1
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
2
|
de Souza Silva MS, Dos Santos MLMF, da Silva AM, França WWM, Araújo SB, da Silva RL, do Nascimento WRC, da Silva Santos NP, da Cruz Filho IJ, de Azevedo Albuquerque MCP, de Araújo HDA, de Lima Aires A. Sanguinarine: an alkaloid with promising in vitro and in vivo antiparasitic activity against different developmental stages of Schistosoma mansoni and in silico pharmacokinetic properties (ADMET). Parasitol Res 2024; 123:143. [PMID: 38407619 DOI: 10.1007/s00436-024-08153-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/02/2024] [Indexed: 02/27/2024]
Abstract
The objective of the study was to evaluate the in vitro and in vivo schistosomicidal activity of sanguinarine (SA) on Schistosoma mansoni and its in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The activity of SA in vitro, at the concentrations of 1.0-25 µM, was analyzed through the parameters of motility, mortality, and cell viability of the worms at intervals of 3-24 h. Mice were infected with cercariae and treated by gavage with SA (5 mg/kg/day, in a single dose or two doses of 2.5 mg/kg every 12 h for 5 consecutive days) on the 1st (skin schistosomula), 14th (pulmonary schistosomula), 28th (young worms), and 45th (adult worms) days after infection. In vitro and in vivo praziquantel was the control. In vitro, SA showed schistosomicidal activity against schistosomula, young worms, and couples; with total mortality and reduced cell viability at low concentrations and incubation time. In a single dose of 5 mg/kg/day, SA reduces the total worm load by 47.6%, 54%, 55.2%, and 27.1%, and female worms at 52.0%, 39.1%, 52.7%, and 20.2%, respectively, results which are similar to the 2.5 mg/kg/day dose. SA reduced the load of eggs in the liver, and in histopathological and histomorphometric analyses, there was a reduction in the number and volume of hepatic granulomas, which exhibited less inflammatory infiltrate. SA has promising in vitro and in vivo schistosomicidal activity against different developmental stages of S. mansoni, in addition to reducing granulomatous liver lesions. Furthermore, in silico, SA showed good predictive pharmacokinetic ADMET profiles.
Collapse
Affiliation(s)
- Maria Stéphanny de Souza Silva
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Wilza Wanessa Melo França
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Programa de Pós-Graduação Em Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Wheverton Ricardo Correia do Nascimento
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Noemia Pereira da Silva Santos
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia E Fármacos e Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - Iranildo José da Cruz Filho
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia E Fármacos e Laboratório de Tecnologia de Biomateriais, Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Vitória de Santo Antão, PE, Brazil
| | - André de Lima Aires
- Centro de Biociências, Programa de Pós-Graduação Em Morfotecnologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Programa de Pós-Graduação Em Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
3
|
Casertano M, Esposito E, Bello I, Indolfi C, Putra MY, Di Cesare Mannelli L, Ghelardini C, Menna M, Sorrentino R, Cirino G, d’Emmanuele di Villa Bianca R, Imperatore C, Panza E, Mitidieri E. Searching for Novel Sources of Hydrogen Sulfide Donors: Chemical Profiling of Polycarpa aurata Extract and Evaluation of the Anti-Inflammatory Effects. Mar Drugs 2023; 21:641. [PMID: 38132963 PMCID: PMC10744941 DOI: 10.3390/md21120641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals' cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for the first time, the potential of marine extract as a source of H2S-releasing agents has been explored. Different fractions obtained by the Indonesian ascidian Polycarpa aurata were evaluated for their ability to release H2S in solution. The main components of the most active fraction were then characterized by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and NMR spectroscopy. The ability of this fraction to release H2S was evaluated in a cell-free assay and J774 macrophages by a fluorimetric method, and its anti-inflammatory activity was evaluated in vitro and in vivo by using carrageenan-induced mouse paw edema. The anti-inflammatory effects were assessed by inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6), coupled with a reduction in nitric oxide (NO) and IL-6 levels. Thus, this study defines the first example of a marine source able to inhibit inflammatory responses in vivo through the release of H2S.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Masteria Yunovilsa Putra
- Research Center for Vaccine and Drugs, Research Organisation for Healths, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health-NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, 50139 Florence, Italy; (L.D.C.M.); (C.G.)
| | - Marialuisa Menna
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Giuseppe Cirino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Roberta d’Emmanuele di Villa Bianca
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Concetta Imperatore
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (E.E.); (I.B.); (M.M.); (R.S.); (G.C.); (E.P.); (E.M.)
| |
Collapse
|
4
|
Casertano M, Vito A, Aiello A, Imperatore C, Menna M. Natural Bioactive Compounds from Marine Invertebrates That Modulate Key Targets Implicated in the Onset of Type 2 Diabetes Mellitus (T2DM) and Its Complications. Pharmaceutics 2023; 15:2321. [PMID: 37765290 PMCID: PMC10538088 DOI: 10.3390/pharmaceutics15092321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an ongoing, risky, and costly health problem that therefore always requires new treatment options. Moreover, although several drugs are available, only 36% of patients achieve glycaemic control, and patient adherence is a major obstacle. With monotherapy, T2DM and its comorbidities/complications often cannot be managed, and the concurrent administration of several hypoglycaemic drugs is required, which increases the risk of side effects. In fact, despite the efficacy of the drugs currently on the market, they generally come with serious side effects. Therefore, scientific research must always be active in the discovery of new therapeutic agents. DISCUSSION The present review highlights some of the recent discoveries regarding marine natural products that can modulate the various targets that have been identified as crucial in the establishment of T2DM disease and its complications, with a focus on the compounds isolated from marine invertebrates. The activities of these metabolites are illustrated and discussed. OBJECTIVES The paper aims to capture the relevant evidence of the great chemical diversity of marine natural products as a key tool that can advance understanding in the T2DM research field, as well as in antidiabetic drug discovery. The variety of chemical scaffolds highlighted by the natural hits provides not only a source of chemical probes for the study of specific targets involved in the onset of T2DM, but is also a helpful tool for the development of drugs that are capable of acting via novel mechanisms. Thus, it lays the foundation for the design of multiple ligands that can overcome the drawbacks of polypharmacology.
Collapse
Affiliation(s)
| | | | | | | | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (A.V.); (A.A.); (C.I.)
| |
Collapse
|
5
|
Dakhno PG, Dotsenko VV, Strelkov VD, Vasilin VK, Aksenov NA, Aksenova IV. (2E,2′E)-2,2′-(1,2,4-Thiadiazole-3,5-diyl)bis[3-arylacrylonitriles]: Synthesis and Antidote Activity Towards 2,4-D Herbicide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Krivokolysko BS, Dotsenko VV, Pakholka NA, Dakhno PG, Strelkov VD, Aksenov NA, Aksenova IV, Krivokolysko SG. Bromine- and iodine-mediated oxidative dimerization of cyanothioacetamide derivatives: synthesis of new functionalized 1,2,4-thiadiazoles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Casertano M, Genovese M, Paoli P, Santi A, Aiello A, Menna M, Imperatore C. Insights into Cytotoxic Behavior of Lepadins and Structure Elucidation of the New Alkaloid Lepadin L from the Mediterranean Ascidian Clavelina lepadiformis. Mar Drugs 2022; 20:md20010065. [PMID: 35049920 PMCID: PMC8782007 DOI: 10.3390/md20010065] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
The chemical investigation of the Mediterranean ascidian Clavelina lepadiformis has led to the isolation of a new lepadin, named lepadin L, and two known metabolites belonging to the same family, lepadins A and B. The planar structure and relative configuration of the decahydroquinoline ring of lepadin L were established both by means of HR-ESIMS and by a detailed as extensive analysis of 1D and 2D NMR spectra. Moreover, microscale derivatization of the new alkaloid lepadin L was performed to assess the relative configuration of the functionalized alkyl side chain. Lepadins A, B, and L were tested for their cytotoxic activity on a panel of cancer cell lines (human melanoma [A375], human breast [MDA-MB-468], human colon adenocarcinoma [HT29], human colorectal carcinoma [HCT116], and mouse myoblast [C2C12]). Interestingly, a deeper investigation into the mechanism of action of the most cytotoxic metabolite, lepadin A, on the A375 cells has highlighted its ability to induce a strongly inhibition of cell migration, G2/M phase cell cycle arrest and a dose-dependent decrease of cell clonogenity, suggesting that it is able to impair self-renewing capacity of A375 cells.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (A.A.); (C.I.)
| | - Massimo Genovese
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.G.); (P.P.); (A.S.)
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.G.); (P.P.); (A.S.)
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (M.G.); (P.P.); (A.S.)
| | - Anna Aiello
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (A.A.); (C.I.)
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (A.A.); (C.I.)
- Correspondence: ; Tel.: +39-081-678-518
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Naples, Italy; (M.C.); (A.A.); (C.I.)
| |
Collapse
|
8
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
9
|
Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar Drugs 2021; 19:308. [PMID: 34073515 PMCID: PMC8228501 DOI: 10.3390/md19060308] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, "tambjamines", produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates' ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Bhushan Rao Tulasi
- Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India;
| | - Mohanraju Raju
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Narsinh Thakur
- Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India;
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
| |
Collapse
|
10
|
Izzati F, Warsito MF, Bayu A, Prasetyoputri A, Atikana A, Sukmarini L, Rahmawati SI, Putra MY. Chemical Diversity and Biological Activity of Secondary Metabolites Isolated from Indonesian Marine Invertebrates. Molecules 2021; 26:1898. [PMID: 33801617 PMCID: PMC8037762 DOI: 10.3390/molecules26071898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007-2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.
Collapse
Affiliation(s)
| | | | - Asep Bayu
- Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Jakarta-Bogor KM 46 Cibinong, Bogor, West Java 16911, Indonesia or (F.I.); (M.F.W.); (A.P.); (A.A.); (L.S.); (S.I.R.)
| | | | | | | | | | - Masteria Yunovilsa Putra
- Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Jakarta-Bogor KM 46 Cibinong, Bogor, West Java 16911, Indonesia or (F.I.); (M.F.W.); (A.P.); (A.A.); (L.S.); (S.I.R.)
| |
Collapse
|
11
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
12
|
The Ascidian-Derived Metabolites with Antimicrobial Properties. Antibiotics (Basel) 2020; 9:antibiotics9080510. [PMID: 32823633 PMCID: PMC7460354 DOI: 10.3390/antibiotics9080510] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Among the sub-phylum of Tunicate, ascidians represent the most abundant class of marine invertebrates, with 3000 species by heterogeneous habitat, that is, from shallow water to deep sea, already reported. The chemistry of these sessile filter-feeding organisms is an attractive reservoir of varied and peculiar bioactive compounds. Most secondary metabolites isolated from ascidians stand out for their potential as putative therapeutic agents in the treatment of several illnesses like microbial infections. In this review, we present and discuss the antibacterial activity shown by the main groups of ascidian-derived products, such as sulfur-containing compounds, meroterpenes, alkaloids, peptides, furanones, and their derivatives. Moreover, the direct evidence of a symbiotic association between marine ascidians and microorganisms shed light on the real producers of many extremely potent marine natural compounds. Hence, we also report the antibacterial potential, joined to antifungal and antiviral activity, of metabolites isolated from ascidian-associate microorganisms by culture-dependent methods.
Collapse
|
13
|
Anstis DG, Lindsay AC, Söhnel T, Sperry J. Synthesis of the 1,2,4-Thiadiazole Alkaloid Polyaurine B. JOURNAL OF NATURAL PRODUCTS 2020; 83:1721-1724. [PMID: 32297745 DOI: 10.1021/acs.jnatprod.0c00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A short synthesis of the natural product polyaurine B is described. The 1,2,4-thiadiazole heterocycle was assembled using a Cu(II)-mediated heterocyclization reaction that forges the N-S bond. The final acylation step to install the methylcarbamate must be conducted under anhydrous, nonbasic conditions to prevent thiadiazole ring opening initiated by attack of hydroxide at C-5.
Collapse
Affiliation(s)
- Daniel G Anstis
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Ashley C Lindsay
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
14
|
Casertano M, Menna M, Fattorusso C, Basilico N, Parapini S, Persico M, Imperatore C. Antiplasmodial Activity of p-Substituted Benzyl Thiazinoquinone Derivatives and Their Potential against Parasitic Infections. Molecules 2020; 25:molecules25071530. [PMID: 32230894 PMCID: PMC7180939 DOI: 10.3390/molecules25071530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening disease and, what is more, the resistance to available antimalarial drugs is a recurring problem. The resistance of Plasmodium falciparum malaria parasites to previous generations of medicines has undermined malaria control efforts and reversed gains in child survival. This paper describes a continuation of our ongoing efforts to investigate the effects against Plasmodium falciparum strains and human microvascular endothelial cells (HMEC-1) of a series of methoxy p-benzyl-substituted thiazinoquinones designed starting from a pointed antimalarial lead candidate. The data obtained from the newly tested compounds expanded the structure–activity relationships (SARs) of the thiazinoquinone scaffold, indicating that antiplasmodial activity is not affected by the inductive effect but rather by the resonance effect of the introduced group at the para position of the benzyl substituent. Indeed, the current survey was based on the evaluation of antiparasitic usefulness as well as the selectivity on mammalian cells of the tested p-benzyl-substituted thiazinoquinones, upgrading the knowledge about the active thiazinoquinone scaffold.
Collapse
Affiliation(s)
- Marcello Casertano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (M.M.); (C.F.); (M.P.)
- Italian Malaria Network, Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (M.M.); (C.F.); (M.P.)
- Italian Malaria Network, Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (M.M.); (C.F.); (M.P.)
- Italian Malaria Network, Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - Marco Persico
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (M.M.); (C.F.); (M.P.)
- Italian Malaria Network, Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
| | - Concetta Imperatore
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy; (M.C.); (M.M.); (C.F.); (M.P.)
- Italian Malaria Network, Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Correspondence: ; Tel.: +39-081678530
| |
Collapse
|
15
|
Investigating the Antiparasitic Potential of the Marine Sesquiterpene Avarone, Its Reduced form Avarol, and the Novel Semisynthetic Thiazinoquinone Analogue Thiazoavarone. Mar Drugs 2020; 18:md18020112. [PMID: 32075136 PMCID: PMC7074381 DOI: 10.3390/md18020112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/26/2022] Open
Abstract
The chemical analysis of the sponge Dysidea avara afforded the known sesquiterpene quinone avarone, along with its reduced form avarol. To further explore the role of the thiazinoquinone scaffold as an antiplasmodial, antileishmanial and antischistosomal agent, we converted the quinone avarone into the thiazinoquinone derivative thiazoavarone. The semisynthetic compound, as well as the natural metabolites avarone and avarol, were pharmacologically investigated in order to assess their antiparasitic properties against sexual and asexual stages of Plasmodium falciparum, larval and adult developmental stages of Schistosomamansoni (eggs included), and also against promastigotes and amastigotes of Leishmania infantum and Leishmania tropica. Furthermore, in depth computational studies including density functional theory (DFT) calculations were performed. A toxic semiquinone radical species which can be produced starting both from quinone- and hydroquinone-based compounds could mediate the anti-parasitic effects of the tested compounds.
Collapse
|
16
|
Imperatore C, Valadan M, Tartaglione L, Persico M, Ramunno A, Menna M, Casertano M, Dell’Aversano C, Singh M, d’Aulisio Garigliota ML, Bajardi F, Morelli E, Fattorusso C, Altucci C, Varra M. Exploring the Photodynamic Properties of Two Antiproliferative Benzodiazopyrrole Derivatives. Int J Mol Sci 2020; 21:ijms21041246. [PMID: 32069905 PMCID: PMC7072997 DOI: 10.3390/ijms21041246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
The identification of molecules whose biological activity can be properly modulated by light is a promising therapeutic approach aimed to improve drug selectivity and efficacy on the molecular target and to limit the side effects compared to traditional drugs. Recently, two photo-switchable diastereomeric benzodiazopyrrole derivatives 1RR and 1RS have been reported as microtubules targeting agents (MTAs) on human colorectal carcinoma p53 null cell line (HCT 116 p53-/-). Their IC50 was enhanced upon Light Emitting Diode (LED) irradiation at 435 nm and was related to their cis form. Here we have investigated the photo-responsive behavior of the acid derivatives of 1RR and 1RS, namely, d1RR and d1RS, in phosphate buffer solutions at different pH. The comparison of the UV spectra, acquired before and after LED irradiation, indicated that the trans→cis conversion of d1RR and d1RS is affected by the degree of ionization. The apparent rate constants were calculated from the kinetic data by means of fast UV spectroscopy and the conformers of the putative ionic species present in solution (pH range: 5.7–8.0) were modelled. Taken together, our experimental and theoretical results suggest that the photo-conversions of transd1RR/d1RS into the corresponding cis forms and the thermal decay of cisd1RR/d1RS are dependent on the presence of diazonium form of d1RR/d1RS. Finally, a photo-reaction was detected only for d1RR after prolonged LED irradiation in acidic medium, and the resulting product was characterized by means of Liquid Chromatography coupled to High resolution Mass Spectrometry (LC-HRMS) and Nuclear Magnetic Resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Concetta Imperatore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Mohammadhassan Valadan
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
| | - Luciana Tartaglione
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- CoNISMa–Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Marco Persico
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Anna Ramunno
- Department of Pharmacy/DIFARMA, University of Salerno, 84084 Fisciano, Salerno, Italy; (A.R.); (M.L.d.G.)
| | - Marialuisa Menna
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Marcello Casertano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Carmela Dell’Aversano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- CoNISMa–Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
| | - Manjot Singh
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
| | | | - Francesco Bajardi
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
| | - Elena Morelli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
| | - Caterina Fattorusso
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- Correspondence: (C.F.); (C.A.); (M.V.); Tel.: +39-081-678544 (C.F.); +39-081-676293 (C.A.); +39-081-678540 (M.V.)
| | - Carlo Altucci
- Department of Physics “Ettore Pancini”, University of Naples Federico II, 80126 Naples, Italy; (M.V.); (M.S.); (F.B.)
- Correspondence: (C.F.); (C.A.); (M.V.); Tel.: +39-081-678544 (C.F.); +39-081-676293 (C.A.); +39-081-678540 (M.V.)
| | - Michela Varra
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (C.I.); (L.T.); (M.P.); (M.M.); (M.C.); (C.D.); (E.M.)
- Correspondence: (C.F.); (C.A.); (M.V.); Tel.: +39-081-678544 (C.F.); +39-081-676293 (C.A.); +39-081-678540 (M.V.)
| |
Collapse
|
17
|
Gimmelli R, Persico M, Imperatore C, Saccoccia F, Guidi A, Casertano M, Luciano P, Pietrantoni A, Bertuccini L, Paladino A, Papoff G, Menna M, Fattorusso C, Ruberti G. Thiazinoquinones as New Promising Multistage Schistosomicidal Compounds Impacting Schistosoma mansoni and Egg Viability. ACS Infect Dis 2020; 6:124-137. [PMID: 31718145 DOI: 10.1021/acsinfecdis.9b00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Schistosomiasis is the most significant neglected tropical parasitic disease caused by helminths in terms of morbidity and mortality caused by helminths. In this work, we present the antischistosomal activity against Schistosoma mansoni of a rationally selected small set of thiazinoquinone derivatives, some of which were previously found to be active against Plasmodium falciparum and others synthesized ad hoc. The effects on larvae, juvenile, and adult parasite viability as well as on egg production and development were investigated, resulting in the identification of new multistage antischistosomal hit compounds. The most promising compounds 6, 8, 13, and 14 with a LC50 value on schistosomula from ∼5 to ∼15 μM also induced complete death of juvenile (28 days old) and adult worm pairs (7 weeks old) and a detrimental effect on egg production and development in vitro. Structure-activity relationships (SARs) were analyzed by means of computational studies leading to the hypothesis of a redox-based mechanism of action with a one-electron reduction bioactivation step and the subsequent formation of a toxic semiquinone species, similarly to what was previously observed for the antiplasmodial activity. Our results also evidenced that the selective toxicity against mammalian cells or parasites as well as specific developmental stages of a parasite can be addressed by varying the nature of the introduced substituents.
Collapse
Affiliation(s)
- Roberto Gimmelli
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Marco Persico
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Concetta Imperatore
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Fulvio Saccoccia
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Alessandra Guidi
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Marcello Casertano
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Paolo Luciano
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Agostina Pietrantoni
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Lucia Bertuccini
- Core Facilities, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Paladino
- Institute of Chemistry of Molecular Recognition, National Research Council, Via M. Bianco 9, 20131 Milano, Italy
| | - Giuliana Papoff
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| | - Marialuisa Menna
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Caterina Fattorusso
- The NeaNat Group, Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano 49, 80131 Napoli, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, 06126 Perugia, Italy
| | - Giovina Ruberti
- Institute of Biochemistry and Cell Biology, National Research Council, Campus A. Buzzati-Traverso, Via E. Ramarini 32, 00015 Monterotondo (Rome), Italy
| |
Collapse
|
18
|
In Vitro Antiproliferative Evaluation of Synthetic Meroterpenes Inspired by Marine Natural Products. Mar Drugs 2019; 17:md17120684. [PMID: 31817358 PMCID: PMC6950182 DOI: 10.3390/md17120684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022] Open
Abstract
Several marine natural linear prenylquinones/hydroquinones have been identified as anticancer and antimutagenic agents. Structure-activity relationship studies on natural compounds and their synthetic analogs demonstrated that these effects depend on the length of the prenyl side chain and on the type and position of the substituent groups in the quinone moiety. Aiming to broaden the knowledge of the underlying mechanism of the antiproliferative effect of these prenylated compounds, herein we report the synthesis of two quinones 4 and 5 and of their corresponding dioxothiazine fused quinones 6 and 7 inspired to the marine natural product aplidinone A (1), a geranylquinone featuring the 1,1-dioxo-1,4-thiazine ring isolated from the ascidian Aplidium conicum. The potential effects on viability and proliferation in three different human cancer cell lines, breast adenocarcinoma (MCF-7), pancreas adenocarcinoma (Bx-PC3) and bone osteosarcoma (MG-63), were investigated. The methoxylated geranylquinone 5 exerted the highest antiproliferative effect exhibiting a comparable toxicity in all three cell lines analyzed. Interestingly, a deeper investigation has highlighted a cytostatic effect of quinone 5 referable to a G0/G1 cell-cycle arrest in BxPC-3 cells after 24 h treatment.
Collapse
|