1
|
Díaz-Formoso L, Contente D, Feito J, Hernández PE, Borrero J, Muñoz-Atienza E, Cintas LM. Genomic Sequence of Streptococcus salivarius MDI13 and Latilactobacillus sakei MEI5: Two Promising Probiotic Strains Isolated from European Hakes ( Merluccius merluccius, L.). Vet Sci 2024; 11:365. [PMID: 39195819 PMCID: PMC11359882 DOI: 10.3390/vetsci11080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Frequently, diseases in aquaculture have been fought indiscriminately with the use of antibiotics, which has led to the development and dissemination of (multiple) antibiotic resistances in bacteria. Consequently, it is necessary to look for alternative and complementary approaches to chemotheraphy that are safe for humans, animals, and the environment, such as the use of probiotics in fish farming. The objective of this work was the Whole-Genome Sequencing (WGS) and bioinformatic and functional analyses of S. salivarius MDI13 and L. sakei MEI5, two LAB strains isolated from the gut of commercial European hakes (M. merluccius, L.) caught in the Northeast Atlantic Ocean. The WGS and bioinformatic and functional analyses confirmed the lack of transferable antibiotic resistance genes, the lack of virulence and pathogenicity issues, and their potentially probiotic characteristics. Specifically, genes involved in adhesion and aggregation, vitamin biosynthesis, and amino acid metabolism were detected in both strains. In addition, genes related to lactic acid production, active metabolism, and/or adaptation to stress and adverse conditions in the host gastrointestinal tract were detected in L. sakei MEI5. Moreover, a gene cluster encoding three bacteriocins (SlvV, BlpK, and BlpE) was identified in the genome of S. salivarius MDI13. The in vitro-synthesized bacteriocin BlpK showed antimicrobial activity against the ichthyopathogens Lc. garvieae and S. parauberis. Altogether, our results suggest that S. salivarius MDI13 and L. sakei MEI5 have a strong potential as probiotics to prevent fish diseases in aquaculture as an appropriate alternative/complementary strategy to the use of antibiotics.
Collapse
Affiliation(s)
| | | | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | | | | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (Grupo SEGABALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos (Nutrición, Bromatología, Higiene y Seguridad Alimentaria), Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; (L.D.-F.); (D.C.); (P.E.H.); (J.B.); (L.M.C.)
| | | |
Collapse
|
2
|
Jankoski PR, Bach E, da Fonseca RN, Hübner S, de Carvalho JB, de Souza da Motta A. Bacillus altitudinis 1.4 genome analysis-functional annotation of probiotic properties and immunomodulatory activity. World J Microbiol Biotechnol 2024; 40:293. [PMID: 39112831 DOI: 10.1007/s11274-024-04096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/26/2024] [Indexed: 10/17/2024]
Abstract
Probiotics are live microorganisms that, when administered in adequate quantities, provide health benefits to the host. In this study, phenotypic and genotypic methods were used to evaluate the probiotic properties of Bacillus altitudinis 1.4. The isolate was sensitive to all antimicrobials tested and presented a positive result in the hemolysis test. B. altitudinis 1.4 spores were more resistant than vegetative cells, when evaluated in simulation of cell viability in the gastrointestinal tract, as well as adhesion to the intestinal mucosa. The isolate was capable of self-aggregation and coaggregation with pathogens such as Escherichia coli ATCC 25922 and Salmonella Enteritidis ATCC 13076. Genomic analysis revealed the presence of genes with probiotic characteristics. From this study it was possible to evaluate the gene expression of pro-inflammatory and anti-inflammatory cytokines for different treatments. Viable vegetative cells of B. altitudinis 1.4 increased the transcription of pro-inflammatory factors, in addition to also increasing the transcription of IL-10, indicating a tendency to stimulate a pro-inflammatory profile. Given the results presented, B. altitudinis 1.4 showed potential to be applied in the incorporation of this microorganism into animal feed, since the spores could tolerate the feed handling and pelletization processes.
Collapse
Affiliation(s)
- Priscila Ribeiro Jankoski
- Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, sala 216, Porto Alegre, RS, 90050-170, Brazil
| | - Evelise Bach
- Departamento de Genética, Instituto de Biociências (IB), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Renata Nobre da Fonseca
- Departamento de Veterinária Preventiva, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | - Silvia Hübner
- Departamento de Veterinária Preventiva, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | - Amanda de Souza da Motta
- Instituto de Ciências Básicas da Saúde, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, sala 216, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
3
|
Maitreya A, Qureshi A. Genomic and phenotypic characterisation of Enterococcus mundtii AM_AQ_BC8 for its anti-biofilm, antimicrobial and probiotic potential. Arch Microbiol 2024; 206:84. [PMID: 38296886 DOI: 10.1007/s00203-023-03816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
Enterococcus mundtii AM_AQ_BC8 isolated from biofouled filtration membrane was characterised as a potential probiotic bacterium showing strong L-lactic acid-producing capability. Experimental studies revealed that E. mundtii AM_AQ_BC8 possess antibiofilm and antimicrobial ability too, as tested against strong biofilm-forming bacteria like Pseudomonas spp. The present study has evaluated the genetic potential of E. mundtii AM_AQ_BC8 through genome sequencing. Whole genome analysis revealed the presence of key genes like ldh_1 and ldh_2 responsible for lactic acid production along with genes encoding probiotic features such as acid and bile salt resistance (dnaK, dnaJ, argS), fatty acid synthesis (fabD, fabE) and lactose utilisation (lacG, lacD). The phylogenomic analysis based on OrthoANI (99.85%) and dDDH (96.8%) values revealed that the strain AM_AQ_BC8 shared the highest homology with E. mundtii. The genome sequence of strain AM_AQ_BC8 has been deposited to NCBI and released with GenBank accession no. SAMN32531201. The study primarily demonstrated the probiotic potential of E. mundtii AM_AQ_BC8 isolate, for L-lactate synthesis in high concentration (8.98 g/L/day), which also showed anti-biofilm and antimicrobial activities.
Collapse
Affiliation(s)
- Anuja Maitreya
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asifa Qureshi
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Kingkaew E, Woraprayote W, Booncharoen A, Niwasabutra K, Janyaphisan T, Vilaichone RK, Yamaoka Y, Visessanguan W, Tanasupawat S. Functional genome analysis and anti-Helicobacter pylori activity of a novel bacteriocinogenic Lactococcus sp. NH2-7C from Thai fermented pork (Nham). Sci Rep 2023; 13:20362. [PMID: 37990119 PMCID: PMC10663479 DOI: 10.1038/s41598-023-47687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023] Open
Abstract
Helicobacter pylori, linked to gastric diseases, is targeted for probiotic treatment through bacteriocin production. Bacteriocins have gained recognition for their non-toxic effects on host cells and their ability to combat a wide range of pathogens. This study aimed to taxonomically characterize and evaluate the safety and probiotic properties of the novel species of Lactococcus sp. NH2-7C isolated from fermented pork, as well as its bacteriocin NH2-7C, both in vitro and in silico. Comparative genotypic analysis revealed an average nucleotide identity of 94.96%, an average amino acid identity of 94.29%, and a digital DNA-DNA hybridization value of 63.80% when compared to Lactococcus lactis subsp. lactis JCM 5805T. These findings suggest that strain NH2-7C represents a novel species within the genus Lactococcus. In silico assessments confirmed the non-pathogenic nature of strain NH2-7C and the absence of genes associated with virulence and biogenic amine formation. Whole-genome analysis revealed the presence of the nisA gene responsible for nisin A production, indicating its potential as a beneficial compound with anti-Helicobacter pylori activity and non-toxic characteristics. Probiotic assessments indicated bile salt hydrolase and cholesterol assimilation activities, along with the modulation of interleukin-6 and tumour necrosis factor-α secretion. Strain NH2-7C demonstrated gastrointestinal tolerance and the ability to adhere to Caco-2 cells, affirming its safety and probiotic potential. Additionally, its ability to produce bacteriocins supports its suitability as a functional probiotic strain with therapeutic potential. However, further in vitro and in vivo investigations are crucial to ensure its safety and explore potential applications for Lactococcus sp. NH2-7C as a probiotic agent.
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Weerapong Woraprayote
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Auttaporn Booncharoen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kanidta Niwasabutra
- Thailand Institute of Scientific and Technological Research (TISTR) Biodiversity Research Centre, Pathum Thani, 12120, Thailand
| | - Thitiphorn Janyaphisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Ratha-Korn Vilaichone
- GI Unit, Department of Medicine, and Center of Excellence in Digestive Diseases, Thammasat University, Thailand Science Research and Innovation Fundamental Fund, Bualuang ASEAN Chair Professorship at Thammasat University, Pathum Thani, 12120, Thailand
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Faculty of Medicine Oita University, Yufu, Oita, Japan
| | - Wonnop Visessanguan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand.
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
5
|
Lee Y, Nguyen TL, Roh H, Kim A, Park J, Lee JY, Kang YR, Kang H, Sohn MY, Park CI, Kim DH. Mechanisms underlying probiotic effects on neurotransmission and stress resilience in fish via transcriptomic profiling. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109063. [PMID: 37678478 DOI: 10.1016/j.fsi.2023.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
In recent years, studies have highlighted the significant impact of probiotic treatment on the central nervous system (brain) and stress regulation through the microbiota-gut-brain axis, yet there have been limited knowledge on this axis in fish. Therefore, this study aimed to enhance the current understanding of the mechanisms underlying probiotic effects on neurotransmission and stress alleviation in fish through transcriptomic profiling. In this study, olive flounders (Paralichthys olivaceus) were subjected to two trial setups: a 1-month lab-scale trial and a 6-month field-scale trial, with and without the probiotic strain Lactococcus lactis WFLU12. RNA-Seq analysis was performed using liver samples collected from fish at one-month post-feeding (mpf) in both trials. Additionally, fish growth was monitored monthly, and serological parameters were measured at one mpf in the field-scale experiment. The results of the lab-scale trial showed that probiotic administration significantly upregulated genes related to neurotransmission, such as htr3a, mao, ddc, ntsr1, and gfra2. These findings highlight the impact of probiotics on modulating neurotransmission via the microbiota-gut-brain axis. In the field-scale experiment, fish growth was significantly promoted and the sera levels of AST, LDH, and cortisol were significantly higher in the control group compared to the probiotics group. Furthermore, genes involved in stress responses (e.g. hsp70, hsp90B1, hspE1, prdx1, and gss) and transcriptional regulators (e.g. fos, dusp1, and dusp2) exhibited significant upregulation in the control group compared to the probiotics group, indicating that probiotic administration can alleviate stress levels in fish. Overall, this study provides valuable insights into the mechanisms underlying the beneficial effects of probiotics in fish, specifically regarding their impact on neurotransmission and stress alleviation.
Collapse
Affiliation(s)
- Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Thanh Luan Nguyen
- Department of Science and Technology, HUTECH University, Ho Chi Minh City, Viet Nam
| | - HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Ju-Yeop Lee
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Yu-Ra Kang
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Hyoyeong Kang
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea
| | - Min-Young Sohn
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, South Korea.
| |
Collapse
|
6
|
Sam-On MFS, Mustafa S, Hashim AM, Yusof MT, Zulkifly S, Malek AZA, Roslan MAH, Asrore MSM. Mining the genome of Bacillus velezensis FS26 for probiotic markers and secondary metabolites with antimicrobial properties against aquaculture pathogens. Microb Pathog 2023:106161. [PMID: 37207784 DOI: 10.1016/j.micpath.2023.106161] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Bacillus velezensis FS26 is a bacterium from the genus Bacillus that has been proven as a potential probiotic in aquaculture with a good antagonistic effect on Aeromonas spp. and Vibrio spp. Whole-genome sequencing (WGS) allows a comprehensive and in-depth analysis at the molecular level, and it is becoming an increasingly significant technique in aquaculture research. Although numerous probiotic genomes have been sequenced and investigated recently, there are minimal data on in silico analysis of B. velezensis as a probiotic bacterium isolated from aquaculture sources. Thus, this study aims to analyse the general genome characteristics and probiotic markers from the B. velezensis FS26 genome with secondary metabolites predicted against aquaculture pathogens. The B. velezensis FS26 genome (GenBank Accession: JAOPEO000000000) assembly proved to be of high quality, with eight contigs containing 3,926,371 bp and an average G + C content of 46.5%. According to antiSMASH analysis, five clusters of secondary metabolites from the B. velezensis FS26 genome showed 100% similarity. These clusters include Cluster 2 (bacilysin), Cluster 6 (bacillibactin), Cluster 7 (fengycin), Cluster 8 (bacillaene), and Cluster 9 (macrolactin H), which signify promising antibacterial, antifungal, and anticyanobacterial agents against pathogens in aquaculture. The probiotic markers of B. velezensis FS26 genome for adhesion capability in the hosts' intestine, as well as the acid and bile salt-tolerant genes, were also detected through the Prokaryotic Genome Annotation System (Prokka) annotation pipeline. These results are in agreement with our previous in vitro data, suggesting that the in silico investigation facilitates establishing B. velezensis FS26 as a beneficial probiotic for use in aquaculture.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Shahrizim Zulkifly
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Ahmad Zuhairi Abdul Malek
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Muhamad Akhmal Hakim Roslan
- Halways Sdn Bhd, Jalan Satelit, Putra Science Park, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shaufi Mohd Asrore
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
7
|
D'Rose V, Bhat SG. Whole genome sequence analysis enabled affirmation of the probiotic potential of marine sporulater Bacillus amyloliquefaciens BTSS3 isolated from Centroscyllium fabricii. Gene 2023; 864:147305. [PMID: 36813058 DOI: 10.1016/j.gene.2023.147305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Probiotics are microorganisms when administered in adequate amounts, confer health benefits on the host. Many probiotics find application in various industries however, probiotic bacteria linked to marine environments are less explored.Although Bifidobacteria, Lactobacilli, and Streptococcus thermophilus are the most frequently used probiotics, Bacillus spp. have acquired much acceptance in human functional foods due to their increased tolerance and enduring competence in harsh environments like the gastrointestinal (GI) tract. In this study, the 4 Mbp genome sequence of Bacillus amyloliquefaciens strain BTSS3, a marine spore former isolated from deep-sea shark Centroscyllium fabricii, with antimicrobial and probiotic properties was sequenced, assembled, and annotated. Analysis revealed the presence of numerous genes presenting probiotic traits like production of vitamins, secondary metabolites, amino acids, secretory proteins, enzymes and other proteins that allow survival in GI tract as well as adhesion to intestinal mucosa. Adhesion by colonization in the gut was studied in vivo in zebrafish (Danio rerio) using FITC labelled B.amyloliquefaciens BTSS3. Preliminary study revealed the ability of the marine Bacillus to attach to the intestinal mucosa of the fish gut. The genomic data and the in vivo experiment affirms that this marine spore former is a promising probiotic candidate with potential biotechnological applications.
Collapse
Affiliation(s)
- Venetia D'Rose
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 22, India.
| | - Sarita Ganapathy Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin 22, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Cochin 22, Kerala, India.
| |
Collapse
|
8
|
Pham HHT, Kim DH, Nguyen TL. Wide-genome selection of lactic acid bacteria harboring genes that promote the elimination of antinutritional factors. FRONTIERS IN PLANT SCIENCE 2023; 14:1145041. [PMID: 37180381 PMCID: PMC10171302 DOI: 10.3389/fpls.2023.1145041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023]
Abstract
Anti-nutritional factors (ANFs) substances in plant products, such as indigestible non-starchy polysaccharides (α-galactooligosaccharides, α-GOS), phytate, tannins, and alkaloids can impede the absorption of many critical nutrients and cause major physiological disorders. To enhance silage quality and its tolerance threshold for humans as well as other animals, ANFs must be reduced. This study aims to identify and compare the bacterial species/strains that are potential use for industrial fermentation and ANFs reduction. A pan-genome study of 351 bacterial genomes was performed, and binary data was processed to quantify the number of genes involved in the removal of ANFs. Among four pan-genomes analysis, all 37 tested Bacillus subtilis genomes had one phytate degradation gene, while 91 out of 150 Enterobacteriacae genomes harbor at least one genes (maximum three). Although, no gene encoding phytase detected in genomes of Lactobacillus and Pediococcus species, they have genes involving indirectly in metabolism of phytate-derivatives to produce Myo-inositol, an important compound in animal cells physiology. In contrast, genes related to production of lectin, tannase and saponin degrading enzyme did not include in genomes of B. subtilis and Pediococcus species. Our findings suggest a combination of bacterial species and/or unique strains in fermentation, for examples, two Lactobacillus strains (DSM 21115 and ATCC 14869) with B. subtilis SRCM103689, would maximize the efficiency in reducing the ANFs concentration. In conclusion, this study provides insights into bacterial genomes analysis for maximizing nutritional value in plant-based food. Further investigations of gene numbers and repertories correlated to metabolism of different ANFs will help clarifying the efficiency of time consuming and food qualities.
Collapse
Affiliation(s)
- Hai-Ha-Thi Pham
- VK Tech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
| | - Thanh Luan Nguyen
- Department of Science and Technology, HUTECH University, Ho Chi Minh City, Vietnam
- *Correspondence: Thanh Luan Nguyen,
| |
Collapse
|
9
|
Competitive Exclusion Bacterial Culture Derived from the Gut Microbiome of Nile Tilapia ( Oreochromis niloticus) as a Resource to Efficiently Recover Probiotic Strains: Taxonomic, Genomic, and Functional Proof of Concept. Microorganisms 2022; 10:microorganisms10071376. [PMID: 35889095 PMCID: PMC9321352 DOI: 10.3390/microorganisms10071376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 01/27/2023] Open
Abstract
This study aims to mine a previously developed continuous-flow competitive exclusion culture (CFCEC) originating from the Tilapia gut microbiome as a rational and efficient autochthonous probiotic strain recovery source. Three isolated strains were tested on their adaptability to host gastrointestinal conditions, their antibacterial activities against aquaculture bacterial pathogens, and their antibiotic susceptibility patterns. Their genomes were fully sequenced, assembled, annotated, and relevant functions inferred, such as those related to pinpointed probiotic activities and phylogenomic comparative analyses to the closer reported strains/species relatives. The strains are possible candidates of novel genus/species taxa inside Lactococcus spp. and Priestia spp. (previously known as Bacillus spp.) These results were consistent with reports on strains inside these phyla exhibiting probiotic features, and the strains we found are expanding their known diversity. Furthermore, their pangenomes showed that these bacteria have indeed a set of so far uncharacterized genes that may play a role in the antagonism to competing strains or specific symbiotic adaptations to the fish host. In conclusion, CFCEC proved to effectively allow the enrichment and further pure culture isolation of strains with probiotic potential.
Collapse
|
10
|
Diale MO, Kayitesi E, Serepa-Dlamini MH. Genome In Silico and In Vitro Analysis of the Probiotic Properties of a Bacterial Endophyte, Bacillus Paranthracis Strain MHSD3. Front Genet 2021; 12:672149. [PMID: 34858466 PMCID: PMC8631869 DOI: 10.3389/fgene.2021.672149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 01/25/2023] Open
Abstract
Spore-forming Bacillus species are gaining interest in human health recently, due to their ability to withstand the harsh environment of the gastrointestinal tract. The present study explores probiotic features of Bacillus paranthracis strain MHSD3 through genomic analysis and in vitro probiotic assays. The draft genome of strain MHSD3 contained genes associated with tolerance to gastrointestinal stress and adhesion. Cluster genes responsible for the synthesis of antimicrobial non-ribosomal peptide synthetases, bacteriocins, and linear azole-containing peptides were identified. Additionally, strain MHSD3 was able to survive in an acidic environment, had the tolerance to bile salt, and exhibited the capability to tolerate gastric juices. Moreover, the isolate was found to possess strong cell surface traits such as high auto-aggregation and hydrophobicity indices of 79 and 54%, respectively. Gas chromatography-mass spectrometry analysis showed that the strain produced secondary metabolites such as amino acids, phenolic compounds, and organic acid, known to exert health-promoting properties, including the improvement of gastrointestinal tract health.
Collapse
Affiliation(s)
- Mamonokane Olga Diale
- Department of Biotechnology and Food Technology, University of Johannesburg, Johannesburg, South Africa
| | - Eugenie Kayitesi
- Department of Consumer and Food Science, University of Pretoria, Pretoria, South Africa
| | | |
Collapse
|
11
|
Genomics-based approaches to identify and predict the health-promoting and safety activities of promising probiotic strains – A probiogenomics review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Suzuki A, Suzuki M. Antimicrobial Activity of Lactococcus lactis subsp. lactis Isolated from a Stranded Cuvier's Beaked Whale ( Ziphius cavirostris) against Gram-Positive and -Negative Bacteria. Microorganisms 2021; 9:microorganisms9020243. [PMID: 33503966 PMCID: PMC7911499 DOI: 10.3390/microorganisms9020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
In the present study, we isolated and characterized Lactococcus lactis (L. lactis) subsp. lactis from a female Cuvier’s beaked whale (Ziphius cavirostris) stranded in Shizuoka, Japan. Only five isolates (CBW1-5), grown on Lactobacilli de Man Rogosa Sharpe (MRS) agar plates prepared using 50% artificial seawater, were positive in L. lactis species-specific primer PCR. Their 16S rRNA sequences were highly similar to those of L. lactis subsp. lactis JCM 5805T. The Gram reaction, motility, gas production from glucose, catalase production, and growth conditions were consistent with those of the type strain. Additionally, carbohydrate utilization of the strains was consistent with previously reported marine organism-derived strains. The pH-neutralized cell-free culture supernatant of strain CBW2 inhibited the growth of Bacillus subtilis subsp. subtilis ATCC 6051 and Vibrio alginolyticus ATCC 17749, whereas protease treatment eliminated or diminished its inhibitory activity. The strain possesses a precursor of the nisin structural gene (nisA), which showed 100% homology with nisin Z, and nisin biosynthesis-related genes (nisB, nisC, nisT, nisP, nisF, nisI, and nisRK), suggesting that the strain produces a nisin-like substance. This study provides fundamental information on whale-derived L. lactis subsp. lactis which may be useful for reducing the carriage of B. subtilis subsp. subtilis and V. alginolyticus.
Collapse
|
13
|
Huang CH, Chen CC, Chiu SH, Liou JS, Lin YC, Lin JS, Huang L, Watanabe K. Development of a High-Resolution Single-Nucleotide Polymorphism Strain-Typing Assay Using Whole Genome-Based Analyses for the Lactobacillus acidophilus Probiotic Strain. Microorganisms 2020; 8:E1445. [PMID: 32967209 PMCID: PMC7564606 DOI: 10.3390/microorganisms8091445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/02/2020] [Accepted: 09/16/2020] [Indexed: 11/24/2022] Open
Abstract
Lactobacillus acidophilus is one of the most commonly used industrial products worldwide. Since its probiotic efficacy is strain-specific, the identification of probiotics at both the species and strain levels is necessary. However, neither phenotypic nor conventional genotypic methods have enabled the effective differentiation of L. acidophilus strains. In this study, a whole-genome sequence-based analysis was carried out to establish high-resolution strain typing of 41 L. acidophilus strains (including commercial isolates and reference strains) using the cano-wgMLST_BacCompare analytics platform; consequently, a strain-specific discrimination method for the probiotic strain LA1063 was developed. Using a core-genome multilocus sequence-typing (cgMLST) scheme based on 1390 highly conserved genes, 41 strains could be assigned to 34 sequence types. Subsequently, we screened a set of 92 loci with a discriminatory power equal to that of the 1390 loci cgMLST scheme. A strain-specific polymerase chain reaction combined with a multiplex minisequencing method was developed based on four (phoU, secY, tilS, and uvrA_1) out of 21 loci, which could be discriminated between LA1063 and other L. acidophilus strains using the cgMLST data. We confirmed that the strain-specific single-nucleotide polymorphisms method could be used to quickly and accurately identify the L. acidophilus probiotic strain LA1063 in commercial products.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (J.-S.L.); (L.H.)
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
- Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Shih-Hau Chiu
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (J.-S.L.); (L.H.)
| | - Jong-Shian Liou
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (J.-S.L.); (L.H.)
| | - Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan 71246, Taiwan;
| | - Jin-Seng Lin
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 82151, Taiwan;
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (J.-S.L.); (L.H.)
| | - Koichi Watanabe
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, 331 Shih-Pin Rd, Hsinchu 30062, Taiwan; (C.-H.H.); (S.-H.C.); (J.-S.L.); (L.H.)
- Culture Collection & Research Institute, Synbio Tech Inc., Kaohsiung 82151, Taiwan;
- Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, No. 50, Ln. 155, Sec. 3, Keelung Rd., Taipei 10673, Taiwan
| |
Collapse
|
14
|
Nguyen TL, Chun WK, Kim A, Kim N, Roh HJ, Lee Y, Yi M, Kim S, Park CI, Kim DH. Dietary Probiotic Effect of Lactococcus lactis WFLU12 on Low-Molecular-Weight Metabolites and Growth of Olive Flounder ( Paralichythys olivaceus). Front Microbiol 2018; 9:2059. [PMID: 30233536 PMCID: PMC6134039 DOI: 10.3389/fmicb.2018.02059] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/13/2018] [Indexed: 01/21/2023] Open
Abstract
The use of probiotics is considered an attractive biocontrol method. It is effective in growth promotion in aquaculture. However, the mode of action of probiotics in fish in terms of growth promotion remains unclear. The objective of the present study was to investigate growth promotion effect of dietary administration of host-derived probiotics, Lactococcus lactis WFLU12, on olive flounder compared to control group fed with basal diet by analyzing their intestinal and serum metabolome using capillary electrophoresis mass spectrometry with time-of flight (CE-TOFMS). Results of CE-TOFMS revealed that 53 out of 200 metabolites from intestinal luminal metabolome and 5 out of 171 metabolites from serum metabolome, respectively, were present in significantly higher concentrations in the probiotic-fed group than those in the control group. Concentrations of metabolites such as citrulline, tricarboxylic acid cycle (TCA) intermediates, short chain fatty acids, vitamins, and taurine were significantly higher in the probiotic-fed group than those in the control group. The probiotic strain WFLU12 also possesses genes encoding enzymes to help produce these metabolites. Therefore, it is highly likely that these increased metabolites linked to growth promotion in olive flounder are due to supplementation of the probiotic strain. To the best of our knowledge, this is the first study to show that dietary probiotics can greatly influence metabolome in fish. Findings of the present study may reveal important implications for maximizing the efficiency of using dietary additives to optimize fish health and growth.
Collapse
Affiliation(s)
- Thanh Luan Nguyen
- Department of Veterinary Medicine, HUTECH Institute of Applied Science, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam.,Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Won-Kyong Chun
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Heyong Jin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Myunggi Yi
- Department of Biomedical Engineering, College of Engineering, Pukyong National University, Busan, South Korea
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, Chemistry Institute for Functional Materials, Pusan National University, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|