1
|
Wei J, Su J, Wang G, Li W, Wen Z, Liu H. Chitooligosaccharides improves intestinal mucosal immunity and intestinal microbiota in blue foxes. Front Immunol 2024; 15:1506991. [PMID: 39628477 PMCID: PMC11611864 DOI: 10.3389/fimmu.2024.1506991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 12/06/2024] Open
Abstract
Objective Gut health is critical to the health of the host. This study was conducted to investigate the effects of Chitooligosaccharides (COS) on intestinal morphology, intestinal barrier, intestinal immunity and cecum microbiota of blue foxes. Methods Seventy-two 125-day-old blue foxes were randomly divided into basal diet (BD) group, 200 ppm COS1 (1.5 kDa) group and 200 ppm COS2 (3 kDa) group for 8 weeks. Results We elucidated that dietary COS1 supplementation promoted the development of intestinal villus morphology in blue foxes. Importantly, COS1 increased the number of goblet cells in duodenum, jejunum and ileum by 27.71%, 23.67%, 14.97% and S-IgA secretion in duodenum, jejunum and ileum by 71.59% and 38.56%, and up-regulate the expression of Occludin and ZO-1 by 50.18% and 148.62%, respectively. Moreover, COS1 promoted the pro-inflammatory and anti-inflammatory balance of small intestinal mucosa, and increased the diversity of cecum microbiota of blue foxes, especially Lactobacillus_agilis and Lactobacillus_murinus, and up-regulated the signaling pathways related to polysaccharide decomposition and utilization. Conclusion Here, we present dietary COS1 (1.5 kDa) can promote intestinal villus development, enhance intestinal barrier function, regulate intestinal immune balance and cecum microbiota homeostasis.
Collapse
Affiliation(s)
- Jiali Wei
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jing Su
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guiwu Wang
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Wei Li
- Technological Innovation Center for Fur Animal Breeding of Hebei, Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | | | - Huitao Liu
- Department of Livestock and Poultry Breeding, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
2
|
Zheng C, Niu M, Kong Y, Liu X, Li J, Gong X, Ren X, Hong C, Yin M, Wang L. Oral administration of probiotic spore ghosts for efficient attenuation of radiation-induced intestinal injury. J Nanobiotechnology 2024; 22:303. [PMID: 38822376 PMCID: PMC11140926 DOI: 10.1186/s12951-024-02572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.
Collapse
Affiliation(s)
- Cuixia Zheng
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Mengya Niu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yueyue Kong
- Xinjiang Aksu First People's Hospital, Akesu, 843000, China
| | - Xinxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China
| | - Junxiu Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xunwei Gong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xinyuan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Hong
- Translational medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Menghao Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- Pingyuan Lab, Henan Normal University, Xinxiang, 453007, China.
- Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, China.
| |
Collapse
|
3
|
Wen X, Wan F, Zhong R, Chen L, Zhang H. Hydroxytyrosol Alleviates Intestinal Oxidative Stress by Regulating Bile Acid Metabolism in a Piglet Model. Int J Mol Sci 2024; 25:5590. [PMID: 38891778 PMCID: PMC11171822 DOI: 10.3390/ijms25115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Infants and young animals often suffer from intestinal damage caused by oxidative stress, which may adversely affect their overall health. Hydroxytyrosol, a plant polyphenol, has shown potential in decreasing intestinal oxidative stress, but its application and mechanism of action in infants and young animals are still inadequately documented. This study selected piglets as a model to investigate the alleviating effects of hydroxytyrosol on intestinal oxidative stress induced by diquat and its potential mechanism. Hydroxytyrosol improved intestinal morphology, characterized by higher villus height and villus height/crypt depth. Meanwhile, hydroxytyrosol led to higher expression of Occludin, MUC2, Nrf2, and its downstream genes, and lower expression of cytokines IL-1β, IL-6, and TNF-α. Both oxidative stress and hydroxytyrosol resulted in a higher abundance of Clostridium_sensu_stricto_1, and a lower abundance of Lactobacillus and Streptococcus, without a significant effect on short-chain fatty acids levels. Oxidative stress also led to disorders in bile acid (BA) metabolism, such as the lower levels of primary BAs, hyocholic acid, hyodeoxycholic acid, and tauroursodeoxycholic acid, which were partially restored by hydroxytyrosol. Correlation analysis revealed a positive correlation between these BA levels and the expression of Nrf2 and its downstream genes. Collectively, hydroxytyrosol may reduce oxidative stress-induced intestinal damage by regulating BA metabolism.
Collapse
Affiliation(s)
| | | | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (F.W.); (H.Z.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (X.W.); (F.W.); (H.Z.)
| | | |
Collapse
|
4
|
Deng C, Zhai Y, Yang X, Chen Z, Li Q, Hao R. Effects of grape seed procyanidins on antioxidant function, barrier function, microbial community, and metabolites of cecum in geese. Poult Sci 2023; 102:102878. [PMID: 37413950 PMCID: PMC10466299 DOI: 10.1016/j.psj.2023.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
The gut is the first line of defense for body health and is essential to the overall health of geese. Grape seed procyanidins (GSPs) are proverbial for their antioxidant, anti-inflammatory, and microflora-regulating capabilities. This study aimed to inquire into the influences of dietary GSPs on the intestinal antioxidant function, barrier function, microflora, and metabolites of geese based on 16S rRNA sequencing and metabolomics. In total, 240 twenty-one-day-old Sichuan white geese were randomly divided into 4 groups, each of which was supplied with 1 of 4 diets: basal diet or a basal diet supplemented with 50, 100, or 150 mg/kg GSPs. Diets supplemented with GSPs at different concentrations significantly increased the total antioxidant capacity and superoxide dismutase activity in cecal mucosa (P < 0.001). Dietary supplementation with 50 or 100 mg/kg GSPs significantly increased catalase activity (P < 0.001). The serum diamine oxidase, D-lactic acid, and endotoxin concentrations were decreased by GSP supplementation in the goose diet. Dietary GSP supplementation increased microbial richness and diversity, enhanced the relative abundance of Firmicutes, and decreased that of Bacteroidetes in the cecum. Diets supplemented with 50 or 100 mg/kg GSPs enriched Eubacterium coprostanoligenes and Faecalibacterium. Dietary GSPs substantially raised the acetic and propionic acid concentrations in the cecum. The butyric acid concentration increased when the GSP dosage was 50 or 100 mg/kg. Additionally, dietary GSPs increased the levels of metabolites that belong to lipids and lipid-like molecules or organic acids and derivatives. Dietary GSP supplementation at 100 or 150 mg/kg reduced the levels of spermine (a source of cytotoxic metabolites) and N-acetylputrescine, which promotes in-vivo inflammation. In conclusion, dietary supplementation with GSPs was beneficial to gut health in geese. Dietary GSPs improved antioxidant activity; protected intestinal barrier integrity; increased the abundance and diversity of cecal microflora; promoted the proliferation of some beneficial bacteria; increased the production of acetic, propionic, and butyric acids in the cecum; and downregulated metabolites associated with cytotoxicity and inflammation. These results offer a strategy for promoting intestinal health in farmed geese.
Collapse
Affiliation(s)
- Chao Deng
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Yan Zhai
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Xu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Zhexiu Chen
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030800, China.
| |
Collapse
|
5
|
Qin S, Peng Y, She F, Zhang J, Li L, Chen F. Positive effects of selenized-oligochitosan on zearalenone-induced intestinal dysfunction in piglets. Front Vet Sci 2023; 10:1184969. [PMID: 37261113 PMCID: PMC10228365 DOI: 10.3389/fvets.2023.1184969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
This paper assessed the positive effects of selenized-oligochitosan (SOC) on zearalenone(ZEN)-induced intestinal dysfunction in piglets. Sixty piglets were randomly divided into 4 groups. Group C was fed the basal diet as a control and Group Z was supplemented with 2 μg/g ZEN in the basal diet; Group ZS1 and ZS2 were supplemented with 0.3 or 0.5 μg/g SOC (calculated by selenium), in addition to 2 μg/g ZEN in the basal diet. After 42 days, ileal mucosal structure, digestive enzyme activities, tight junction protein mRNA expressions, plasma D-lactate and D-xylose contents, and plasma diamine oxidase activities were determined. Compare with Group C, ileal villus height, value of villus height/crypt depth, trypsin, lipase and α-amylase activities, occluding, claudin-1 and ZO-1 mRNA expressions, and plasma D-xylose levels were significantly decreased (p < 0.01) in piglets of group Z; while compare to Group C, ileal crypt depth, plasma D-lactate contents and diamine oxidase activities were significantly increased in piglets of group Z (p < 0.01 or p < 0.05). Compare with Group Z, ileal villus height, lipase and α-amylase activities, occluding, claudin-1 and ZO-1 mRNA expressions, and plasma D-xylose levels were significantly elevated in piglets of group ZS1 and ZS2 (p < 0.01); while compare to Group Z, plasma D-lactate and diamine oxidase contents were significantly reduced in piglets of group ZS1 and ZS2 (p < 0.01 or p < 0.05). Compare with Group Z, value of villus height/crypt depth and trypsin activity were significantly promoted in piglets of group ZS2 (p < 0.01); whereas ileal crypt depth was significantly reduced in piglets of group ZS2 (p <0.01).Thus, SOC can mitigate ZEN-induced intestinal dysfunction in piglets.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
- Department of Agricultural Science and Technology, Hotan Vocational and Technical College, Hotan, People's Republic of China
| | - Yukai Peng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Chitosan-based selenium composites as potent Se supplements: Synthesis, beneficial health effects, and applications in food and agriculture. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Clostridium butyricum Protects IPEC-J2 Cells from ETEC K88-Induced Oxidative Damage by Activating the Nrf2/ARE Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4464002. [PMID: 34336091 PMCID: PMC8321755 DOI: 10.1155/2021/4464002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022]
Abstract
Clostridium butyricum (CB) is a naturally occurring probiotic compound that can alleviate the oxidative damage induced by enterotoxigenic Escherichia coli K88 (ETEC K88) in porcine intestinal epithelial (IPEC-J2) cells. In this study, we investigate the molecular mechanism underlying this effect. Based on cell viability, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) assessments, the optimal concentration of ETEC K88 was determined to be 1 × 103 cfu/mL. Viable bacteria counts in cells pretreated with CB and then infected with ETEC K88 show that CB can adhere to IPEC-J2 cells and that optimal adhesion is achieved at the multiple infection index (MOI) of 50 at 3 h of pretreatment. The results of qPCR indicate that although ETEC significantly decreases the expression levels of antioxidant enzymes regulated by NF-E2-related factor 2 (Nrf2) compared to the control group, CB reverses this effect. To confirm that Nrf2 is directly involved in the mechanism by which CB alleviates oxidative stress, siRNA was used to silence the expression of Nrf2 gene in IPEC-J2 cells. Compared to the NC+ETEC and siRNA+ETEC groups, the expressions of SOD1, SOD2, GPX1, and GPX2 in the NC+CB+ETEC and siRNA+CB+ETEC groups are significantly increased at 12 h and 24 h. This shows that CB can reduce ETEC K88-induced oxidative damage in IPEC-J2 cells by activating the expression of antioxidant enzymes implicated in the Kelch-like ECH-associated protein-1- (Keap1-) Nrf2/antioxidant response element (ARE) signaling pathway.
Collapse
|
9
|
Jiang G, Lei A, Chen Y, Yu Q, Xie J, Yang Y, Yuan T, Su D. The protective effects of the Ganoderma atrum polysaccharide against acrylamide-induced inflammation and oxidative damage in rats. Food Funct 2021; 12:397-407. [PMID: 33336655 DOI: 10.1039/d0fo01873b] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the protective effects of the Ganoderma atrum polysaccharide (PSG-1) on selected tissue (liver, spleen, kidneys and intestine) toxicity induced by acrylamide (AA) in SD rats were investigated. The results showed that pretreatment with PSG-1 could prevent AA-induced damage to liver and kidney functions by increasing the activities of ALT, AST and ALP and the levels of TG, BUN and CR in the serum of AA-treated rats. PSG-1 could also maintain the intestinal barrier function and permeability by preventing the reduction of the serum d-Lac and ET-1 levels in the intestine of AA-treated rats. In addition, AA-induced DNA damage, as indicated by an increase of the 8-OHdG level, was alleviated by pretreatment with PSG-1. Histological observations of the tissues confirmed the protective effects of different doses of PSG-1. Moreover, PSG-1 supplementation reduced oxidative stress and inflammation in rats by upregulating the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and IL-10 levels, and preventing the overproduction of malondialdehyde (MDA), IL-1β, IL-6, and TNF-α. Thus, these findings suggest that PSG-1 effectively prevents AA-induced damage in the liver, spleen, kidneys, and intestine of rats, partially by alleviating the inflammatory response and oxidative stress and protecting the intestinal integrity and barrier function.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Aitong Lei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Ying Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Tongji Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
10
|
Fan Q, Abouelezz K, Wang Y, Lin X, Li L, Gou Z, Cheng Z, Ding F, Jiang S. Influence of vitamin E, tryptophan and β-glucan on growth performance, meat quality, intestinal immunity, and antioxidative status of yellow-feathered chickens fed thermally oxidized oils. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Omega-3 Fatty Acid-Enriched Fish Oil and Selenium Combination Modulates Endoplasmic Reticulum Stress Response Elements and Reverses Acquired Gefitinib Resistance in HCC827 Lung Adenocarcinoma Cells. Mar Drugs 2020; 18:md18080399. [PMID: 32751169 PMCID: PMC7460277 DOI: 10.3390/md18080399] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC)-carrying specific epidermal growth factor receptor (EGFR) mutations can be effectively treated by a tyrosine kinase inhibitor such as gefitinib. However, the inevitable development of acquired resistance leads to the eventual failure of therapy. In this study, we show the combination effect of omega-3 fatty acid-enriched fish oil (FO) and selenium (Se) on reversing the acquired gefitinib-resistance of HCC827 NSCLC cells. The gefitinib-resistant subline HCC827GR possesses lowered proapoptotic CHOP (CCAAT/enhancer-binding protein homologous protein) and elevated cytoprotective GRP78 (glucose regulated protein of a 78 kDa molecular weight) endoplasmic reticulum (ER) stress response elements, and it has elevated β-catenin and cyclooxygenase-2 (COX-2) levels. Combining FO and Se counteracts the above features of HCC827GR cells, accompanied by the suppression of their raised epithelial-to-mesenchymal transition (EMT) and cancer stem markers, such as vimentin, AXL, N-cadherin, CD133, CD44, and ABCG2. Accordingly, an FO and Se combination augments the gefitinib-mediated growth inhibition and apoptosis of HCC827GR cells, along with the enhanced activation of caspase -3, -9, and ER stress-related caspase-4. Intriguingly, gefitinib further increases the elevated ABCG2 and cancer stem-like side population in HCC827GR cells, which can also be diminished by the FO and Se combination. The results suggest the potential of combining FO and Se in relieving the acquired resistance of NSCLC patients to targeted therapy.
Collapse
|
12
|
Oral administration of green tea polyphenols (TP) improves ileal injury and intestinal flora disorder in mice with Salmonella typhimurium infection via resisting inflammation, enhancing antioxidant action and preserving tight junction. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
13
|
Zhang Y, Xu M, Hu C, Liu A, Chen J, Gu C, Zhang X, You C, Tong H, Wu M, Chen P. Sargassum fusiforme Fucoidan SP2 Extends the Lifespan of Drosophila melanogaster by Upregulating the Nrf2-Mediated Antioxidant Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8918914. [PMID: 31485301 PMCID: PMC6710776 DOI: 10.1155/2019/8918914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/19/2023]
Abstract
Damage accumulated in the genome and macromolecules is largely attributed to increased oxidative damage and a lack of damage repair in a cell, and this can eventually trigger the process of aging. Alleviating the extent of oxidative damage is therefore considered as a potential way to promote longevity. SFPS, a heteropolysaccharide extracted from the brown alga Sargassum fusiforme, has previously been shown to alleviate oxidative damage during the aging process in mice, but whether SFPS could extend the lifespan of an organism was not demonstrated. Furthermore, the precise component within SFPS that is responsible for the antioxidant activity and the underlying mechanism of such activity was also not resolved. In this study, SP2, a fucoidan derived from SFPS, was shown to exhibit strong antioxidant activity as measured by in vitro radical-scavenging assays. SP2 also improved the survival rate of D. melanogaster subjected to oxidative stress. The flies that were fed with a diet containing SP2 from the time of eclosion displayed significant enhancement in lifespan and reduced accumulation of triglyceride at the old-age stage. In addition, SP2 markedly improved the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) and reduced the contents of the malondialdehyde (MDA) and oxidized glutathione (GSSG) in old flies. Furthermore, SP2 also upregulated the expression levels of the nuclear factor-erythroid-2-like 2 (nfe2l2 or nrf2) and its downstream target genes, accompanied by a dramatic reduction in the expression of kelch-like ECH-associated protein 1 (keap1, a canonical inhibitor of the Nrf2) in old flies. Additional support linking the crucial role of the Nrf2/ARE pathway to the antioxidant effect of SP2 was the relatively high survival rate under heat stress for D. melanogaster individuals receiving SP2 supplement, an effect that was abolished by the inclusion of inhibitors specific for the Nrf2/ARE pathway. Collectively, the results indicated that SP2, a S. fusiforme fucoidan, could promote longevity in D. melanogaster by enhancing the Nrf2-mediated antioxidant signaling pathway during the aging process.
Collapse
Affiliation(s)
- Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Man Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenxi Hu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Department of Natural Resources and Environmental Studies, University of Northern British Columbia, Prince George, BC, Canada
| | - Amei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Junjie Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chenfei Gu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Cuiping You
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Peichao Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|