1
|
Li Y, Guo M, Li L, Yang F, Xiong L. Effects of rice fermentation and its bioactive components on UVA-induced oxidative stress and senescence in dermal fibroblasts. Photochem Photobiol 2024. [PMID: 39030789 DOI: 10.1111/php.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/22/2024]
Abstract
Photoaging, caused by ultraviolet (UV) radiation, is characterized by the senescence of skin cells and reduction of collagens. Although rice fermentation is widely used in the cosmetics, its impact on skin photoaging is still not well understood. Herein, we investigated the possible effectiveness of Maifuyin, a fermented rice product, and its components, succinic acid (SA), and choline, for safeguarding UVA-exposed human dermal fibroblasts (HDFs) against photoaging. In this study, the effects of Maifuyin, SA, and choline on UVA-induced cell death and senescence in fibroblasts were evaluated in cell counting kit-8 (CCK-8), expression of β-galactosidase (β-GAL), and matrix metalloproteinases (MMP)-1. To identify oxidative stress, the investigation focused on reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde. Additionally, a mRNA sequencing technology (RNA-seq) was applied to study the underlying mechanisms of these components on UVA-induced photoaging. Meanwhile, the level of C-X-C motif chemokine ligand 2 (CXCL2) in the cell supernatant was confirmed to assess the autocrine chemokine level. To reassess the involvement of CXCL2, the expression of β-GAL was evaluated in fibroblasts treated with or without CXCL2. The results indicated that 1 mg/mL Maifuyin and SA inhibited UVA-induced senescence in fibroblasts, MMP-1 expression, and oxidative damage. The RNA-seq revealed 1 mg/mL Maifuyin and SA might be recruited chemokine CXCLs to inhibit MMPs production and fibroblast senescence via TNFα, MAPK, and NF-κB pathways. ELISA results showed a significant reduction of autocrine CXCL2 in UVA-irradiated HDFs by pretreating Maifuyin and SA. The β-GAL staining assay revealed that CXCL2 treatment increased β-GAL activity, while the administration of Maifuyin and SA counteracted this effect in HDFs. These results highlighted the potential use of Maifuyin and SA as promising candidates for anti-photoaging applications.
Collapse
Affiliation(s)
- Yu Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Guo
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Fan Yang
- Mageline Biology Tech Co., Ltd, Wuhan, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
- Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| |
Collapse
|
2
|
Brauer E, Lange T, Keller D, Görlitz S, Cho S, Keye J, Gossen M, Petersen A, Kornak U. Dissecting the influence of cellular senescence on cell mechanics and extracellular matrix formation in vitro. Aging Cell 2023; 22:e13744. [PMID: 36514868 PMCID: PMC10014055 DOI: 10.1111/acel.13744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tissue formation and healing both require cell proliferation and migration, but also extracellular matrix production and tensioning. In addition to restricting proliferation of damaged cells, increasing evidence suggests that cellular senescence also has distinct modulatory effects during wound healing and fibrosis. Yet, a direct role of senescent cells during tissue formation beyond paracrine signaling remains unknown. We here report how individual modules of the senescence program differentially influence cell mechanics and ECM expression with relevance for tissue formation. We compared DNA damage-mediated and DNA damage-independent senescence which was achieved through over-expression of either p16Ink4a or p21Cip1 cyclin-dependent kinase inhibitors in primary human skin fibroblasts. Cellular senescence modulated focal adhesion size and composition. All senescent cells exhibited increased single cell forces which led to an increase in tissue stiffness and contraction in an in vitro 3D tissue formation model selectively for p16 and p21-overexpressing cells. The mechanical component was complemented by an altered expression profile of ECM-related genes including collagens, lysyl oxidases, and MMPs. We found that particularly the lack of collagen and lysyl oxidase expression in the case of DNA damage-mediated senescence foiled their intrinsic mechanical potential. These observations highlight the active mechanical role of cellular senescence during tissue formation as well as the need to synthesize a functional ECM network capable of transferring and storing cellular forces.
Collapse
Affiliation(s)
- Erik Brauer
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Lange
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela Keller
- Institute for Medical Genetics and Human Genetics, Charité - Universtitätsmedizin Berlin, Berlin, Germany
| | - Sophie Görlitz
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Cho
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jacqueline Keye
- Flow & Mass Cytometry Core Facility, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred Gossen
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Active Polymers, Helmholtz-Zentrum Hereon, Teltow, Germany
| | - Ansgar Petersen
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Kornak
- Institute for Medical Genetics and Human Genetics, Charité - Universtitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Han J, Wang J, Shi H, Li Q, Zhang S, Wu H, Li W, Gan L, Brown-Borg HM, Feng W, Chen Y, Zhao RC. Ultra-small polydopamine nanomedicine-enabled antioxidation against senescence. Mater Today Bio 2023; 19:100544. [PMID: 36747580 PMCID: PMC9898451 DOI: 10.1016/j.mtbio.2023.100544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Senescence is a cellular response characterized by cells irreversibly stopping dividing and entering a state of permanent growth arrest. One of the underlying pathophysiological causes of senescence is the oxidative stress-induced damage, indicating that eliminating the reactive oxygen and nitrogen species (RONS) may be beneficial to prevent and/or alleviate senescence. Herein, we developed ultra-small polydopamine nanoparticles (UPDA NPs) with superoxide dismutase (SOD)/catalase (CAT) enzyme-mimic activities, featuring broad-spectrum RONS-scavenging capability for inducing cytoprotective effects against RONS-mediated damage. The engineered UPDA NPs can restore senescence-related renal function, tissue homeostasis, fur density, and motor ability in mice, potentially associated with the regulation of multiple genes involved in lipid metabolism, mitochondrial function, energy homeostasis, telomerase activity, neuroprotection, and inflammatory responses. Importantly, the dietary UPDA NPs can enhance the antioxidant capacity, improve the climbing ability, and prolong the lifespan of Drosophila. Notably, UPDA NPs possess excellent biocompatibility stemming from the ultra-small size, ensuring quick clearance out of the body. These findings reveal that UPDA NPs can delay aging through reducing oxidative stress and provide a paradigm and practical strategy for treating senescence and senescence-related diseases.
Collapse
Affiliation(s)
- Jiamei Han
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hongwei Shi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China,Cell Energy Life Sciences Group Co. LTD, Qingdao, Shandong, China
| | - Shibo Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Hao Wu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenjun Li
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Linhua Gan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, ND, USA,Corresponding author.
| | - Wei Feng
- School of Life Sciences, Shanghai University, Shanghai, China,Corresponding authors.
| | - Yu Chen
- School of Life Sciences, Shanghai University, Shanghai, China,Corresponding author.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China,Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China,Corresponding authors. School of Life Sciences, Shanghai University, Shanghai, China.
| |
Collapse
|
4
|
Vaamonde-García C, Capelo-Mera E, Flórez-Fernández N, Torres MD, Rivas-Murias B, Mejide-Faílde R, Blanco FJ, Domínguez H. In Vitro Study of the Therapeutic Potential of Brown Crude Fucoidans in Osteoarthritis Treatment. Int J Mol Sci 2022; 23:14236. [PMID: 36430716 PMCID: PMC9698873 DOI: 10.3390/ijms232214236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Osteoarthritis, one of the most common joint degenerative pathologies, still has no cure, and current treatments, such as nonsteroidal anti-inflammatory drugs, can cause serious adverse effects when taken for a long time. Brown seaweed crude fucoidans are used for the clinical treatment of several pathologies. In this study, the therapeutical potential of these biocompounds was analyzed in primary chondrocytes and the 260TT human chondrocyte cell line. Crude fucoidan from Undaria pinnatifida (Up) and Sargassum muticum (Sm) was obtained by different extraction techniques (microwave-assisted extraction, pressurized hot-water extraction, ultrasound-assisted extraction) and chemically and structurally characterized by Fourier transform infrared spectroscopy, high-performance size-exclusion chromatography, proton nuclear magnetic resonance, and scanning electron microscopy. Once cell viability was confirmed in chondrocytes treated with crude fucoidans, we evaluated their anti-inflammatory effects, observing a significant reduction in IL-6 production stimulated by IL-1β. Findings were confirmed by analysis of IL-6 and IL-8 gene expression, although only fucoidans from Up achieved a statistically significant reduction. Besides this, the antioxidant capacity of crude fucoidans was observed through the upregulation of Nrf-2 levels and the expression of its transcriptional target genes HO-1 and SOD-2, with compounds from Up again showing a more consistent effect. However, no evidence was found that crude fucoidans modulate senescence, as they failed to reduced β-galactosidase activity, cell proliferation, or IL-6 production in chondrocytes stimulated with etoposide. Thus, the findings of this research seem to indicate that the tested crude fucoidans are capable of partially alleviating OA-associated inflammation and oxidative stress, but fail to attenuate chondrocyte senescence.
Collapse
Affiliation(s)
- Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Emma Capelo-Mera
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain
| | - Noelia Flórez-Fernández
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | - María Dolores Torres
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| | | | - Rosa Mejide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain
| | - Francisco J. Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain
| | - Herminia Domínguez
- Grupo de Biomasa y Desarrollo Sostenible (EQ2), Departamento de Ingeniería Química, Facultad de Ciencias, CINBIO, Universidade de Vigo, 32004 Ourense, Spain
| |
Collapse
|
5
|
Men X, Han X, Lee SJ, Oh G, Jin H, Oh HJ, Kim E, Kim J, Lee BY, Choi SI, Lee OH. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Mar Drugs 2022; 20:607. [PMID: 36286432 PMCID: PMC9604725 DOI: 10.3390/md20100607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ecklonia stolonifera Okamura (ES) is mainly distributed in the coastal areas of the middle Pacific, around Korea and Japan, and has a long-standing edible value. It is rich in various compounds, such as polysaccharides, fatty acids, alginic acid, fucoxanthin, and phlorotannins, among which the polyphenol compound phlorotannins are the main active ingredients. Studies have shown that the extracts and active components of ES exhibit anti-cancer, antioxidant, anti-obesity, anti-diabetic, antibacterial, cardioprotective, immunomodulatory, and other pharmacological properties in vivo and in vitro. Although ES contains a variety of bioactive compounds, it is not widely known and has not been extensively studied. Based on its potential health benefits, it is expected to play an important role in improving the nutritional value of food both economically and medically. Therefore, ES needs to be better understood and developed so that it can be utilized in the development and application of marine medicines, functional foods, bioactive substances, and in many other fields. This review provides a comprehensive overview of the bioactivities and bioactive compounds of ES to promote in-depth research and a reference for the comprehensive utilization of ES in the future.
Collapse
Affiliation(s)
- Xiao Men
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Xionggao Han
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Se-Jeong Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Geon Oh
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Heegu Jin
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Hyun-Ji Oh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Eunjin Kim
- Naturalway Co., Ltd., Pocheon 11160, Korea
| | | | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam 13488, Korea
| | - Sun-Il Choi
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| | - Ok-Hwan Lee
- Department of Food Biotechnology and Environmental Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
6
|
Young Park S, Kim B, Jin Kim Y, Kim HH, Oh JW, Park G. Suppression of adipogenesis by Au nanostructures-conjugated Sargassum seaweed extracts in 3 T3-L1 adipocytes. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Characterization of Plocamium telfairiae Extract-Functionalized Au Nanostructures and Their Anti-Adipogenic Activity through PLD1. Mar Drugs 2022; 20:md20070421. [PMID: 35877714 PMCID: PMC9320883 DOI: 10.3390/md20070421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Here, Au nanostructure (AuNS) biosynthesis was mediated through ethanolic extract of Plocamium telfairiae (PT) without the use of stabilizers or surfactants. PT-functionalized AuNSs (PT-AuNSs) were analyzed using ultraviolet–visible spectroscopy, dynamic light scattering, high-resolution transmission electron microscopy, energy-dispersive spectroscopy, and Fourier-transform infrared spectroscopy. Stable monodisperse PT-AuNSs were synthesized, with a mean size of 15.36 ± 0.10 nm and zeta potential of −35.85 ± 1.36 mV. Moreover, biosynthetic AuNPs with a face-centered structure of PT-AuNS exhibited crystalline characteristics. In addition, many functional groups playing important roles in the biological reduction of PT extracts were adsorbed on the surface of PT-AuNSs. Furthermore, the effects of PT-AuNSs on adipogenesis in immature adipocytes were investigated. PT-AuNSs reduced morphological changes, lowered triglyceride content, and increased lipid accumulation by approximately 78.6% in immature adipocytes compared with the values in mature adipocytes (MDI-induced). PT-AuNS suppressed lipid accumulation by downregulating the transcript and protein expression of C/EBPα, PPARγ, SREBP 1, FAS, and aP2. Finally, PT-AuNS induced the transcript and protein expression of UCP1, PRDM16, and PGC1a, thereby increasing mitochondrial biogenesis in mature adipocytes and effectively inducing brown adipogenesis. In this study, the biosynthesized PT-AuNS was used as a potential therapeutic candidate because it conferred a potent anti-lipogenic effect. As a result, it can be used in various scientific fields such as medicine and the environment.
Collapse
|
8
|
Senescence of donor cells impairs fat graft regeneration by suppressing adipogenesis and increasing expression of senescence-associated secretory phenotype factors. Stem Cell Res Ther 2021; 12:311. [PMID: 34051860 PMCID: PMC8164816 DOI: 10.1186/s13287-021-02383-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Fat grafting has been regarded as a promising approach for regenerative therapy. Given the rapidly aging population, better understanding of the effect of age on fat graft outcomes and the underlying mechanisms is urgently needed. Methods C57/BL6 mice [old (O, 18–20-month-old) and young (Y, 4-month-old)] were randomized to four fat graft groups [old-to-old (O-O), young-to-young (Y-Y), old-to-young (O-Y), and young-to-old (Y-O)]. Detailed cellular events before and after grafting were investigated by histological staining, RNA sequencing, and real-time polymerase chain reaction. The adipogenic differentiation potential of adipose-derived mesenchymal stem cells (AD-MSCs) from old or young donors was investigated in vitro. Additionally, adipogenesis of AD-MSCs derived from old recipients was evaluated in the culture supernatant of old or young donor fat tissue. Results After 12 weeks, the volume of fat grafts did not significantly differ between the O-O and O-Y groups or between the Y-Y and Y-O groups, but was significantly smaller in the O-O group than in the Y-O group and in the O-Y group than in the Y-Y group. Compared with fat tissue from young mice, senescence-associated secretory phenotype (SASP) factors were upregulated in fat tissue from old mice. Compared with the Y-O group, adipogenesis markers were downregulated in the O-O group, while SASP factors including interleukin (IL)-6, tumor necrosis factor-α, and IL-1β were upregulated. In vitro, AD-MSCs from old donors showed impaired adipogenesis compared with AD-MSCs from young donors. Additionally, compared with the culture supernatant of young donor fat tissue, the culture supernatant of old donor fat tissue significantly decreased adipogenesis of AD-MSCs derived from old recipients, which might be attributable to increased levels of SASP factors. Conclusions Age has detrimental effects on fat graft outcomes by suppressing adipogenesis of AD-MSCs and upregulating expression of SASP factors, and fat graft outcomes are more dependent on donor age than on recipient age. Thus, rejuvenating fat grafts from old donors or banking younger adipose tissue for later use may be potential approaches to improve fat graft outcomes in older adults. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02383-w.
Collapse
|
9
|
Pangestuti R, Shin KH, Kim SK. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar Drugs 2021; 19:172. [PMID: 33809936 PMCID: PMC8004118 DOI: 10.3390/md19030172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The skin health benefits of seaweeds have been known since time immemorial. They are known as potential renewable sources of bioactive metabolites that have unique structural and functional features compared to their terrestrial counterparts. In addition, to the consciousness of green, eco-friendly, and natural skincare and cosmetics products, their extracts and bioactive compounds such as fucoidan, laminarin, carrageenan, fucoxanthin, and mycosporine like amino acids (MAAs) have proven useful in the skincare and cosmetic industries. These bioactive compounds have shown potential anti-photoaging properties. Furthermore, some of these bioactive compounds have been clinically tested and currently available in the market. In this contribution, the recent studies on anti-photoaging properties of extracts and bioactive compounds derived from seaweeds were described and discussed.
Collapse
Affiliation(s)
- Ratih Pangestuti
- Director of Research and Development Division for Marine Bio Industry, Indonesian Institute of Sciences (LIPI), West Nusa Tenggara 83352, Indonesia;
| | - Kyung-Hoon Shin
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| | - Se-Kwon Kim
- Department. of Marine Science and Convergence Engineering, College of Science and Technology, Hanyang University, Gyeonggi-do 11558, Korea;
| |
Collapse
|