti
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kenneth J. Barns
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott Raymond Rajski
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
31
|
The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7060176] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Marine habitats are a rich source of molecules of biological interest. In particular, marine bacteria attract attention with their ability to synthesize structurally diverse classes of bioactive secondary metabolites with high biotechnological potential. The last decades were marked by numerous discoveries of biomolecules of bacterial symbionts, which have long been considered metabolites of marine animals. Many compounds isolated from marine bacteria are unique in their structure and biological activity. Their study has made a significant contribution to the discovery and production of new natural antimicrobial agents. Identifying the mechanisms and potential of this type of metabolite production in marine bacteria has become one of the noteworthy trends in modern biotechnology. This path has become not only one of the most promising approaches to the development of new antibiotics, but also a potential target for controlling the viability of pathogenic bacteria.
Collapse
|
32
|
Buijs Y, Bech PK, Vazquez-Albacete D, Bentzon-Tilia M, Sonnenschein EC, Gram L, Zhang SD. Marine Proteobacteria as a source of natural products: advances in molecular tools and strategies. Nat Prod Rep 2019; 36:1333-1350. [DOI: 10.1039/c9np00020h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review covers the recent advances in molecular tools and strategies for studies and use of natural products from marine Proteobacteria.
Collapse
Affiliation(s)
- Yannick Buijs
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Pernille Kjersgaard Bech
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Dario Vazquez-Albacete
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Eva C. Sonnenschein
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine
- Technical University of Denmark
- DK-2800 Kgs Lyngby
- Denmark
| |
Collapse
|
33
|
Amiri Moghaddam J, Crüsemann M, Alanjary M, Harms H, Dávila-Céspedes A, Blom J, Poehlein A, Ziemert N, König GM, Schäberle TF. Analysis of the Genome and Metabolome of Marine Myxobacteria Reveals High Potential for Biosynthesis of Novel Specialized Metabolites. Sci Rep 2018; 8:16600. [PMID: 30413766 PMCID: PMC6226438 DOI: 10.1038/s41598-018-34954-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/29/2018] [Indexed: 01/14/2023] Open
Abstract
Comparative genomic/metabolomic analysis is a powerful tool to disclose the potential of microbes for the biosynthesis of novel specialized metabolites. In the group of marine myxobacteria only a limited number of isolated species and sequenced genomes is so far available. However, the few compounds isolated thereof so far show interesting bioactivities and even novel chemical scaffolds; thereby indicating a huge potential for natural product discovery. In this study, all marine myxobacteria with accessible genome data (n = 5), including Haliangium ochraceum DSM 14365, Plesiocystis pacifica DSM 14875, Enhygromyxa salina DSM 15201 and the two newly sequenced species Enhygromyxa salina SWB005 and SWB007, were analyzed. All of these accessible genomes are large (~10 Mb), with a relatively small core genome and many unique coding sequences in each strain. Genome analysis revealed a high variety of biosynthetic gene clusters (BGCs) between the strains and several resistance models and essential core genes indicated the potential to biosynthesize antimicrobial molecules. Polyketides (PKs) and terpenes represented the majority of predicted specialized metabolite BGCs and contributed to the highest share between the strains. BGCs coding for non-ribosomal peptides (NRPs), PK/NRP hybrids and ribosomally synthesized and post-translationally modified peptides (RiPPs) were mostly strain specific. These results were in line with the metabolomic analysis, which revealed a high diversity of the chemical features between the strains. Only 6-11% of the metabolome was shared between all the investigated strains, which correlates to the small core genome of these bacteria (13-16% of each genome). In addition, the compound enhygrolide A, known from E. salina SWB005, was detected for the first time and structurally elucidated from Enhygromyxa salina SWB006. The here acquired data corroborate that these microorganisms represent a most promising source for the detection of novel specialized metabolites.
Collapse
Affiliation(s)
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Mohammad Alanjary
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Henrik Harms
- German Center for Infection Research (DZIF) Partner Site Cologne/Bonn, Bonn, Germany.,Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Poehlein
- Department of Genomics and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August-University Göttingen, Göttingen, Germany
| | - Nadine Ziemert
- Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| | - Till F Schäberle
- German Center for Infection Research (DZIF) Partner Site Cologne/Bonn, Bonn, Germany. .,Institute for Insect Biotechnology, Justus Liebig University Giessen, Giessen, Germany. .,Department of Bioresources of the Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.
| |
Collapse
|
34
|
Timmermans ML, Picott KJ, Ucciferri L, Ross AC. Culturing marine bacteria from the genus Pseudoalteromonas on a cotton scaffold alters secondary metabolite production. Microbiologyopen 2018; 8:e00724. [PMID: 30270573 PMCID: PMC6528606 DOI: 10.1002/mbo3.724] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 01/13/2023] Open
Abstract
The discovery of secondary metabolites from marine microorganisms is beset by numerous challenges including difficulties cultivating and subsequently eliciting expression of biosynthetic genes from marine microbes in the laboratory. In this paper, we describe a method of culturing three species from the marine bacterial genus Pseudoalteromonas using cotton scaffold supplemented liquid media. This simple cultivation method was designed to mimic the natural behavior of some members of the genus wherein they form epibiotic/symbiotic associations with higher organisms such as sponges and corals or attach to solid structures as a biofilm. Our scaffolded cultivation is highly effective at stimulating an attachment/biofilm phenotype and causes large changes to metabolite profiles for the microbes investigated. Metabolite changes include alteration to the production levels of known molecules such as violacein, thiomarinol A, and the alterochromide and prodiginine families of molecules. Finally and critically, our technique stimulates the production of unknown compounds that will serve as leads for future natural product discovery. These results suggest our cultivation approach could potentially be used as a general strategy for the activation of silent gene clusters in marine microbes to facilitate access to their full natural product biosynthetic capacity.
Collapse
Affiliation(s)
| | | | - Lorena Ucciferri
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, ON, Canada
| |
Collapse
|
35
|
Giordano D, Costantini M, Coppola D, Lauritano C, Núñez Pons L, Ruocco N, di Prisco G, Ianora A, Verde C. Biotechnological Applications of Bioactive Peptides From Marine Sources. Adv Microb Physiol 2018; 73:171-220. [PMID: 30262109 DOI: 10.1016/bs.ampbs.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review is an overview on marine bioactive peptides with promising activities for the development of alternative drugs to fight human pathologies. In particular, we focus on potentially prolific producers of peptides in microorganisms, including sponge-associated bacteria and marine photoautotrophs such as microalgae and cyanobacteria. Microorganisms are still poorly explored for drug discovery, even if they are highly metabolically plastic and potentially amenable to culturing. This offers the possibility of obtaining a continuous source of bioactive compounds to satisfy the challenging demands of pharmaceutical industries. This review targets peptides because of the variety of potent biological activities demonstrated by these molecules, including antiviral, antimicrobial, antifungal, antioxidant, anticoagulant, antihypertensive, anticancer, antidiabetic, antiobesity, and calcium-binding bioactivities. Several of these peptides have already gained recognition as effective drug agents in recent years. We also focus on cutting-edge omic approaches for the discovery of novel compounds for pharmacological applications. With rapid depletion of natural resources, omic technologies may be the solution to efficiently produce a vast variety of novel peptides with unique pharmacological potential.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Maria Costantini
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Chiara Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Núñez Pons
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Department of Biology, University of Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Dipartimento di Biologia, Università Roma 3, Roma, Italy.
| |
Collapse
|
36
|
Albataineh H, Stevens DC. Marine Myxobacteria: A Few Good Halophiles. Mar Drugs 2018; 16:E209. [PMID: 29899205 PMCID: PMC6025477 DOI: 10.3390/md16060209] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 01/25/2023] Open
Abstract
Currently considered an excellent candidate source of novel chemical diversity, the existence of marine myxobacteria was in question less than 20 years ago. This review aims to serve as a roll call for marine myxobacteria and to summarize their unique features when compared to better-known terrestrial myxobacteria. Characteristics for discrimination between obligate halophilic, marine myxobacteria and halotolerant, terrestrial myxobacteria are discussed. The review concludes by highlighting the need for continued discovery and exploration of marine myxobacteria as producers of novel natural products.
Collapse
Affiliation(s)
- Hanan Albataineh
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - D Cole Stevens
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
37
|
Linear Aminolipids with Moderate Antimicrobial Activity from the Antarctic Gram-Negative Bacterium Aequorivita sp. Mar Drugs 2018; 16:md16060187. [PMID: 29843452 PMCID: PMC6025266 DOI: 10.3390/md16060187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/25/2022] Open
Abstract
The combination of LC-MS/MS based metabolomics approach and anti-MRSA activity-guided fractionation scheme was applied on the Gram-negative bacterium Aequorivita sp. isolated from shallow Antarctic sea sediment using a miniaturized culture chip technique. This methodology afforded the isolation of three new (1⁻3) and four known (4⁻7) N-terminal glycine- or serine-bearing iso-fatty acid amides esterified with another iso-fatty acid through their C-3 hydroxy groups. The chemical structures of the new compounds were elucidated using a set of spectroscopic (NMR, [α]D and FT-IR) and spectrometric (HRMS, HRMS/MS) methods. The aminolipids possessing an N-terminal glycine unit (1, 2, 4, 5) showed moderate in vitro antimicrobial activity against MRSA (IC50 values 22⁻145 μg/mL). This is the first in-depth chemistry and biological activity study performed on the microbial genus Aequorivita.
Collapse
|
38
|
The Tripod for Bacterial Natural Product Discovery: Genome Mining, Silent Pathway Induction, and Mass Spectrometry-Based Molecular Networking. mSystems 2018; 3:mSystems00160-17. [PMID: 29629418 PMCID: PMC5881025 DOI: 10.1128/msystems.00160-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 01/22/2023] Open
Abstract
Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Natural products are the richest source of chemical compounds for drug discovery. Particularly, bacterial secondary metabolites are in the spotlight due to advances in genome sequencing and mining, as well as for the potential of biosynthetic pathway manipulation to awake silent (cryptic) gene clusters under laboratory cultivation. Further progress in compound detection, such as the development of the tandem mass spectrometry (MS/MS) molecular networking approach, has contributed to the discovery of novel bacterial natural products. The latter can be applied directly to bacterial crude extracts for identifying and dereplicating known compounds, therefore assisting the prioritization of extracts containing novel natural products, for example. In our opinion, these three approaches—genome mining, silent pathway induction, and MS-based molecular networking—compose the tripod for modern bacterial natural product discovery and will be discussed in this perspective.
Collapse
|