1
|
Wang YD, Liu JZ, Fang HQ, Sun GB, Yang J, Ding G. UPLC-Q-TOF-MS/MS analysis of ophiobolins sesterterpenoids and bioactive analogs from Bipolaris eleusines. PHYTOCHEMISTRY 2024; 229:114267. [PMID: 39216632 DOI: 10.1016/j.phytochem.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In order to elucidate the mass fragmentation patterns and unveil more undescribed ophiobolin analogs, the mass fragmentation patterns of ophiobolins were analyzed based on UPLC-Q-TOF-MS/MS experiments. Different kinds of rearrangements (including McLafferty rearrangement) were the main cleavage patterns. Twenty-six (9-31) analogs were then tentatively characterized based on their mass analysis, and three undescribed ophiobolins (6-8) and a known analogue (5) were isolated in target. Compound 5 possesses a rare polycyclic carbon skeleton only recently reported, and compound 6 contains an undescribed lactone ring system fused with A/B ring at C-3/C-21, whereas compounds 7 and 8 have a peroxyl group in the side chain, which is the first reported in all ophiobolins. Compounds 5 and 7 displayed significant cytotoxicity against MCF-7 cancer cells.
Collapse
Affiliation(s)
- Yan-Duo Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Jian-Zi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Hui-Qi Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| | - Jian Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, 100700, People's Republic of China.
| | - Gang Ding
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduwal P, Kodam KM. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024; 29:3237. [PMID: 38999189 PMCID: PMC11243205 DOI: 10.3390/molecules29133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.
Collapse
Affiliation(s)
- Surya Nandan Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Anna Wajs-Bonikowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego Street 2/22, 90-537 Łódz, Poland
| | - Savita Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Md Imran
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Preethi Poduwal
- Department of Biotechnology, Dhempe College of Arts and Science, Miramar, Goa 403001, India;
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| |
Collapse
|
3
|
Uzma F, Chowdappa S, Roy A, Adhoni SA, Ali D, Sasaki K, Jogaiah S. GC-MS-Guided Antimicrobial Defense Responsive Secondary Metabolites from the Endophytic Fusarium solani Isolated from Tinospora cordifolia and Their Multifaceted Biological Properties. Appl Biochem Biotechnol 2024; 196:3010-3033. [PMID: 37610512 DOI: 10.1007/s12010-023-04669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Medicinal plants are hosts to an infinite number of microorganisms, commonly referred to as endophytes which are rich in bioactive metabolites yielding favorable biological activities. The endophytes are known to have a profound impact on their host plant by promoting the accumulation of secondary metabolites which are beneficial to humankind. In the present study, the fungal endophyte, Fusarium solani (ABR4) from the medicinal plant Tinospora cordifolia, was assessed for its bioactive secondary metabolites employing fermentation on a solid rice medium. The crude ABR4 fungal extract was sequentially purified using the solvent extraction method and characterized using different spectroscopic and analytical techniques namely TLC, UV spectroscopic analysis, HRESI-MS, FTIR, and GC-MS analysis. The GC-MS analysis revealed the presence of pyridine, benzoic acid, 4-[(trimethylsilyl)oxy]-trimethylsilyl ester, hexadecanoic acid trimethylsilyl ester, and oleic acid trimethylsilyl ester. The cytotoxic ability of ABR4 was evaluated by MTT assay against lung cancer (A549) and breast cancer (MCF-7) cell lines. The compounds did not exhibit significant cytotoxicity against the tested cell lines. The endophytic ABR4 extract was evaluated for its antimicrobial potential against human pathogens (S. aureus, B. cereus, E. coli, S. typhimurium, P. aeruginosa, and C. albicans) by recording 47 to 54% inhibition. Taken together, the endophytic fungal strain ABR4 demonstrated a remarkable antimicrobial activity against the tested pathogens. Furthermore, the functional metabolites isolated from the endophytic strain ABR4 reveal its broader usage as antimicrobial agents for newer drug development in the pharmaceutical industry.
Collapse
Affiliation(s)
- Fazilath Uzma
- Department of Microbiology and Biotechnology, Fungal Metabolite Research Laboratory, Jnanabharathi Campus, Bangalore University, Bangalore, Karnataka, 560 056, India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Fungal Metabolite Research Laboratory, Jnanabharathi Campus, Bangalore University, Bangalore, Karnataka, 560 056, India.
| | - Arnab Roy
- Senior specialist, Merck KGaA, Electronic city, Phase I, Bangalore, Karnataka, 560 100, India
| | - Shakeel Ahmed Adhoni
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka, 441, Papua New Guinea
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kazunori Sasaki
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), Kasaragod (DT), Kerala, 671316, India.
| |
Collapse
|
4
|
Herbert LA, Bruguière A, Derbré S, Richomme P, Peña-Rodríguez LM. 13C NMR dereplication-assisted isolation of bioactive polyphenolic metabolites from Clusia flava Jacq. Nat Prod Res 2024; 38:1089-1098. [PMID: 36214555 DOI: 10.1080/14786419.2022.2130917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 10/17/2022]
Abstract
Presently it is estimated that many of the approximately 4000 new natural products isolated every year following complicated, long, and expensive isolation processes are already known; because of this, developing new strategies for locating secondary metabolites of interest in complex extracts or fractions is important. Currently, chromatographic and spectroscopic techniques are being used to optimize the isolation and identification of natural products. In this investigation we have used 13C NMR dereplication analyses for the quick identification of a number of triterpenes (friedelin, lupeol, betulinic acid), sterols (euphol, β-sitosterol) and fatty acids (palmitic acid) present in semipurified fractions obtained from the stem bark extract of Clusia flava and to assist in the isolation of the bioactive metabolites trapezifolixanthone and paralycolin A. The complete and correct assignment of the 1H and 13C NMR spectroscopic data for paralycolin A is reported for the first time and the antioxidant and antiAGEs activity of both metabolites is described.
Collapse
Affiliation(s)
- Luis A Herbert
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, Yucatán, México
| | - Antoine Bruguière
- Department of Pharmacy, Faculty of Health Sciences, SONAS, EA921, UNIV Angers, SFR QUASAV, Angers, France
| | - Séverine Derbré
- Department of Pharmacy, Faculty of Health Sciences, SONAS, EA921, UNIV Angers, SFR QUASAV, Angers, France
| | - Pascal Richomme
- Department of Pharmacy, Faculty of Health Sciences, SONAS, EA921, UNIV Angers, SFR QUASAV, Angers, France
| | - Luis M Peña-Rodríguez
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, Yucatán, México
| |
Collapse
|
5
|
Xue JC, Yuan S, Hou XT, Meng H, Liu BH, Cheng WW, Zhao M, Li HB, Guo XF, Di C, Li MJ, Zhang QG. Natural products modulate NLRP3 in ulcerative colitis. Front Pharmacol 2023; 14:1265825. [PMID: 37849728 PMCID: PMC10577194 DOI: 10.3389/fphar.2023.1265825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/21/2023] [Indexed: 10/19/2023] Open
Abstract
Ulcerative colitis (UC) is a clinically common, progressive, devastating, chronic inflammatory disease of the intestine that is recurrent and difficult to treat. Nod-like receptor protein 3 (NLRP3) is a protein complex composed of multiple proteins whose formation activates cysteine aspartate protease-1 (caspase-1) to induce the maturation and secretion of inflammatory mediators such as interleukin (IL)-1β and IL-18, promoting the development of inflammatory responses. Recent studies have shown that NLRP3 is associated with UC susceptibility, and that it maintains a stable intestinal environment by responding to a wide range of pathogenic microorganisms. The mainstay of treatment for UC is to control inflammation and relieve symptoms. Despite a certain curative effect, there are problems such as easy recurrence after drug withdrawal and many side effects associated with long-term medication. NLRP3 serves as a core link in the inflammatory response. If the relationship between NLRP3 and gut microbes and inflammation-associated factors can be analyzed concerning its related inflammatory signaling pathways, its expression status as well as specific mechanism in the course of IBD can be elucidated and further considered for clinical diagnosis and treatment of IBD, it is expected that the development of lead compounds targeting the NLRP3 inflammasome can be developed for the treatment of IBD. Research into the prevention and treatment of UC, which has become a hotbed of research in recent years, has shown that natural products are rich in therapeutic means, and multi-targets, with fewer adverse effects. Natural products have shown promise in treating UC in numerous basic and clinical trials over the past few years. This paper describes the regulatory role of the NLRP3 inflammasome in UC and the mechanism of recent natural products targeting NLRP3 against UC, which provides a reference for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Jia-Chen Xue
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| | - Shuo Yuan
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Bao-Hong Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Wen-Wen Cheng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
| | - Ming Zhao
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Hong-Ben Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Xue-Fen Guo
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Chang Di
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Min-Jie Li
- Department of Nuclear Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning, China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, Jilin, China
| |
Collapse
|
6
|
Ye K, Ai HL. Pimarane Diterpenes from Fungi. Pharmaceuticals (Basel) 2022; 15:ph15101291. [PMID: 36297402 PMCID: PMC9609704 DOI: 10.3390/ph15101291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pimarane diterpenes are a kind of tricyclic diterpene, generally isolated from plant and fungi. In nature, fungi distribute widely and there are nearly two to three million species. They provide many secondary metabolites, including pimarane diterpenes, with novel skeletons and bioactivities. These natural products from fungi have the potential to be developed into clinical medicines. Herein, the structures and bioactivities of 197 pimarane diterpenes are summarized and the biosynthesis and pharmacological researches of pimarane diterpenes are introduced. This review may be useful improving the understanding of pimarane diterpenes from fungi.
Collapse
|
7
|
Huh J, Park TK, Chae HS, Nhoek P, Kim YM, An CY, Lee S, Kim J, Chin YW. Acylated saponins and flavonoid glycosides from the fruits of Stewartia koreana. PHYTOCHEMISTRY 2022; 193:112980. [PMID: 34653909 DOI: 10.1016/j.phytochem.2021.112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Three acylated saponins and three flavonoid glycosides, along with nine known flavonoids, were isolated from the fruits of Stewartia koreana Nakai ex Rehder (Theaceae) using relative mass defect filtering analysis. The structures of these compounds were determined by performing spectroscopic analyses and using chemical methods. Furthermore, all the isolates were evaluated for their effects on the mRNA expression of the genes for proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR) as well as their inhibitory activities on PCSK9 and LDLR binding. None of the isolates was deemed to be active in PCSK9-LDLR binding inhibition. However, (+)-catechin was found to inhibit PCSK9 expression and increase LDLR expression, suggesting the potential of (+)-catechin to lower cholesterol level via the downregulation of PCSK9 expression.
Collapse
Affiliation(s)
- Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Kyu Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Sung Chae
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Piseth Nhoek
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do, 10326, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chae-Yeong An
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shinae Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinwoong Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Wang CF, Huang XF, Xiao HX, Hao YJ, Xu L, Yan QX, Zou ZB, Xie CL, Xu YQ, Yang XW. Chemical Constituents of the Marine Fungus Penicillium sp. MCCC 3A00228. Chem Biodivers 2021; 18:e2100697. [PMID: 34585839 DOI: 10.1002/cbdv.202100697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/10/2021] [Indexed: 01/24/2023]
Abstract
One new (d-arabinitol-anofinicate, 1) and fourteen known (2-15) compounds were isolated from the marine Penicillium sp. MCCC 3A00228. The structure of the new compound was established mainly by extensive spectroscopic analyses. Compound 1 exhibited weak transcriptional effect on Nur77. While compound 13 showed moderate in vitro anti-proliferative effect against QGY7701, H1299, and HCT116 tumor cells with IC50 values of 21.2 μM, 18.2 μM, and 17.6 μM, respectively.
Collapse
Affiliation(s)
- Chao-Feng Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China.,Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Xiao-Fang Huang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China
| | - Hong-Xiu Xiao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Qing-Xiang Yan
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Zheng-Biao Zou
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Yan-Qin Xu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Meiling Avenue, Nanchang, 330004, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| |
Collapse
|
9
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
10
|
Bioactive Ascochlorin Analogues from the Marine-Derived Fungus Stilbella fimetaria. Mar Drugs 2021; 19:md19020046. [PMID: 33498522 PMCID: PMC7909580 DOI: 10.3390/md19020046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
The marine-derived fungus Stilbella fimetaria is a chemically talented fungus producing several classes of bioactive metabolites, including meroterpenoids of the ascochlorin family. The targeted dereplication of fungal extracts by UHPLC-DAD-QTOF-MS revealed the presence of several new along with multiple known ascochlorin analogues (19–22). Their structures and relative configuration were characterized by 1D and 2D NMR. Further targeted dereplication based on a novel 1,4-benzoquinone sesquiterpene derivative, fimetarin A (22), resulted in the identification of three additional fimetarin analogues, fimetarins B–D (23–25), with their tentative structures proposed from detailed MS/HRMS analysis. In total, four new and eight known ascochlorin/fimetarin analogues were tested for their antimicrobial activity, identifying the analogues with a 5-chloroorcylaldehyde moiety to be more active than the benzoquinone analogue. Additionally, the presence of two conjugated double bonds at C-2′/C-3′ and C-4′/C-5′ were found to be essential for the observed antifungal activity, whereas the single, untailored bonds at C-4′/C-5′ and C-8′/C-9′ were suggested to be necessary for the observed antibacterial activity.
Collapse
|
11
|
Ungogo MA, Ebiloma GU, Ichoron N, Igoli JO, de Koning HP, Balogun EO. A Review of the Antimalarial, Antitrypanosomal, and Antileishmanial Activities of Natural Compounds Isolated From Nigerian Flora. Front Chem 2020; 8:617448. [PMID: 33425860 PMCID: PMC7786139 DOI: 10.3389/fchem.2020.617448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 12/16/2022] Open
Abstract
The West African country Nigeria features highly diverse vegetation and climatic conditions that range from rain forest bordering the Atlantic Ocean in the South to the Desert (Sahara) at the Northern extreme. Based on data from the World Conservation Monitoring Center of the United Nations Environmental Protection, Nigeria, with ~5,000 documented vascular plants, ranks amongst the top 50 countries in terms of biodiversity. Such a rich biodiversity implies that the country is rich in diverse secondary metabolites-natural products/unique chemicals produced by the plant kingdom to confer selective advantages to them. Like many tropical countries, Nigeria is also endemic to numerous infectious diseases particularly those caused by parasitic pathogens. These phytochemicals have been exploited for the treatment of diseases and as a result, a new branch of chemistry, natural product chemistry, has evolved, to try to reproduce and improve the therapeutic qualities of particular phytochemicals. In this review, we have compiled a compendium of natural products, isolated from Nigerian flora, that have been reported to be effective against certain protozoan parasites with the aim that it will stimulate interests for further investigations, and give impetus to the development of the natural products into registered drugs. In total 93 structurally characterized natural compounds have been identified with various levels of anti-parasite activity mainly from Nigerian plants. The synthesis protocol and molecular target for some of these natural anti-parasite agents have been established. For instance, the anti-plasmodial compound fagaronine (7), a benzophenanthridine alkaloid from Fagara zanthoxyloides has been successfully synthesized in the laboratory, and the anti-trypanosomal compound azaanthraquinone (55) elicits its effect by inhibiting mitochondrial electron transfer in trypanosomes. This review also discusses the barriers to developing approved drugs from phytochemicals, and the steps that should be taken in order to accelerate the development of new antiparasitics from the highlighted compounds.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Godwin U. Ebiloma
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
| | - Nahandoo Ichoron
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi, Nigeria
| | - John O. Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, Makurdi, Nigeria
| | - Harry P. de Koning
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Emmanuel O. Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
12
|
Wittstein K, Cordsmeier A, Lambert C, Wendt L, Sir EB, Weber J, Wurzler N, Petrini LE, Stadler M. Identification of Rosellinia species as producers of cyclodepsipeptide PF1022 A and resurrection of the genus Dematophora as inferred from polythetic taxonomy. Stud Mycol 2020; 96:1-16. [PMID: 32165986 PMCID: PMC7056724 DOI: 10.1016/j.simyco.2020.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rosellinia (Xylariaceae) is a large, cosmopolitan genus comprising over 130 species that have been defined based mainly on the morphology of their sexual morphs. The genus comprises both lignicolous and saprotrophic species that are frequently isolated as endophytes from healthy host plants, and important plant pathogens. In order to evaluate the utility of molecular phylogeny and secondary metabolite profiling to achieve a better basis for their classification, a set of strains was selected for a multi-locus phylogeny inferred from a combination of the sequences of the internal transcribed spacer region (ITS), the large subunit (LSU) of the nuclear rDNA, beta-tubulin (TUB2) and the second largest subunit of the RNA polymerase II (RPB2). Concurrently, various strains were surveyed for production of secondary metabolites. Metabolite profiling relied on methods with high performance liquid chromatography with diode array and mass spectrometric detection (HPLC-DAD/MS) as well as preparative isolation of the major components after re-fermentation followed by structure elucidation using nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry (HR-MS). Two new and nine known isopimarane diterpenoids were identified during our mycochemical studies of two selected Dematophora strains and the metabolites were tested for biological activity. In addition, the nematicidal cyclodepsipeptide PF1022 A was purified and identified from a culture of Rosellinia corticium, which is the first time that this endophyte-derived drug precursor has been identified unambiguously from an ascospore-derived isolate of a Rosellinia species. While the results of this first HPLC profiling were largely inconclusive regarding the utility of secondary metabolites as genus-specific chemotaxonomic markers, the phylogeny clearly showed that species featuring a dematophora-like asexual morph were included in a well-defined clade, for which the genus Dematophora is resurrected. Dematophora now comprises all previously known important plant pathogens in the genus such as D. arcuata, D. bunodes, D. necatrix and D. pepo, while Rosellinia s. str. comprises those species that are known to have a geniculosporium-like or nodulisporium-like asexual morph, or where the asexual morph remains unknown. The extensive morphological studies of L.E. Petrini served as a basis to transfer several further species from Rosellinia to Dematophora, based on the morphology of their asexual morphs. However, most species of Rosellinia and allies still need to be recollected in fresh state, cultured, and studied for their morphology and their phylogenetic affinities before the infrageneric relationships can be clarified.
Collapse
Key Words
- Dematophora
- Dematophora acutispora (Theiss.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora arcuata (Petch) C. Lambert, K. Wittstein & M. Stadler
- Dematophora asperata (Massee ex Wakef.) Lambert, K. Wittstein & M. Stadler
- Dematophora beccariana (Ces.) C. Lambert, K. Wittstein & M, Stadler
- Dematophora boedijnii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora bothrina (Berk. & Broome) C. Lambert, K. Wittstein & M. Stadler
- Dematophora bunodes (Berk. & Broome) C. Lambert, K. Wittstein & M. Stadler
- Dematophora buxi (Fabre) C. Lambert, K. Wittstein & M. Stadler
- Dematophora compacta (Takemoto) C. Lambert, K. Wittstein & M. Stadler
- Dematophora francisiae (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora freycinetiae (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora gigantea (Ellis & Everh.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora grantii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora hsiehiae (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora hughesii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora javaensis (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora macdonaldii (Bres.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora obregonii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora obtusiostiolata (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora paraguayensis (Starbäck) C. Lambert, K. Wittstein & M. Stadler
- Dematophora pepo (Pat.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora puiggarii (Pat.) C. Lambert, K. Wittstein & M. Stadler
- Dematophora pyramidalis (Lar.N. Vassiljeva) C. Lambert, K. Wittstein & M. Stadler
- Dematophora samuelsii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Dematophora siggersii (L.E. Petrini) C. Lambert, K. Wittstein & M. Stadler
- Genus resurrection
- Isopimarane diterpenoids
- PF1022A
- Polythetic taxonomy
- Rosellinia
- Xylariaceae
Collapse
Affiliation(s)
- K Wittstein
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - A Cordsmeier
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,University Hospital Erlangen, Institute of Microbiology - Clinical Microbiology, Immunology and Hygiene, Wasserturmstraße 3/5, Erlangen, 91054, Germany
| | - C Lambert
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - L Wendt
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - E B Sir
- Instituto de Bioprospección y Fisiología Vegetal-INBIOFIV (CONICET-UNT), San Lorenzo 1469, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - J Weber
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - N Wurzler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - L E Petrini
- Via al Perato 15c, Breganzona, CH-6932, Switzerland
| | - M Stadler
- Helmholtz-Zentrum für Infektionsforschung GmbH, Department Microbial Drugs, Inhoffenstrasse 7, Braunschweig, 38124, Germany.,German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, 38124, Germany
| |
Collapse
|
13
|
Fan M, Xiang G, Chen J, Gao J, Xue W, Wang Y, Li W, Zhou L, Jiao R, Shen Y, Xu Q. Libertellenone M, a diterpene derived from an endophytic fungus Phomopsis sp. S12, protects against DSS-induced colitis via inhibiting both nuclear translocation of NF-κB and NLRP3 inflammasome activation. Int Immunopharmacol 2020; 80:106144. [PMID: 31927507 DOI: 10.1016/j.intimp.2019.106144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022]
Abstract
NLRP3 inflammasome may serve as a potential target for the development of novel therapeutics for inflammatory bowel diseases. In this study, we found that Libertellenone M (Lib M), a secondary metabolite from the endophytic fungus Phomopsis sp. S12, has anti-inflammatory potential both in vitro and in vivo. Lib M selectively inhibited the expression of proinflammatory cytokine IL-1β and IL-18 in LPS-activated macrophages. The cleavage of pro-caspase 1 was remarkably reduced by Lib M in macrophages stimulated with three NLRP3 inflammasome activators. Administering Lib M attenuated dextran sulfate sodium-induced experimental acute colitis in mice and significantly reduced the production of these cytokines and cleaved caspase 1 in colon tissues. Apart from inhibition of NLRP3 inflammasome assembly, Lib M also suppressed NF-κB nuclear translocation in macrophages. Taken together, these findings suggest that Lib M-mediated inhibition of NLRP3 inflammasome activation could protect against colitis-like inflammatory diseases, and that this compound derived from a plant-associated fungus might inspire the exploration of novel immunosuppressive agents.
Collapse
Affiliation(s)
- Minmin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Gang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jingwei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Jian Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wenwen Xue
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yixuan Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Wuhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Lin Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
14
|
Greco C, Keller NP, Rokas A. Unearthing fungal chemodiversity and prospects for drug discovery. Curr Opin Microbiol 2019; 51:22-29. [PMID: 31071615 PMCID: PMC6832774 DOI: 10.1016/j.mib.2019.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/19/2019] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
Natural products have drastically improved our lives by providing an excellent source of molecules to fight cancer, pathogens, and cardiovascular diseases that have revolutionized medicine. Fungi are prolific producers of diverse natural products and several recent advances in synthetic biology, genetics, bioinformatics, and natural product chemistry have greatly enhanced our ability to efficiently mine their genomes for the discovery of novel drugs. In this article, we provide an overview of improved heterologous expression platforms for targeted production of fungal secondary metabolites, of advances in chemical and bioinformatics dereplication, and of novel bioinformatic platforms to discover biosynthetic genes involved in the production of metabolites with specific bioactivities. These advances, coupled with the presence of vast numbers of biosynthetic gene clusters in fungal genomes whose natural products remain unknown, have revitalized efforts to mine the fungal treasure chest and renewed the promise of discovering new drugs.
Collapse
Affiliation(s)
- Claudio Greco
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Vassaux A, Meunier L, Vandenbol M, Baurain D, Fickers P, Jacques P, Leclère V. Nonribosomal peptides in fungal cell factories: from genome mining to optimized heterologous production. Biotechnol Adv 2019; 37:107449. [PMID: 31518630 DOI: 10.1016/j.biotechadv.2019.107449] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Fungi are notoriously prolific producers of secondary metabolites including nonribosomal peptides (NRPs). The structural complexity of NRPs grants them interesting activities such as antibiotic, anti-cancer, and anti-inflammatory properties. The discovery of these compounds with attractive activities can be achieved by using two approaches: either by screening samples originating from various environments for their biological activities, or by identifying the related clusters in genomic sequences thanks to bioinformatics tools. This genome mining approach has grown tremendously due to recent advances in genome sequencing, which have provided an incredible amount of genomic data from hundreds of microbial species. Regarding fungal organisms, the genomic data have revealed the presence of an unexpected number of putative NRP-related gene clusters. This highlights fungi as a goldmine for the discovery of putative novel bioactive compounds. Recent development of NRP dedicated bioinformatics tools have increased the capacity to identify these gene clusters and to deduce NRPs structures, speeding-up the screening process for novel metabolites discovery. Unfortunately, the newly identified compound is frequently not or poorly produced by native producers due to a lack of expression of the related genes cluster. A frequently employed strategy to increase production rates consists in transferring the related biosynthetic pathway in heterologous hosts. This review aims to provide a comprehensive overview about the topic of NRPs discovery, from gene cluster identification by genome mining to the heterologous production in fungal hosts. The main computational tools and methods for genome mining are herein presented with an emphasis on the particularities of the fungal systems. The different steps of the reconstitution of NRP biosynthetic pathway in heterologous fungal cell factories will be discussed, as well as the key factors to consider for maximizing productivity. Several examples will be developed to illustrate the potential of heterologous production to both discover uncharacterized novel compounds predicted in silico by genome mining, and to enhance the productivity of interesting bio-active natural products.
Collapse
Affiliation(s)
- Antoine Vassaux
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France
| | - Loïc Meunier
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium; InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Micheline Vandenbol
- TERRA Teaching and Research Centre, Microbiologie et Génomique, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liege, Boulevard du Rectorat 27, B-4000 Liège, Belgium
| | - Patrick Fickers
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Philippe Jacques
- TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté d'Agronomie, B5030 Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, F-59000 Lille, France.
| |
Collapse
|
16
|
Barbosa AJM, Roque ACA. Free Marine Natural Products Databases for Biotechnology and Bioengineering. Biotechnol J 2019; 14:e1800607. [PMID: 31297982 DOI: 10.1002/biot.201800607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/14/2019] [Indexed: 12/16/2022]
Abstract
Marine organisms and micro-organisms are a source of natural compounds with unique chemical features. These chemical properties are useful for the discovery of new functions and applications of marine natural products (MNPs). To extensively exploit the potential implementations of MNPs, they are gathered in chemical databases that allow their study and screening for applications of biotechnological interest. However, the classification of MNPs is currently poor in generic chemical databases. The present availability of free-access-focused MNP databases is scarce and the molecular diversity of these databases is still very low when compared to the paid-access ones. In this review paper, the current scenario of free-access MNP databases is presented as well as the hindrances involved in their development, mainly compound dereplication. Examples and opportunities for using freely accessible MNP databases in several important areas of biotechnology are also assessed. The scope of this paper is, as well, to notify the latent potential of these information sources for the discovery and development of new MNPs in biotechnology, and push future efforts to develop a public domain MNP database freely available for the scientific community.
Collapse
Affiliation(s)
- Arménio J M Barbosa
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Ana C A Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
17
|
Toghueo RMK. Bioprospecting endophytic fungi from Fusarium genus as sources of bioactive metabolites. Mycology 2019; 11:1-21. [PMID: 32128278 PMCID: PMC7033707 DOI: 10.1080/21501203.2019.1645053] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/14/2019] [Indexed: 12/18/2022] Open
Abstract
Endophytic fungi became an attractive source for the discovery of new leads, because of the complexity and the structural diversity of their secondary metabolites. The genus Fusarium comprising about 70 species is extremely variable in terms of genetics, biology, ecology, and consequently, secondary metabolism and have been isolated from countless plants genera from diverse habitats. These endophytic microbes may provide protection and survival strategies in their host plants with production of a repertoire of chemically diverse and structurally unprecedented secondary metabolites reported to exhibit an incredible array of biological activities including antimicrobial, anticancer, antiviral, antioxidants, antiparasitics, immunosuppressants, immunomodulatory, antithrombotic, and biocontrol ability against plants pathogens and nematodes. This review comprehensively highlights over the period 1981-2019, the bioactive potential of metabolites produced by endophytes from Fusarium genus. Abbreviations: AIDS: Acquired immune deficiency syndrome; BAPT: C-13 phenylpropanoid side chain-CoA acyltransferase; CaBr2: Calcium bromide; DBAT: 10-deacetylbaccatin III-10-O-acetyl transferase; DNA: Deoxyribonucleic acid; EI-MS: Electron ionization mass spectrometer; EN: Enniatin; ERK: Extracellular regulated protein kinase; EtOAc: Ethyl acetate; FDA: Food and Drug Administration; GAE/g: Gallic acid equivalent per gram; GC-MS: Gas chromatography-mass spectrometry; HA: Hyperactivation; HCV: Hepatitis C Virus; HCVPR: Hepatitis C Virus protease; HeLa: Human cervical cancer cell line; HIV: Human immunodeficiency viruses; HPLC: High Performance Liquid Chromatography; IAA: Indole-3-acetic acid; IARC: International Agency for Research on Cancer; IC50: Half maximal inhibitory concentration; LC50: Concentration of the compound that is lethal for 50% of exposed population; LC-MS: Liquid chromatography-mass spectrometry; MCF-7: Human breast cancer cell line; MDR: Multidrug-resistant; MDRSA: Multidrug-resistant S. aureus; MFC: Minimum fungicidal concentration; MIC: Minimum inhibitory concentration; MRSA: Multidrug-resistant S. aureus; MTCC: Microbial type culture collection; PBMCs: Peripheral blood mononuclear cells; PCR: Polymerase chain reaction; TB: Tuberculosis; TLC: Thin layer chromatography; TNF: Tumor necrosis factor; WHO: World Health Organization http://www.zoobank.org/urn:lsid:zoobank.org:pub:D0A7B2D8-5952-436D-85C8-C79EAAD1013C.
Collapse
Affiliation(s)
- Rufin Marie Kouipou Toghueo
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
18
|
Lin X, Yuan S, Chen S, Chen B, Xu H, Liu L, Li H, Gao Z. Heterologous Expression of Ilicicolin H Biosynthetic Gene Cluster and Production of a New Potent Antifungal Reagent, Ilicicolin J. Molecules 2019; 24:molecules24122267. [PMID: 31216742 PMCID: PMC6631495 DOI: 10.3390/molecules24122267] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1 reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing strain, Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a shunt product with similar antifungal activities, ilicicolin J, was uncovered. This effort would provide a base for future combinatorial biosynthesis of ilicicolin H analogues. Bioinformatics analysis suggests that the backbone of ilicicolin H is assembled by a polyketide-nonribosomal peptide synthethase (IliA), and then offloaded with a tetramic acid moiety. Similar to tenellin biosynthesis, the tetramic acid is then converted to pyridone by a putative P450, IliC. The decalin portion is most possibly constructed by a S-adenosyl-l-methionine (SAM)-dependent Diels-Alderase (IliD).
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Siwen Yuan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Bin Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Hui Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Huixian Li
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhizeng Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| |
Collapse
|
19
|
Affiliation(s)
- Neelima Arora
- Center for Biotechnology, Institute of Science and Technology, JawaharLal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Amit Kumar Banerjee
- Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana, India
| |
Collapse
|
20
|
Zhang Z, Jamieson CS, Zhao YL, Li D, Ohashi M, Houk KN, Tang Y. Enzyme-Catalyzed Inverse-Electron Demand Diels-Alder Reaction in the Biosynthesis of Antifungal Ilicicolin H. J Am Chem Soc 2019; 141:5659-5663. [PMID: 30905148 DOI: 10.1021/jacs.9b02204] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pericyclases are a growing superfamily of enzymes that catalyze pericyclic reactions. We report a pericyclase IccD catalyzing an inverse-electron demand Diels-Alder (IEDDA) reaction with a rate acceleration of 3 × 105-fold in the biosynthesis of fungal natural product ilicicolin H. We demonstrate IccD is highly periselective toward the IEDDA cycloaddition over a competing normal electron demand Diels-Alder (NEDDA) reaction from an ambimodal transition state. A predicted flavoenzyme IccE was identified to epimerize the IEDDA product 8- epi-ilicicolin H to ilicicolin H, a step that is critical for the observed antifungal activity of ilicicolin H. Our results reveal the ilicicolin H biosynthetic pathway and add to the collection of pericyclic reactions that are catalyzed by pericyclases.
Collapse
Affiliation(s)
| | | | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB and MOE-LSC, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology , Ocean University of China , Qingdao 266003 , China
| | | | | | | |
Collapse
|
21
|
Cho HM, Doan TP, Ha TKQ, Kim HW, Lee BW, Pham HTT, Cho TO, Oh WK. Dereplication by High-Performance Liquid Chromatography (HPLC) with Quadrupole-Time-of-Flight Mass Spectroscopy (qTOF-MS) and Antiviral Activities of Phlorotannins from Ecklonia cava. Mar Drugs 2019; 17:E149. [PMID: 30836593 PMCID: PMC6471242 DOI: 10.3390/md17030149] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/13/2023] Open
Abstract
Ecklonia cava is edible seaweed that is found in Asian countries, such as Japan and Korea; and, its major components include fucoidan and phlorotannins. Phlorotannins that are isolated from E. cava are well-known to have an antioxidant effect and strong antiviral activity against porcine epidemic diarrhea virus (PEDV), which has a high mortality rate in piglets. In this study, the bioactive components were determined based on two different approaches: (i) bio-guided isolation using the antiviral activity against the H1N1 viral strain, which is a representative influenza virus that originates from swine and (ii) high-resolution mass spectrometry-based dereplication, including relative mass defects (RMDs) and HPLC-qTOFMS fragmentation analysis. The EC70 fraction showed the strongest antiviral activity and contained thirteen phlorotannins, which were predicted by dereplication. Ten compounds were directly isolated from E. cava extract and then identified. Moreover, the dereplication method allowed for the discovery of two new phlorotannins. The structures of these two isolated compounds were elucidated using NMR techniques and HPLC-qTOFMS fragmentation analysis. In addition, molecular modelling was applied to determine the absolute configurations of the two new compounds. The antiviral activities of seven major phlorotannins in active fraction were evaluated against two influenza A viral strains (H1N1 and H9N2). Six of the compounds showed moderate to strong effects on both of the viruses and phlorofucofuroeckol A (12), which showed an EC50 value of 13.48 ± 1.93 μM, is a potential active antiviral component of E. cava.
Collapse
Affiliation(s)
- Hyo Moon Cho
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Thi Phuong Doan
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Thi Kim Quy Ha
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Hyun Woo Kim
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ba Wool Lee
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Ha Thanh Tung Pham
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Tae Oh Cho
- Marine Bio Research Center, Department of Life Science, Chosun University, Gwangju 501-759, Korea.
| | - Won Keun Oh
- Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
22
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|