1
|
Upadhyay R, Ghosh P, Desavathu M. Advancement in the Nose-to-Brain Drug delivery of FDA-approved drugs for the better management of Depression and Psychiatric disorders. Int J Pharm 2024; 667:124866. [PMID: 39486490 DOI: 10.1016/j.ijpharm.2024.124866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
The Prevalence of Depressive and Psychiatric disorders is increasing globally, and despite the availability of numerous FDA-approved drugs, treatment remains challenging. Many conventional antidepressants and antipsychotic formulations face issues such as low solubility, high first-pass metabolism, poor bioavailability, inadequate blood-brain barrier penetration, and systemic side effects. These challenges lead to reduced efficacy, slower onset of action, and decreased patient adherence to treatment. To address these problems, recent studies have explored the nose-to-brain route for drug delivery. This method offers several advantages, including non-invasive drug administration, direct access to the brain, rapid onset of action, reduced systemic exposure and side effects, avoidance of first-pass metabolism, enhanced bioavailability, precision dosing, and improved patient compliance. The formulations used for this approach include lipidic nanoparticles, polymeric nanoparticles, nasal gels, cubosomes, niosomes, polymeric micelles, nanosuspensions, nanoemulsions, nanocapsules, and elastosomes. This review analyzes and summarizes the published work on the nose-to-brain delivery of FDA-approved antidepressants and antipsychotic drugs, with a focus on the preparation, characterization, pharmacokinetics, pharmacodynamics, and toxicity profiling of these nanoformulations.
Collapse
Affiliation(s)
- Rajshekher Upadhyay
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Pappu Ghosh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Madhuri Desavathu
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
2
|
Sharma S, Gauba P, Tyagi A, Dang S. Chitosan-modified polymeric nanoparticles for the nose-to-brain drug delivery of paroxetine: an in vitro and in vivo evaluation. NANOSCALE 2024. [PMID: 39641172 DOI: 10.1039/d4nr04250f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
This work focuses on the development of PLGA nanoparticles and their surface modification by chitosan to enhance the mucoadhesive properties and colloidal stability for intranasal delivery. Chitosan-coated paroxetine-loaded PLGA nanoparticles (PAR-CS-PLGA-NPs) were developed and characterized along with in vitro and in vivo evaluation. Particle size of 181.8 nm with a zeta potential of 36.3 mV was obtained. Entrapment efficiency % and drug loading % were 87.5% and 13.4%, respectively. TEM, FTIR, and DSC were also performed. In vitro drug release studies were conducted in phosphate buffered saline (pH 7.4) and simulated nasal fluid (pH 5.5), and sustained release was found until 72 h. Cellular assays on mammalian cells depicted the cell viability to be >60% even at the maximum concentration of PAR-CS-PLGA-NPs and showed significantly higher uptake than PLGA-NPs. Histopathological studies on the nasal epithelium showed no damage or inflammation when treated with PAR-CS-PLGA-NPs. In vivo studies were performed using Swiss albino mice to estimate the drug biodistribution after intranasal delivery of PAR-CS-PLGA-NPs. A significantly increased drug concentration was observed in the mouse brains (p < 0.05). Pharmacodynamics studies of the PAR-CS-PLGA-NPs were carried out by forced swimming test and locomotor activity test, demonstrating improved behavioral analysis parameters (p < 0.05). Thus, intranasal delivery of paroxetine-loaded mucoadhesive chitosan-coated PLGA nanoparticles could be potentially used for the treatment of depression.
Collapse
Affiliation(s)
- Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Pammi Gauba
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| | - Amit Tyagi
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi, India
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India.
| |
Collapse
|
3
|
Zheng Y, Cui L, Lu H, Liu Z, Zhai Z, Wang H, Shao L, Lu Z, Song X, Zhang Y. Nose to Brain: Exploring the Progress of Intranasal Delivery of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers. Int J Nanomedicine 2024; 19:12343-12368. [PMID: 39606563 PMCID: PMC11598598 DOI: 10.2147/ijn.s497480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The intranasal (IN) route of drug delivery can effectively penetrate the blood-brain barrier and deliver drugs directly to the brain for the treatment of central nervous system (CNS) disorders via intra-neuronal or extra-neuronal pathways. This approach has several advantages, including avoidance of first-pass metabolism, high bioavailability, ease of administration, and improved patient compliance. In recent years, an increasing number of studies have been conducted using drugs encapsulated in solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), and delivering them to the brain via the IN pathway. SLNs are the first-generation solid lipid nanocarriers, known for their excellent biocompatibility, high drug-loading capacity, and remarkable stability. NLCs, regarded as the second-generation SLNs, not only retain the advantages of SLNs but also exhibit enhanced stability, effectively preventing drug leakage during storage. In this review, we examined in vivo studies conducted between 2019 and 2024 that used SLNs and NLCs to address CNS disorders via the IN route. By using statistical methods to evaluate pharmacokinetic parameters, we found that IN delivery of SLNs and NLCs markedly enhanced drug accumulation and targeting within the brain. Additionally, pharmacodynamic evaluations indicated that this delivery method substantially improved the therapeutic effectiveness of the drugs in alleviating symptoms in rat models of CNS diseases. In addition, methods for enhancing the efficacy of nose-to-brain delivery of SLNs and NLCs are discussed, as well as advances in clinical trials regarding SLNs and NLCs.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Haoran Lu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Zhen Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Zhaoxue Zhai
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, People’s Republic of China
| | - Huikang Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Liting Shao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
| | - Zhaoyang Lu
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Second Clinical Medicine College, Binzhou Medical University, Yantai, People’s Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, People’s Republic of China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, People’s Republic of China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, People’s Republic of China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai, People’s Republic of China
| |
Collapse
|
4
|
Gültekin HE, Aydın HH, Şahiner A, Soylu FE, Şenyiğit Z, Karayıldırım ÇK. In vitro and in vivo evaluation of tedizolid nanoparticle incorporated buccal films for oromucosal infections. Int J Pharm 2024; 665:124688. [PMID: 39293576 DOI: 10.1016/j.ijpharm.2024.124688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
A novel tedizolid phosphate (TZP) nanoparticle (NP)-loaded buccal film formulation was developed for the treatment of buccal wounds infected with S. aureus. TZP-loaded chitosan NPs were produced and characterized to prepare this composite system. The optimum NP formulation was then loaded into mucoadhesive buccal films. The antibacterial effects of the obtained buccal films were evaluated by in vitro and in vivo studies. The optimum TZP-NP formulation (F8) had a particle size of 177.40 ± 2.97 nm and PDI and ZP values were 0.437 ± 0.002 and 33.9 ± 0.5, respectively. In antibacterial efficacy tests, the optimum NP containing buccal film formulation was used, which released approximately 90 % of TZP within 5 h. TZP-NP-loaded buccal films achieved a 3 log10 reduction in S. aureus within just 3 h. It was also administered to Wistar albino rats with S. aureus-infected buccal wounds. As a result of in vivo studies, a significant decrease in the number of S. aureus was detected in wound samples treated with TZP-NP-loaded buccal films. In addition, a complete inhibition of growth was observed on the fifth day of the film application. The current work suggested that the TZP-NP-loaded composite films could be promising candidates for effective and long-acting antibacterial treatment of buccal wounds.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Kâtip Çelebi University, Çiğli, 35620 İzmir, Turkey.
| | - Hüsniye Hande Aydın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Kâtip Çelebi University, Çiğli, 35620 İzmir, Turkey
| | - Aslı Şahiner
- Department of Biology, Science Faculty, Ege University, 35100 İzmir, Turkey
| | - Fahri Emrah Soylu
- Laboratory Animals Research Center, Ege University, 35100 İzmir, Turkey
| | - Zeynep Şenyiğit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, İzmir Kâtip Çelebi University, Çiğli, 35620 İzmir, Turkey
| | - Çinel Köksal Karayıldırım
- Department of Biology, Science Faculty, Ege University, 35100 İzmir, Turkey; Laboratory Animals Research Center, Ege University, 35100 İzmir, Turkey
| |
Collapse
|
5
|
Ramos TI, Villacis-Aguirre CA, Sandoval FS, Martin-Solano S, Manrique-Suárez V, Rodríguez H, Santiago-Padilla L, Debut A, Gómez-Gaete C, Arias MT, Montesino R, Lamazares E, Cabezas I, Hugues F, Parra NC, Altamirano C, Ramos OS, Santiago-Vispo N, Toledo JR. Multilayer Nanocarrier for the Codelivery of Interferons: A Promising Strategy for Biocompatible and Long-Acting Antiviral Treatment. Pharmaceutics 2024; 16:1349. [PMID: 39598474 PMCID: PMC11597830 DOI: 10.3390/pharmaceutics16111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Interferons (IFNs) are cytokines involved in the immune response with a synergistic regulatory effect on the immune response. They are therapeutics for various viral and proliferative conditions, with proven safety and efficacy. Their clinical application is challenging due to the molecules' size, degradation, and pharmacokinetics. We are working on new drug delivery systems that provide adequate therapeutic concentrations for these cytokines and prolong their half-life in the circulation, such as nanoformulations. Methods: Through nanoencapsulation using electrospray technology and biocompatible and biodegradable polymers, we are developing a controlled release system based on nanoparticles for viral infections of the respiratory tract. Results: We developed a controlled release system for viral respiratory tract infections. A prototype nanoparticle with a core was created, which hydrolyzed the polyvinylpyrrolidone (PVP) shell , releasing the active ingredients interferon-alpha (IFN-α) and interferon-gamma (IFN-γ). The chitosan (QS) core degraded slowly, with a controlled release of IFN-α. The primary and rapid effect of the interferon combination ensured an antiviral and immunoregulatory response from day one, induced by IFN-α and enhanced by IFN-γ. The multilayer design demonstrated an optimal toxicity profile. Conclusions: This formulation is an inhaled dry powder intended for the non-invasive intranasal route. The product does not require a cold chain and has the potential for self-administration in the face of emerging viral infections. This novel drug has applications in multiple infectious, oncological, and autoimmune conditions, and further development is proposed for its therapeutic potential. This prototype would ensure greater bioavailability, controlled release, fewer adverse effects, and robust biological action through the simultaneous action of both molecules.
Collapse
Affiliation(s)
- Thelvia I. Ramos
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Carlos A. Villacis-Aguirre
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Felipe Sandoval Sandoval
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Viana Manrique-Suárez
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Hortensia Rodríguez
- Yachay Tech Medicinal Chemistry Research Group (MedChem-YT), School of Chemical Science and Engineering, Yachay University for Experimental Technology and Research (Yachay Tech), Yachay City of Knowledge, Urcuqui 100119, Ecuador;
| | | | - Alexis Debut
- Laboratory of Characterization of Nanomaterials, Center of Nanoscience and Nanotecnology, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Carolina Gómez-Gaete
- Department of Pharmacy, Faculty of Pharmacy, Universidad de Concepción, Concepción 4030000, Chile;
| | - Marbel Torres Arias
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador; (S.M.-S.); (M.T.A.)
| | - Raquel Montesino
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Ignacio Cabezas
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Florence Hugues
- Clinical Sciences Department, Faculty of Veterinary Sciences, Universidad de Concepción, Vicente Méndez 595, Chillán 3780000, Chile; (I.C.); (F.H.)
| | - Natalie C. Parra
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile;
| | - Oliberto Sánchez Ramos
- Laboratory of Recombinant Biopharmaceuticals, Departamento de Farmacología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile;
| | | | - Jorge R. Toledo
- Biotechnology and Biopharmaceutical Laboratory, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Víctor Lamas 1290, P.O. Box 160-C, Concepción 4030000, Chile; (C.A.V.-A.); (F.S.S.); (V.M.-S.); (R.M.); (E.L.); (N.C.P.)
| |
Collapse
|
6
|
Sabatelle RC, Geller A, Li S, Van Heest A, Sachdeva UM, Bressler E, Korunes-Miller J, Tfayli B, Tal-Mason A, Kharroubi H, Colson YL, Grinstaff MW. Synthesis of Amphiphilic Amino Poly-Amido-Saccharide and Poly(lactic) Acid Block Copolymers and Fabrication of Paclitaxel-Loaded Mucoadhesive Nanoparticles. Bioconjug Chem 2024; 35:1429-1440. [PMID: 39159059 DOI: 10.1021/acs.bioconjchem.4c00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Drug delivery to the esophagus through systemic administration remains challenging, as minimal drug reaches the desired target. Local delivery offers the potential for improved efficacy while minimizing off-target toxicities but necessitates bioadhesive properties for mucosal delivery. Herein, we describe the synthesis of two new mucoadhesive amphiphilic copolymers prepared by sequential ring-opening copolymerization or postpolymerization click conjugation. Both strategies yield block copolymers containing a hydrophilic amine-functionalized poly-amido-saccharide and either a hydrophobic alkyl derivatized poly-amido-saccharide or poly(lactic acid), respectively. The latter resulting copolymers readily self-assemble into spherical, ≈200 nm diameter, positively charged mucoadhesive nanoparticles. The NPs entrap ultrahigh levels of paclitaxel via encapsulation of free paclitaxel and paclitaxel conjugated to a biodegradable, biocompatible poly(1,2-glycerol carbonate). Paclitaxel-loaded NPs rapidly enter cells, release paclitaxel, are cytotoxic to esophageal OE33 and OE19 tumor cells in vitro, and, importantly, demonstrate improved mucoadhesion compared to conventional poly(ethylene glycol)-poly(lactic acid) nanoparticles to ex vivo esophageal tissue.
Collapse
Affiliation(s)
- Robert C Sabatelle
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Abraham Geller
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Siyuan Li
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Audrey Van Heest
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Uma M Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Eric Bressler
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Jenny Korunes-Miller
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| | - Bassel Tfayli
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Aya Tal-Mason
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hussein Kharroubi
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Mark W Grinstaff
- Boston University, Departments of Chemistry and Biomedical Engineering, Boston, Massachusetts 02215, United States
| |
Collapse
|
7
|
Palai AK, Kumar A, Mazahir F, Sharma A, Yadav AK. Synthesis and characterization of fullerene-based nanocarrier for targeted delivery of quercetin to the brain. Ther Deliv 2024; 15:545-559. [PMID: 39235760 PMCID: PMC11412138 DOI: 10.1080/20415990.2024.2365620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/03/2024] [Indexed: 09/06/2024] Open
Abstract
Aim: Preparation of quercetin fullerene conjugate (QFC) for nose-to-brain delivery and their in vitro and ex vivo characterizations.Methods: Carboxylated fullerene was converted into acetylated fullerene and quercetin was conjugated and physically adsorbed on acetylated fullerene.Results: The particle size and zeta potential of QFC and chitosan-coated QFC (CC-QFC) were found to be 179.2 ± 1.10, 293.4 ± 2.757, -5.28 ± 1.43 and 11.6 ± 0.4 respectively. The entrapment efficiency, loading efficiency of QFC were found to be 85.55% and 42.77%. The MTT assay revealed 80.69% SH-SY5Y cell viability at a concentration of 50 μg/ml. CC-QFC showed remarkable (89.20%) ex vivo mucoadhesive properties compared with QFC (66.67%). Further study showed no significant ciliotoxicity by CC-QFC.Conclusion: The obtained results suggested the potential of CC-QFC for treatment in Alzheimer's disease.
Collapse
Affiliation(s)
- Amit Kumar Palai
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) Raebareli, Lucknow, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) Raebareli, Lucknow, 226002, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) Raebareli, Lucknow, 226002, India
| | - Ankita Sharma
- Cell culture facility, National Institute of Pharmaceutical Education & Research (NIPER) Raebareli, Lucknow, 226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER) Raebareli, Lucknow, 226002, India
| |
Collapse
|
8
|
Han JP, Nam YR, Chung HY, Lee H, Yeom SC. Polyphenol-Enabled 2D Nanopatch for Enhanced Nasal Mucoadhesion and Immune Activation. NANO LETTERS 2024; 24:10380-10387. [PMID: 39120059 DOI: 10.1021/acs.nanolett.4c03228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The advancement of effective nasal mucoadhesive delivery faces challenges due to rapid mucociliary clearance (MCC). Conventional studies have employed mucoadhesive materials, mainly forming spherical nanoparticles, but these offer limited adhesion to the nasal mucosa. This study hypothesizes that a 2D nanoscale structure utilizing adhesive polyphenols can provide a superior strategy for countering MCC, aligning with the planar mucosal layers. We explore the use of tannic acid (TA), a polyphenolic molecule known for its adhesive properties and ability to form complexes with biomolecules. Our study introduces an unprecedented 2D nanopatch, assembled through the interaction of TA with green fluorescent protein (GFP), and cell-penetrating peptide (CPP). This 2D nanopatch demonstrates robust adhesion to nasal mucosa and significantly enhances immunoglobulin A secretions, suggesting its potential for enhancing nasal vaccine delivery. The promise of a polyphenol-enabled adhesive 2D nanopatch signifies a pivotal shift from conventional spherical nanoparticles, opening new pathways for delivery strategies through respiratory mucoadhesion.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Republic of Korea
| | - Yu Ri Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hye Yoon Chung
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Republic of Korea
| | - Haeshin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Republic of Korea
| |
Collapse
|
9
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
10
|
Taha E, Nour SA, Mamdouh W, Naguib MJ. Investigating the potential of highly porous zopiclone-loaded 3D electrospun nanofibers for brain targeting via the intranasal route. Int J Pharm 2024; 660:124230. [PMID: 38782156 DOI: 10.1016/j.ijpharm.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Nanofibers (NFs) have proven to be very attractive tool as drug delivery plateform among the different plethora of nanosystems, owing to their unique features. They exhibit two- and three-dimensional structures some of which mimic structural environment of the body tissues, in addition to being safe, efficacious, and biocompatible drug delivery platform. Thus, this study embarked on fabricating polyvinyl alcohol/chitosan (PVA/CS) electrospun NFs encapsulating zopiclone (ZP) drug for intranasal brain targeted drug delivery. Electrospun NFs were optimized by adopting a three factor-two level full factorial design. The independent variables were: PVA/CS ratio (X1), flow rate (X2), and applied voltage (X3). The measured responses were: fiber diameter (Y1,nm), pore size (Y2,nm) and ultimate tensile strength (UTS,Y3,MPa). The selected optimum formula had resulted in NFs diameter of 215.90 ± 15.46 nm, pore size 7.12 ± 0.27 nm, and tensile strength around 6.64 ± 0.95 MPa. In-vitro biodegradability testing confirmed proper degradation of the NFs within 8 h. Moreover, swellability and breathability assessment revealed good hydrophilicity and permeability of the prepared NFs. Ex-vivo permeability study declared boosted ex-vivo permeation with an enhancement factor of 2.73 compared to ZP suspension. In addition, optimized NFs formula significantly reduced sleep latency and prolonged sleep duration in rats compared to IV ZP drug solution. These findings demonstrate the feasibility of employing the designed NFs as an effective safe platform for intranasal delivery of ZP for insomnia management.
Collapse
Affiliation(s)
- Esraa Taha
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Samia A Nour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wael Mamdouh
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo (AUC), AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt.
| | - Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
12
|
Gholap AD, Kapare HS, Pagar S, Kamandar P, Bhowmik D, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Rojekar S, Hatvate N, Mohanto S. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260:129581. [PMID: 38266848 DOI: 10.1016/j.ijbiomac.2024.129581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Sakshi Pagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pallavi Kamandar
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Deblina Bhowmik
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru, Karnataka 575018, India
| |
Collapse
|
13
|
Huang Q, Chen X, Yu S, Gong G, Shu H. Research progress in brain-targeted nasal drug delivery. Front Aging Neurosci 2024; 15:1341295. [PMID: 38298925 PMCID: PMC10828028 DOI: 10.3389/fnagi.2023.1341295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
The unique anatomical and physiological connections between the nasal cavity and brain provide a pathway for bypassing the blood-brain barrier to allow for direct brain-targeted drug delivery through nasal administration. There are several advantages of nasal administration compared with other routes; for example, the first-pass effect that leads to the metabolism of orally administered drugs can be bypassed, and the poor compliance associated with injections can be minimized. Nasal administration can also help maximize brain-targeted drug delivery, allowing for high pharmacological activity at lower drug dosages, thereby minimizing the likelihood of adverse effects and providing a highly promising drug delivery pathway for the treatment of central nervous system diseases. The aim of this review article was to briefly describe the physiological structures of the nasal cavity and brain, the pathways through which drugs can enter the brain through the nose, the factors affecting brain-targeted nasal drug delivery, methods to improve brain-targeted nasal drug delivery systems through the application of related biomaterials, common experimental methods used in intranasal drug delivery research, and the current limitations of such approaches, providing a solid foundation for further in-depth research on intranasal brain-targeted drug delivery systems (see Graphical Abstract).
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xin Chen
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Shu
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
14
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
15
|
Zhang C, D'Angelo D, Buttini F, Yang M. Long-acting inhaled medicines: Present and future. Adv Drug Deliv Rev 2024; 204:115146. [PMID: 38040120 DOI: 10.1016/j.addr.2023.115146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Inhaled medicines continue to be an essential part of treatment for respiratory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. In addition, inhalation technology, which is an active area of research and innovation to deliver medications via the lung to the bloodstream, offers potential advantages such as rapid onset of action, enhanced bioavailability, and reduced side effects for local treatments. Certain inhaled macromolecules and particles can also end up in different organs via lymphatic transport from the respiratory epithelium. While the majority of research on inhaled medicines is focused on the delivery technology, particle engineering, combination therapies, innovations in inhaler devices, and digital health technologies, researchers are also exploring new pharmaceutical technologies and strategies to prolong the duration of action of inhaled drugs. This is because, in contrast to most inhaled medicines that exert a rapid onset and short duration of action, long-acting inhaled medicines (LAIM) improve not only the patient compliance by reducing the dosing frequency, but also the effectiveness and convenience of inhaled therapies to better manage patients' conditions. This paper reviews the advances in LAIM, the pharmaceutical technologies and strategies for developing LAIM, and emerging new inhaled modalities that possess a long-acting nature and potential in the treatment and prevention of various diseases. The challenges in the development of the future LAIM are also discussed where active research and innovations are taking place.
Collapse
Affiliation(s)
- Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Davide D'Angelo
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Francesca Buttini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Mingshi Yang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016, Shenyang, China.
| |
Collapse
|
16
|
Alzahrani AR, Ibrahim IAA, Shahzad N, Shahid I, Alanazi IM, Falemban AH, Azlina MFN. An application of carbohydrate polymers-based surface-modified gold nanoparticles for improved target delivery to liver cancer therapy - A systemic review. Int J Biol Macromol 2023; 253:126889. [PMID: 37714232 DOI: 10.1016/j.ijbiomac.2023.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Gold nanoparticles have been broadly investigated as cancer diagnostic and therapeutic agents. Gold nanoparticles are a favorable drug delivery vehicle with their unique subcellular size and good biocompatibility. Chitosan, agarose, fucoidan, porphyran, carrageenan, ulvan and alginate are all examples of biologically active macromolecules. Since they are biocompatible, biodegradable, and irritant-free, they find extensive application in biomedical and macromolecules. The versatility of these compounds is enhanced because they are amenable to modification by functional groups like sulfation, acetylation, and carboxylation. In an eco-friendly preparation process, the biocompatibility and targeting of GNPs can be improved by functionalizing them with polysaccharides. This article provides an update on using carbohydrate-based GNPs in liver cancer treatment, imaging, and drug administration. Selective surface modification of several carbohydrate types and further biological uses of GNPs are focused on.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohd Fahami Nur Azlina
- Department of Pharmacology, Faculty of Medicine, University Kebangsaan Malaysia, Malaysia
| |
Collapse
|
17
|
Shafique U, Din FU, Sohail S, Batool S, Almari AH, Lahiq AA, Fatease AA, Alharbi HM. Quality by design for sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int J Pharm 2023; 646:123480. [PMID: 37797784 DOI: 10.1016/j.ijpharm.2023.123480] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Migraine is a progressive neurological condition often accompanied by nausea and vomiting. Various drugs have recently been used in the treatment of migraine, including sumatriptan (SUT). However, SUT has poor pharmacological effects mainly due to its reduced permeability, blood brain barrier (BBB) effect, half-life and bioavailability. Herein, we developed SUT loaded nano-ethosomes (SUT-NEs) for intranasal (IN) delivery, after their incorporation into chitosan based mucoadhesive gel (SUT-NEsG). The observed mean particle size of SUT-NEs was 109.45 ± 4.03 nm with spherical morphology, mono dispersion (0.191 ± 0.001), negatively charged (-20.90 ± 1.98 mV) and with excellent entrapment efficiency (96.90 ± 1.85 %). Fourier-transform infrared (FTIR) spectra have depicted the compatibility of the components. Moreover, SUT-NEsG was homogeneous having suitable viscosity and mucoadhesive strength. In vitro release and ex vivo permeation analysis showed sustained release and improved permeation of the SUT-NEsG, respectively. Additionally, histopathological studies of nasal membrane affirmed the safety of SUT-NEsG after IN application. In vivo pharmacokinetic study demonstrated improved brain bioavailability of SUT-NEsG as compared to orally administered sumatriptan solution (SUT-SL). Furthermore, significantly enhanced pharmacological effect of SUT-NEsG was observed in behavioral and biochemical analysis, immunohistochemistry for NF-κB, and enzyme linked immuno assay (ELISA) for IL-1β and TNF-α in Nitroglycerin (NTG) induced migraine model. It can be concluded that migraine may be successfully managed through IN application of SUT-NEsG owing to the direct targeted delivery to the brain.
Collapse
Affiliation(s)
- Uswa Shafique
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabi
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan M Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
18
|
Yan X, Sha X. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa. Pharmaceutics 2023; 15:2457. [PMID: 37896217 PMCID: PMC10610050 DOI: 10.3390/pharmaceutics15102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Airway mucus is a complex viscoelastic gel composed mainly of water, glycoproteins, lipids, enzymes, minerals, etc. Among them, glycoproteins are the main factors determining mucus's gel-like rheology. Airway mucus forms a protective barrier by secreting mucin, which represents a barrier for absorption, especially for more lipophilic drugs. It rapidly removes drugs from the airway through the physiological mucus clearance mechanism so drugs cannot remain in the lungs or reach the airway epithelial tissue for a long time. Significant progress has been made in enhancing drug lung deposition recently, but strategies are still needed to help drugs break through the lung mucosal barrier. Based on the physiopathological mechanisms of airway mucus, this paper reviews and summarizes strategies to enhance drug penetration and retention in the airway mucosa mediated by nano-delivery systems, including mucosal permeation systems, mucosal adhesion systems, and enzyme-modified delivery systems. On this basis, the potential and challenges of nano-delivery systems for improving airway mucus clearance are revealed. New ideas and approaches are provided for designing novel nano-delivery systems that effectively improve drug retention and penetration in the airway mucus layer.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
19
|
Sipos B, Katona G, Szarvas FM, Budai-Szűcs M, Ambrus R, Csóka I. Development of Vinpocetine-Loaded Nasal Polymeric Micelles via Nano-Spray-Drying. Pharmaceuticals (Basel) 2023; 16:1447. [PMID: 37895918 PMCID: PMC10610209 DOI: 10.3390/ph16101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In this present formulation study, vinpocetine-loaded nano-spray-dried polymeric micelles were developed via nano-spray-drying. Three different mucoadhesive excipients were applied in the studies, namely chitosan, hyaluronic acid and hydroxypropyl methylcellulose. In all cases, the formulations had a proper particle size and drug content after drying with spherical morphology and amorphous structure. After rapid dissolution in water, the polymeric micelles had a particle size around 100-130 nm, in monodisperse size distribution. The high encapsulation efficiency (>80%) and high solubilization (approx. 300-fold increase in thermodynamic solubility) contributed to rapid drug release (>80% in the first 15 min) and fast passive diffusion at simulated nasal conditions. The formulated prototype preparations fulfilled the demands of a low-viscosity, moderately mucoadhesive nasal drug delivery system, which may be capable of increasing the overall bioavailability of drugs administered via the auspicious nasal drug delivery route.
Collapse
|
20
|
Lin DSH, Tzeng SC, Cha TL, Hung CM, Lin WC, Yang CM, Lu HY, Chang JY, Huang SW. Inhalable chitosan-based hydrogel as a mucosal adjuvant for hydroxychloroquine in the treatment for SARS-CoV-2 infection in a hamster model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:951-960. [PMID: 37620239 DOI: 10.1016/j.jmii.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Effective therapy for COVID-19 remains limited. Hydroxychloroquine (HCQ) has been considered, but safety and efficacy concerns remain. Chitosan exhibits antiviral and immunomodulatory effects, yet how the combination of HCQ and chitosan performs in treating COVID-19 is unknown. METHODS Male Syrian hamsters were inoculated intranasally with standardized stocks of the SARS-CoV-2 virus. Hamsters were allocated to saline (PBS), chitosan oligosaccharide (COS), HCQ, or COS + HCQ groups and received corresponding drugs. On days 1, 7, and 14 post-infection, two animals from each group were euthanized for sample collection. Viral loads were measured in lung homogenates. Biochemistry markers, cytokines, and immunoglobulins were analyzed from hamster sera. HCQ concentrations were compared between the blood, bronchoalveolar lavage, and lung tissues. All groups underwent histopathology exams of the lungs. Additional hamsters were treated with the same drugs to assess for toxicities to the heart and liver. RESULTS Among all groups, viral loads in the COS + HCQ group were the lowest by day 8. The COS + HCQ group produced the highest interleukin (IL)-6 levels on day 4, and the highest IL-10, IgA and IgG levels on day 8. HCQ concentrations were higher in the COS + HCQ group's lungs than the HCQ group, despite having received half the dose of HCQ. Histopathology demonstrated earlier inflammation resolution and swifter viral clearance in the COS + HCQ group. There was no evidence of cardiac or hepatic injury in hamsters that received HCQ. CONCLUSION In hamsters infected with the SARS-CoV-2 virus, the combination of intranasal COS and HCQ was associated with increased HCQ absorption in the lungs, more effective immune responses, without increasing the risk of hepatic or cardiac injuries.
Collapse
Affiliation(s)
- Donna Shu-Han Lin
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shian Chiuan Tzeng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tai-Lung Cha
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chin-Mao Hung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Chin Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan; Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chuen-Mi Yang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Hsuan-Ying Lu
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jia-Yu Chang
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
21
|
Gaglio SC, Perduca M, Zipeto D, Bardi G. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel) 2023; 11:1333. [PMID: 37631901 PMCID: PMC10459455 DOI: 10.3390/vaccines11081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier constitutes a huge surface area, close to 40 m2 in humans, located mostly in the respiratory, gastrointestinal and urogenital tracts and ocular cavities. It plays a crucial role in tissue interactions with the microbiome, dietary antigens and other environmental materials. Effective vaccinations to achieve highly protective mucosal immunity are evolving strategies to counteract several serious diseases including tuberculosis, diphtheria, influenzae B, severe acute respiratory syndrome, Human Papilloma Virus infection and Acquired Immune Deficiency Syndrome. Interestingly, one of the reasons behind the rapid spread of severe acute respiratory syndrome coronavirus 2 variants has been the weakness of local immunization at the level of the respiratory mucosa. Mucosal vaccines can outperform parenteral vaccination as they specifically elicit protective mucosal immune responses blocking infection and transmission. In this scenario, chitosan-based nanovaccines are promising adjuvants-carrier systems that rely on the ability of chitosan to cross tight junctions and enhance particle uptake due to chitosan-specific mucoadhesive properties. Indeed, chitosan not only improves the adhesion of antigens to the mucosa promoting their absorption but also shows intrinsic immunostimulant abilities. Furthermore, by finely tuning the colloidal properties of chitosan, it can provide sustained antigen release to strongly activate the humoral defense. In the present review, we agnostically discuss the potential reasons why chitosan-based vaccine carriers, that efficiently elicit strong immune responses in experimental setups and in some pre-clinical/clinical studies, are still poorly considered for therapeutic formulations.
Collapse
Affiliation(s)
- Salvatore Calogero Gaglio
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Massimiliano Perduca
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Donato Zipeto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - Giuseppe Bardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
22
|
Wu MY, Kao IF, Fu CY, Yen SK. Effects of Adding Chitosan on Drug Entrapment Efficiency and Release Duration for Paclitaxel-Loaded Hydroxyapatite-Gelatin Composite Microspheres. Pharmaceutics 2023; 15:2025. [PMID: 37631239 PMCID: PMC10459076 DOI: 10.3390/pharmaceutics15082025] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Hydroxyapatite-gelatin microspheres with cone-like pores were synthesized via the wet-chemical method using ammonium dihydrogen phosphate ((NH4)H2PO4) and calcium nitrate (Ca(NO3)2·4H2O) as a source of calcium and phosphate ions with the addition of gelatin, which proved to be more osteoconductive than commercial products, such as fibrin glue and Osteoset® Bone Graft Substitute. Following the method of the previous study for loading paclitaxel (PTX), a drug entrapment efficiency of around 58% was achieved, which is much lower than that of the doxorubicin (DOX)-loaded one. Since PTX is hydrophobic while DOX is hydrophilic, the order of chitosan processing and addition of the solvent were tuned in this study, finally leading to an increase in drug entrapment efficiency of 94%. Additionally, the release duration of PTX exceeded six months. The MTT assay indicated that the effect of drug release on the suppression of cancer cells reached more than 40% after one week, thereby showcasing PTX's capacity to carry out its medicinal functions without being affected by the loading procedures.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
- Department of Orthopaedics, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Orthopaedics, Taichung Armed Forces General Hospital, Taichung 40705, Taiwan
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
| | - Chien-Yao Fu
- Department of Orthopaedics, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Orthopaedics, Taichung Armed Forces General Hospital, Taichung 40705, Taiwan
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan; (M.-Y.W.)
| |
Collapse
|
23
|
Wu J, Chen Q, Wang W, Lin Y, Kang H, Jin Z, Zhao K. Chitosan Derivative-Based Microspheres Loaded with Fibroblast Growth Factor for the Treatment of Diabetes. Polymers (Basel) 2023; 15:3099. [PMID: 37514488 PMCID: PMC10386009 DOI: 10.3390/polym15143099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus type 2 (T2DM) is a disease caused by genetic and environmental factors, and the main clinical manifestation is hyperglycemia. Currently, insulin injections are still the first-line treatment for diabetes. However, repeated injections may cause insulin resistance, hypoglycemia, and other serious side effects. Thus, it is imperative to develop new diabetes treatments. Protein-based diabetes drugs, such as fibroblast growth factor-21 (FGF-21), have a longer-lasting glycemic modulating effect with high biosafety. However, the instability of these protein drugs limits their applications. In this study, we extract protein hypoglycemic drugs with oral and injectable functions. The FGF-21 analog (NA-FGF) was loaded into the chitosan derivative-based nanomaterials, N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan (N-2-HACC/CMCS), to prepare NA-FGF-loaded N-2-HACC/CMCS microspheres (NA-FGF-N-2-HACC/CMCS MPs). It was well demonstrated that NA-FGF-N-2-HACC/CMCS MPs have great biocompatibility, biostability, and durable drug-release ability. In addition to injectable drug delivery, our prepared microspheres were highly advantageous for oral administration. The in vitro and in vivo experimental results suggested that NA-FGF-N-2-HACC/CMCS MPs could be used as a promising candidate and universal nano-delivery system for both oral and injectable hypoglycemic regulation.
Collapse
Affiliation(s)
- Jue Wu
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Qian Chen
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Wenfei Wang
- Bio-Pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuhong Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Hong Kang
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Kai Zhao
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| |
Collapse
|
24
|
Yang X, Mo W, Shi Y, Fang X, Xu Y, He X, Xu Y. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: A preclinical investigation. Heliyon 2023; 9:e17704. [PMID: 37519642 PMCID: PMC10372204 DOI: 10.1016/j.heliyon.2023.e17704] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/07/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Diabetic wounds may become chronic if left untreated. In the current study, a potential wound dressing was developed by incorporating fumaria officinalis extract-loaded chitosan nanoparticles (FOE-CHNPs) into calcium alginate hydrogel. The produced hydrogel was evaluated regarding its microarchitecture, cytotoxicity, cell migration activity, cytoprotective potential, porosity, in vitro anti-inflammatory activity, and drug release profile. Then, the healing function of FOE-CHNPs/calcium alginate hydrogel was compared with a marketed wound care product in a rat model of diabetic wound. In vitro study showed that the hydrogel system promoted skin cells viability and migration. In vivo wound healing assay showed that the animals treated with the FOE-CHNPs/calcium alginate hydrogel had comparable wound healing potential with the GranuGEL® as the marketed wound care hydrogel. Gene expression studies showed that FOE-CHNPs/calcium alginate hydrogel upregulated the tissue expression levels of collagen type 1, collagen type 2, VEGF, b-FGF and TGF-B genes. This preclinical research, suggests potential use of FOE-loaded calcium alginate hydrogel system in treating diabetic wounds in the clinic.
Collapse
Affiliation(s)
- Xi Yang
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Wenqian Mo
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Yan Shi
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Xiang Fang
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Yujian Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Xiaoqing He
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| | - Yongqing Xu
- Department of Orthopedics, 920 Hospital of Joint Logistic Support Force, Kunming, 650000, China
| |
Collapse
|
25
|
Hu X, Yue X, Wu C, Zhang X. Factors affecting nasal drug delivery and design strategies for intranasal drug delivery. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:328-337. [PMID: 37476944 PMCID: PMC10412955 DOI: 10.3724/zdxbyxb-2023-0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 07/22/2023]
Abstract
Intranasal drug delivery system is a non-invasive drug delivery route with the advantages of no first-pass effect, rapid effect and brain targeting. It is a feasible alternative to drug delivery via injection, and a potential drug delivery route for the central nervous system. However, the nasal physiological environment is complex, and the nasal delivery system requires "integration of medicine and device". Its delivery efficiency is affected by many factors such as the features and formulations of drug, delivery devices and nasal cavity physiology. Some strategies have been designed to improve the solubility, stability, membrane permeability and nasal retention time of drugs. These include the use of prodrugs, adding enzyme inhibitors and absorption enhancers to preparations, and new drug carriers, which can eventually improve the efficiency of intranasal drug delivery. This article reviews recent publications and describes the above mentioned aspects and design strategies for nasal intranasal drug delivery systems to provide insights for the development of intranasal drug delivery systems.
Collapse
Affiliation(s)
- Xiaoyun Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
- Tianjin Pharmaceutical Research Institute Co., Ltd., Tianjin 300462, China.
| | - Xiao Yue
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
26
|
Młynek M, Trzciński JW, Ciach T. Recent Advances in the Polish Research on Polysaccharide-Based Nanoparticles in the Context of Various Administration Routes. Biomedicines 2023; 11:biomedicines11051307. [PMID: 37238978 DOI: 10.3390/biomedicines11051307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are the most abundant polymers in nature. They exhibit robust biocompatibility, reliable non-toxicity, and biodegradable character; thus, they are employed in multiple biomedical applications. The presence of chemically accessible functional groups on the backbone of biopolymers (amine, carboxyl, hydroxyl, etc.) makes them suitable materials for chemical modification or drug immobilisation. Among different drug delivery systems (DDSs), nanoparticles have been of great interest in scientific research in the last decades. In the following review, we want to address the issue of rational design of nanoparticle (NP)-based drug delivery systems in reference to the specificity of the medication administration route and resulting requirements. In the following sections, readers can find a comprehensive analysis of the articles published by authors with Polish affiliations in the last few years (2016-2023). The article emphasises NP administration routes and synthetic approaches, followed by in vitro and in vivo attempts toward pharmacokinetic (PK) studies. The 'Future Prospects' section was constructed to address the critical observations and gaps found in the screened studies, as well as to indicate good practices for polysaccharide-based nanoparticle preclinical evaluation.
Collapse
Affiliation(s)
- Mateusz Młynek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Waldemar Trzciński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
27
|
Freitas R, Peixoto A, Ferreira E, Miranda A, Santos LL, Ferreira JA. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnol Adv 2023; 65:108144. [PMID: 37028466 DOI: 10.1016/j.biotechadv.2023.108144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal.
| |
Collapse
|
28
|
He X, Chen X, Wang H, Du G, Sun X. Recent advances in respiratory immunization: A focus on COVID-19 vaccines. J Control Release 2023; 355:655-674. [PMID: 36787821 PMCID: PMC9937028 DOI: 10.1016/j.jconrel.2023.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
The development of vaccines has always been an essential task worldwide since vaccines are regarded as powerful weapons in protecting the global population. Although the vast majority of currently authorized human vaccinations are administered intramuscularly or subcutaneously, exploring novel routes of immunization has been a prominent area of study in recent years. This is particularly relevant in the face of pandemic diseases, such as COVID-19, where respiratory immunization offers distinct advantages, such as inducing systemic and mucosal responses to prevent viral infections in both the upper and lower respiratory tracts and also leading to higher patient compliance. However, the development of respiratory vaccines confronts challenges due to the physiological barriers of the respiratory tract, with most of these vaccines still in the research and development stage. In this review, we detail the structure of the respiratory tract and the mechanisms of mucosal immunity, as well as the obstacles to respiratory vaccination. We also examine the considerations necessary in constructing a COVID-19 respiratory vaccine, including the dosage form of the vaccines, potential excipients and mucosal adjuvants, and delivery systems and devices for respiratory vaccines. Finally, we present a comprehensive overview of the COVID-19 respiratory vaccines currently under clinical investigation. We hope this review can provide valuable insights and inspiration for the future development of respiratory vaccinations.
Collapse
Affiliation(s)
- Xiyue He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoyan Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
29
|
Viswanadhan Vasantha P, Sherafudeen SP, Rahamathulla M, Mathew ST, Murali S, Alshehri S, Shakeel F, Alam P, Sirhan AY, Narayana Iyer BA. Combination of Cellulose Derivatives and Chitosan-Based Polymers to Investigate the Effect of Permeation Enhancers Added to In Situ Nasal Gels for the Controlled Release of Loratadine and Chlorpheniramine. Polymers (Basel) 2023; 15:polym15051206. [PMID: 36904447 PMCID: PMC10006938 DOI: 10.3390/polym15051206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
The purpose of the study is to develop and assess mucoadhesive in situ nasal gel formulations of loratadine and chlorpheniramine maleate to advance the bioavailability of the drug as compared to its conventional dosage forms. The influence of various permeation enhancers, such as EDTA (0.2% w/v), sodium taurocholate (0.5% w/v), oleic acid (5% w/v), and Pluronic F 127 (10% w/v), on the nasal absorption of loratadine and chlorpheniramine from in situ nasal gels containing different polymeric combinations, such as hydroxypropyl methylcellulose, Carbopol 934, sodium carboxymethylcellulose, and chitosan, is studied. Among these permeation enhancers, sodium taurocholate, Pluronic F127 and oleic acid produced a noticeable increase in the loratadine in situ nasal gel flux compared with in situ nasal gels without permeation enhancer. However, EDTA increased the flux slightly, and in most cases, the increase was insignificant. However, in the case of chlorpheniramine maleate in situ nasal gels, the permeation enhancer oleic acid only showed a noticeable increase in flux. Sodium taurocholate and oleic acid seems to be a better and efficient enhancer, enhancing the flux > 5-fold compared with in situ nasal gels without permeation enhancer in loratadine in situ nasal gels. Pluronic F127 also showed a better permeation, increasing the effect by >2-fold in loratadine in situ nasal gels. In chlorpheniramine maleate in situ nasal gels with EDTA, sodium taurocholate and Pluronic F127 were equally effective, enhancing chlorpheniramine maleate permeation. Oleic acid has a better effect as permeation enhancer in chlorpheniramine maleate in situ nasal gels and showed a maximum permeation enhancement of >2-fold.
Collapse
Affiliation(s)
- Prasanth Viswanadhan Vasantha
- Department of Pharmaceutics, Mount Zion College of Pharmaceutical Sciences and Research, Chayalode P.O. Ezhamkulam, Pathanamthitta Dist, Adoor 691556, India
- Correspondence: (P.V.V.); (M.R.)
| | - Sheri Peedikayil Sherafudeen
- Department of Pharmaceutics, Mar Discorous College of Pharmacy, Alathara, Sreekariyam, Thiruvananthapuram Dist, Thiruvananthapuram 695017, India
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al Faraa, P.O. Box 62223, Abha 61421, Saudi Arabia
- Correspondence: (P.V.V.); (M.R.)
| | | | - Sandhya Murali
- Department of Pharmaceutics, Mount Zion College of Pharmaceutical Sciences and Research, Chayalode P.O. Ezhamkulam, Pathanamthitta Dist, Adoor 691556, India
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Bhageerathy Anantha Narayana Iyer
- Department of Pharmaceutics, Mount Zion College of Pharmaceutical Sciences and Research, Chayalode P.O. Ezhamkulam, Pathanamthitta Dist, Adoor 691556, India
| |
Collapse
|
30
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
31
|
Aziz T, Nadeem AA, Sarwar A, Perveen I, Hussain N, Khan AA, Daudzai Z, Cui H, Lin L. Particle Nanoarchitectonics for Nanomedicine and Nanotherapeutic Drugs with Special Emphasis on Nasal Drugs and Aging. Biomedicines 2023; 11:354. [PMID: 36830891 PMCID: PMC9953552 DOI: 10.3390/biomedicines11020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
Aging is a multifunctional physiological manifestation. The nasal cavity is considered a major site for easy and cost-effective drug and vaccine administration, due to high permeability, low enzymatic activity, and the presence of a high number of immunocompetent cells. This review article primarily focuses on aging genetics, physical parameters, and the use of nanoparticles as delivery systems of drugs and vaccines via the nasal cavity. Studies have identified various genes involved in centenarian and average-aged people. VEGF is a key mediator involved in angiogenesis. Different therapeutic approaches induce vascular function and angiogenesis. FOLR1 gene codes for folate receptor alpha protein that helps in regulating the transport of vitamin B folate, 5-methyltetrahydrofolate and folate analogs inside the cell. This gene also aids in slowing the aging process down by cellular regeneration and promotes healthy aging by reducing aging symptoms. It has been found through the literature that GATA 6, Yamanaka factors, and FOLR1 work in synchronization to induce healthy and delayed aging. The role and applications of genes including CBS, CISD, SIRT 1, and SIRT 6 play a significant role in aging.
Collapse
Affiliation(s)
- Tariq Aziz
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Abad Ali Nadeem
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Abid Sarwar
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Ishrat Perveen
- Food and Biotechnology Research Centre, Pakistan Council of Scientific and Industrial Research Centre, Lahore 54590, Pakistan
| | - Nageen Hussain
- Institute of Microbiology and Molecular Genetics, New Campus, University of the Punjab, Lahore 54590, Pakistan
| | - Ayaz Ali Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Zubaida Daudzai
- Department of Bioresources and Biotechnology, King Mongkut University of Technology, Bangkok 10140, Thailand
| | - Haiying Cui
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lin Lin
- School of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
32
|
Zarepour A, Egil AC, Cokol Cakmak M, Esmaeili Rad M, Cetin Y, Aydinlik S, Ozaydin Ince G, Zarrabi A. Fabrication of a Dual-Drug-Loaded Smart Niosome-g-Chitosan Polymeric Platform for Lung Cancer Treatment. Polymers (Basel) 2023; 15:298. [PMID: 36679179 PMCID: PMC9860619 DOI: 10.3390/polym15020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Changes in weather conditions and lifestyle lead to an annual increase in the amount of lung cancer, and therefore it is one of the three most common types of cancer, making it important to find an appropriate treatment method. This research aims to introduce a new smart nano-drug delivery system with antibacterial and anticancer capabilities that could be applied for the treatment of lung cancer. It is composed of a niosomal carrier containing curcumin as an anticancer drug and is coated with a chitosan polymeric shell, alongside Rose Bengal (RB) as a photosensitizer with an antibacterial feature. The characterization results confirmed the successful fabrication of lipid-polymeric carriers with a size of nearly 80 nm and encapsulation efficiency of about 97% and 98% for curcumin and RB, respectively. It had the Korsmeyer-Peppas release pattern model with pH and temperature responsivity so that nearly 60% and 35% of RB and curcumin were released at 37 °C and pH 5.5. Moreover, it showed nearly 50% toxicity against lung cancer cells over 72 h and antibacterial activity against Escherichia coli. Accordingly, this nanoformulation could be considered a candidate for the treatment of lung cancer; however, in vivo studies are needed for better confirmation.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Biomedical Engineering Department, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Abdurrahim Can Egil
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
| | - Melike Cokol Cakmak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
| | - Monireh Esmaeili Rad
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
| | - Yuksel Cetin
- TUBITAK Marmara Research Center, Life Sciences Medical Biotechnology, Gebze 41470, Türkiye
| | - Seyma Aydinlik
- TUBITAK Marmara Research Center, Life Sciences, Industrial Biotechnology, Gebze 41470, Türkiye
| | - Gozde Ozaydin Ince
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Türkiye
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34956, Türkiye
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Biomedical Engineering Department, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
33
|
Ruiz-Pulido G, Quintanar-Guerrero D, Serrano-Mora LE, Medina DI. Triborheological Analysis of Reconstituted Gastrointestinal Mucus/Chitosan:TPP Nanoparticles System to Study Mucoadhesion Phenomenon under Different pH Conditions. Polymers (Basel) 2022; 14:4978. [PMID: 36433107 PMCID: PMC9696252 DOI: 10.3390/polym14224978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Polymeric nanoparticles have attracted much attention as pharmaceutical delivery vehicles to prolong residence time and enhance the bioavailability of therapeutic molecules through the mucoadhesive phenomenon. In this study, chitosan:TPP nanoparticles were synthetized using the ionic gelation technique to analyze their mucoadhesive interaction with reconstituted porcine gastrointestinal mucus from a triborheological point of view under different pH conditions (pH = 2.0, 4.0, 6.0 and 7.0). The triborheological profile of the reconstituted mucus was evaluated at different pH environments through the oscillation frequency and the flow sweep tests, demonstrating that the reconstituted mucus exhibits shear thinning behavior regardless of pH, while its viscoelastic properties showed a change in behavior from a polymeric solution performance under neutral pH conditions to a viscoelastic gel under acidic conditions. Additionally, a rheological synergism analysis was performed to visualize the changes that occur in the viscoelastic properties, the viscosity and the coefficient of friction of the reconstituted mucus samples as a consequence of the interaction with the chitosan:TPP nanoparticles to determine or to discard the presence of the mucoadhesion phenomenon under the different pH values. Mucoadhesiveness evaluation revealed that chitosan:TPP exhibited strong mucoadhesion under highly acidic pH conditions, below its pKa value of 6.5. In contrast, at neutral conditions or close to its pKa value, the chitosan:TPP nanoparticles' mucoadhesiveness was negligible.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de México, Mexico
| | - David Quintanar-Guerrero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Luis Eduardo Serrano-Mora
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54745, Estado de México, Mexico
| | - Dora I. Medina
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
34
|
Kiss T, Ambrus R, Abdelghafour MM, Zeiringer S, Selmani A, Roblegg E, Budai-Szűcs M, Janovák L, Lőrinczi B, Deák Á, Bernkop-Schnürch A, Katona G. Preparation and detailed characterization of the thiomer chitosan-cysteine as a suitable mucoadhesive excipient for nasal powders. Int J Pharm 2022; 626:122188. [PMID: 36089213 DOI: 10.1016/j.ijpharm.2022.122188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
The therapeutic application of nasal powders requires the development of novel mucoadhesive excipients. Thiolated polymers exhibit significant potential for this purpose based on their increased mucoadhesion attributable to the formation of disulfide bonds between the polymer and mucus surface. A chitosan-cysteine (chit-cyst) conjugate was synthesized using 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in aqueous solution. The synthetic yield and synthesis conditions were optimized, and the efficiency of the reaction was evaluated. Rheological measurements revealed that the polymer derivative exhibited increased mucoadhesive properties in comparison to chitosan powder. To characterize the polymer, a novel purity investigation method was developed and verified to investigate the residual l-cysteine content. The results revealed that l-cysteine was not detectable in the resultant polymer matrix. Based on the cytotoxicity studies, chit-cyst was found to be safe for nasal application. Thereafter, nasal powder formulations were prepared using the polymer and the antiparkinsonian drug levodopa methyl ester hydrochloride by freeze-drying to investigate their nasal applicability. Based on the in vitro studies, these powders might be suitable for reducing the off periods of Parkinson's disease because of their expected higher in vivo mucoadhesion.
Collapse
Affiliation(s)
- Tamás Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Mohamed M Abdelghafour
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla sqr. 1, H-6720 Szeged, Hungary; Department of Chemistry, Zagazig University, EG-44519 Zagazig, Egypt
| | - Scarlett Zeiringer
- Institute of Pharmaceutical Science, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Atiđa Selmani
- Institute of Pharmaceutical Science, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Eva Roblegg
- Institute of Pharmaceutical Science, Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Universitätsplatz 1, A-8010 Graz, Austria
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - László Janovák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla sqr. 1, H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Szeged, Eötvös str. 6, H-6720 Szeged, Hungary
| | - Ágota Deák
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla sqr. 1, H-6720 Szeged, Hungary
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80-22, A-6020 Innsbruck, Austria
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös str. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
35
|
Protopapa C, Siamidi A, Pavlou P, Vlachou M. Excipients Used for Modified Nasal Drug Delivery: A Mini-Review of the Recent Advances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6547. [PMID: 36233902 PMCID: PMC9571052 DOI: 10.3390/ma15196547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The ongoing challenging task in the field of nasal drug delivery is the maintenance of an efficient concentration of the active substance in the target area for an adequate period of time. Thus, there is an urgent need to develop effective new strategies for drug delivery to the nose, using cutting edge technology and materials for this particular type of drug delivery. This review gives an account of the critical components of nasal drug delivery and the parameters influencing drug absorption in the nose, including the excipients required for modified drug administration.
Collapse
Affiliation(s)
- Chrystalla Protopapa
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Panagoula Pavlou
- Department of Biomedical Sciences, Division of Aesthetics and Cosmetic Science, University of West Attica, 28 Ag. Spyridonos Str., 12243 Egaleo, Greece
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
36
|
Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of Nasal Vaccines and the Associated Challenges. Pharmaceutics 2022; 14:1983. [PMID: 36297419 PMCID: PMC9609876 DOI: 10.3390/pharmaceutics14101983] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 02/02/2024] Open
Abstract
Viruses, bacteria, fungi, and several other pathogenic microorganisms usually infect the host via the surface cells of respiratory mucosa. Nasal vaccination could provide a strong mucosal and systemic immunity to combat these infections. The intranasal route of vaccination offers the advantage of easy accessibility over the injection administration. Therefore, nasal immunization is considered a promising strategy for disease prevention, particularly in the case of infectious diseases of the respiratory system. The development of a nasal vaccine, particularly the strategies of adjuvant and antigens design and optimization, enabling rapid induction of protective mucosal and systemic responses against the disease. In recent times, the development of efficacious nasal vaccines with an adequate safety profile has progressed rapidly, with effective handling and overcoming of the challenges encountered during the process. In this context, the present report summarizes the most recent findings regarding the strategies used for developing nasal vaccines as an efficient alternative to conventional vaccines.
Collapse
Affiliation(s)
- Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
| | - Xiaoming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan 430207, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan 430207, China
- China National Biotech Group Company Limited, Beijing 100029, China
| |
Collapse
|
37
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
38
|
Recent progress in application of nanovaccines for enhancing mucosal immune responses. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
40
|
Development of Chitosan-Coated PLGA-Based Nanoparticles for Improved Oral Olaparib Delivery: In Vitro Characterization, and In Vivo Pharmacokinetic Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10071329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Olaparib (OLP) is an orally active poly (ADP-ribose) polymerase enzyme inhibitor, approved for treatment for the metastatic stage of prostate, pancreatic, breast and ovarian cancer. Due to its low bioavailability, an increase in dose and frequency is required to achieve therapeutic benefits, which also results in associated toxicity in patients. In the current study, OLP-loaded poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) (OLP-PLGA NPs) and a coating of OLP-PLGA NPs with chitosan (CS) (OLP-CS-PLGA NPs) were prepared successfully in order to improve the dissolution rate and bioavailability. The developed OLP-PLGA NPs were evaluated for hydrodynamic particle size (392 ± 5.3 nm), PDI (0.360 ± 0.03), ZP (−26.9 ± 2.1 mV), EE (71.39 ± 5.5%) and DL (14.86 ± 1.4%), and OLP-CS-PLGA NPs, hydrodynamic particle size (622 ± 9.5 nm), PDI (0.321 ± 0.02), ZP (+36.0 ± 1.7 mV), EE (84.78 ± 6.3%) and DL (11.05 ± 2.6%). The in vitro release profile of both developed NPs showed a sustained release pattern. Moreover, the pharmacokinetics results exhibited a 2.0- and 4.75-fold increase in the bioavailability of OLP-PLGA NPs and OLP-CS-PLGA NPs, respectively, compared to normal OLP suspension. The results revealed that OLP-CS-PLGA NPs could be an effective approach to sustaining and improving the bioavailability of OLP.
Collapse
|
41
|
Awad R, Avital A, Sosnik A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharm Sin B 2022; 13:1866-1886. [DOI: 10.1016/j.apsb.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/01/2022] Open
|
42
|
de Figueiredo DB, Kaneko K, Rodrigues TDC, MacLoughlin R, Miyaji EN, Saleem I, Gonçalves VM. Pneumococcal Surface Protein A-Hybrid Nanoparticles Protect Mice from Lethal Challenge after Mucosal Immunization Targeting the Lungs. Pharmaceutics 2022; 14:pharmaceutics14061238. [PMID: 35745810 PMCID: PMC9230107 DOI: 10.3390/pharmaceutics14061238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 12/04/2022] Open
Abstract
Pneumococcal disease remains a global burden, with current conjugated vaccines offering protection against the common serotype strains. However, there are over 100 serotype strains, and serotype replacement is now being observed, which reduces the effectiveness of the current vaccines. Pneumococcal surface protein A (PspA) has been investigated as a candidate for new serotype-independent pneumococcal vaccines, but requires adjuvants and/or delivery systems to improve protection. Polymeric nanoparticles (NPs) are biocompatible and, besides the antigen, can incorporate mucoadhesive and adjuvant substances such as chitosans, which improve antigen presentation at mucosal surfaces. This work aimed to define the optimal NP formulation to deliver PspA into the lungs and protect mice against lethal challenge. We prepared poly(glycerol-adipate-co-ω-pentadecalactone) (PGA-co-PDL) and poly(lactic-co-glycolic acid) (PLGA) NPs using an emulsion/solvent evaporation method, incorporating chitosan hydrochloride (HCl-CS) or carboxymethyl chitosan (CM-CS) as hybrid NPs with encapsulated or adsorbed PspA. We investigated the physicochemical properties of NPs, together with the PspA integrity and biological activity. Furthermore, their ability to activate dendritic cells in vitro was evaluated, followed by mucosal immunization targeting mouse lungs. PGA-co-PDL/HCl-CS (291 nm) or CM-CS (281 nm) NPs produced smaller sizes compared to PLGA/HCl-CS (310 nm) or CM-CS (299 nm) NPs. Moreover, NPs formulated with HCl-CS possessed a positive charge (PGA-co-PDL +17 mV, PLGA + 13 mV) compared to those formulated with CM-CS (PGA-co-PDL -20 mV, PLGA -40 mV). PspA released from NPs formulated with HCl-CS preserved the integrity and biological activity, but CM-CS affected PspA binding to lactoferrin and antibody recognition. PspA adsorbed in PGA-co-PDL/HCl-CS NPs stimulated CD80+ and CD86+ cells, but this was lower compared to when PspA was encapsulated in PLGA/HCl-CS NPs, which also stimulated CD40+ and MHC II (I-A/I-E)+ cells. Despite no differences in IgG being observed between immunized animals, PGA-co-PDL/HCl-CS/adsorbed-PspA protected 83% of mice after lethal pneumococcal challenge, while 100% of mice immunized with PLGA/HCl-CS/encapsulated-PspA were protected. Therefore, this formulation is a promising vaccine strategy, which has beneficial properties for mucosal immunization and could potentially provide serotype-independent protection.
Collapse
Affiliation(s)
- Douglas Borges de Figueiredo
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-070, Brazil;
| | - Kan Kaneko
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Tasson da Costa Rodrigues
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-070, Brazil;
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen, IDA Business Park, H91 HE94 Galway, Ireland;
| | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Imran Saleem
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
- Correspondence: (I.S.); (V.M.G.); Tel.: +55-112-6279819 (V.M.G.)
| | - Viviane Maimoni Gonçalves
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Correspondence: (I.S.); (V.M.G.); Tel.: +55-112-6279819 (V.M.G.)
| |
Collapse
|
43
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
44
|
Yang L, Shuyuan S, Huang G, Yingchong C, Shen B, Yue P. Nanocrystals based mucosal delivery system: Research Advances. Drug Dev Ind Pharm 2022; 47:1700-1712. [PMID: 35287534 DOI: 10.1080/03639045.2022.2053985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanocrystal technology is a new way to increase the solubility and bioavailability of poorly soluble drugs. As an intermediate preparation technology, nanocrystals are widely used in drug delivery for oral, venous, percutneous and inhalation administration, which exhibits a broad application prospect. By referring to the domestic anforeign literatures, this paper mainly reviews the preparation methods of nanocrystals for poorly soluble natural products and its application in the mucosal delivery for skin, eye, oral cavity and nasal cavity. This can provide the reference for the research and development of nanocrystal technology in natural product preparations.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Shuai Shuyuan
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Guiting Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Chen Yingchong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, NanChang 330004, China
| |
Collapse
|
45
|
Alu A, Chen L, Lei H, Wei Y, Tian X, Wei X. Intranasal COVID-19 vaccines: From bench to bed. EBioMedicine 2022; 76:103841. [PMID: 35085851 PMCID: PMC8785603 DOI: 10.1016/j.ebiom.2022.103841] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/05/2023] Open
Abstract
Currently licensed COVID-19 vaccines are all designed for intramuscular (IM) immunization. However, vaccination today failed to prevent the virus infection through the upper respiratory tract, which is partially due to the absence of mucosal immunity activation. Despite the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, the next generation of COVID-19 vaccine is in demand and intranasal (IN) vaccination method has been demonstrated to be potent in inducing both mucosal and systemic immune responses. Presently, although not licensed, various IN vaccines against SARS-CoV-2 are under intensive investigation, with 12 candidates reaching clinical trials at different phases. In this review, we give a detailed description about current status of IN COVID-19 vaccines, including virus-vectored vaccines, recombinant subunit vaccines and live attenuated vaccines. The ongoing clinical trials for IN vaccines are highlighted. Additionally, the underlying mechanisms of mucosal immunity and potential mucosal adjuvants and nasal delivery devices are also summarized.
Collapse
Affiliation(s)
- Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
46
|
Yee Kuen C, Masarudin MJ. Chitosan Nanoparticle-Based System: A New Insight into the Promising Controlled Release System for Lung Cancer Treatment. Molecules 2022; 27:473. [PMID: 35056788 PMCID: PMC8778092 DOI: 10.3390/molecules27020473] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has been recognized as one of the most often diagnosed and perhaps most lethal cancer diseases worldwide. Conventional chemotherapy for lung cancer-related diseases has bumped into various limitations and challenges, including non-targeted drug delivery, short drug retention period, low therapeutic efficacy, and multidrug resistance (MDR). Chitosan (CS), a natural polymer derived from deacetylation of chitin, and comprised of arbitrarily distributed β-(1-4)-linked d-glucosamine (deacetylated unit) and N-acetyl-d-glucosamine (acetylated unit) that exhibits magnificent characteristics, including being mucoadhesive, biodegradable, and biocompatible, has emerged as an essential element for the development of a nano-particulate delivery vehicle. Additionally, the flexibility of CS structure due to the free protonable amino groups in the CS backbone has made it easy for the modification and functionalization of CS to be developed into a nanoparticle system with high adaptability in lung cancer treatment. In this review, the current state of chitosan nanoparticle (CNP) systems, including the advantages, challenges, and opportunities, will be discussed, followed by drug release mechanisms and mathematical kinetic models. Subsequently, various modification routes of CNP for improved and enhanced therapeutic efficacy, as well as other restrictions of conventional drug administration for lung cancer treatment, are covered.
Collapse
Affiliation(s)
- Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
47
|
Yang F, Cabe M, Nowak HA, Langert KA. Chitosan/poly(lactic-co-glycolic)acid Nanoparticle Formulations with Finely-Tuned Size Distributions for Enhanced Mucoadhesion. Pharmaceutics 2022; 14:95. [PMID: 35056991 PMCID: PMC8778482 DOI: 10.3390/pharmaceutics14010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 02/04/2023] Open
Abstract
Non-parenteral drug delivery systems using biomaterials have advantages over traditional parenteral strategies. For ocular and intranasal delivery, nanoparticulate systems must bind to and permeate through mucosal epithelium and other biological barriers. The incorporation of mucoadhesive and permeation-enhancing biomaterials such as chitosan facilitate this, but tend to increase the size and polydispersity of the nanoparticles, making practical optimization and implementation of mucoadhesive nanoparticle formulations a challenge. In this study, we adjusted key poly(lactic-co-glycolic) acid (PLGA) nanoparticle formulation parameters including the organic solvent and co-solvent, the concentration of polymer in the organic phase, the composition of the aqueous phase, the sonication amplitude, and the inclusion of chitosan in the aqueous phase. By doing so, we prepared four statistically unique size groups of PLGA NPs and equally-sized chitosan-PLGA NP counterparts. We loaded simvastatin, a candidate for novel ocular and intranasal delivery systems, into the nanoparticles to investigate the effects of size and surface modification on drug loading and release, and we quantified size- and surface-dependent changes in mucoadhesion in vitro. These methods and findings will contribute to the advancement of mucoadhesive nanoformulations for ocular and nose-to-brain drug delivery.
Collapse
Affiliation(s)
- Feipeng Yang
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Maleen Cabe
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Hope A Nowak
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| | - Kelly A Langert
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
- Research Service, Edward Hines, Jr., VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
48
|
Dondulkar A, Akojwar N, Katta C, Khatri DK, Mehra NK, Singh SB, Madan J. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2021; 28:395-409. [PMID: 34736378 DOI: 10.2174/1381612827666211104155604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death in millions of cancer patients. Lack of diagnosis at an early stage in addition to no specific guidelines for its treatment, and a higher rate of treatment-related toxicity further deteriorate the conditions. Current therapies encompass surgery, chemotherapy, radiation therapy, and immunotherapy according to the pattern and the stage of lung cancer. Among all, with a longlasting therapeutic action, reduced side-effects, and a higher rate of survival, therapeutic cancer vaccine is a new, improved strategy for treating NSCLC. Immunoadjuvants are usually incorporated into the therapeutic vaccines to shield the antigen against environmental and physiological harsh conditions in addition to boosting the immune potential. Conventional immunoadjuvants are often associated with an inadequate cellular response, poor target specificity, and low antigen load. Recently, inhalable polymeric nano/micro immunoadjuvants have exhibited immense potential in the development of therapeutic vaccines for the treatment of NSCLC with improved mucosal immunization. The development of polymeric micro/nano immunoadjuvants brought a new era for vaccines with increased strength and efficiency. Therefore, in the present review, we explained the potential application of micro/nano immunoadjuvants for augmenting the stability and efficacy of inhalable vaccines in the treatment of NSCLC. In addition, the role of biodegradable, biocompatible, and non-toxic polymers has also been discussed with case studies.
Collapse
Affiliation(s)
- Ayusha Dondulkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Natasha Akojwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Chanti Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Dharmendra K Khatri
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Neelesh K Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Shashi B Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| |
Collapse
|
49
|
Chitosan for biomedical applications, promising antidiabetic drug delivery system, and new diabetes mellitus treatment based on stem cell. Int J Biol Macromol 2021; 190:417-432. [PMID: 34450151 DOI: 10.1016/j.ijbiomac.2021.08.154] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Since chitosan's excellent pharmacokinetic and chemical properties, it is an attractive and promising carbohydrate biopolymer in biomedical applications. Chitosan's beneficial function in the defense and propagation of pancreatic β cells, reducing hyperglycemia, and avoiding diabetes mellitus associated with impaired lipid metabolism has been demonstrated in several studies. Additionally, chitosan has also been used in various nanocarriers to deliver various antidiabetic drugs to reduce glucose levels. Herein, the first to provide the currently available potential benefits of chitosan in diabetes mellitus treatment focuses on chitosan-based nanocarriers for oral administration of various antidiabetic drugs nasal and subcutaneous passages. Moreover, chitosan is used to activate and deliver stem cells and differentiate them into cells similar to pancreatic beta cells as a new type of treatment for type one diabetes mellitus. The results of this review will be helpful in the development of promising treatments and better control of diabetes mellitus.
Collapse
|
50
|
Ponce M, Zuasti E, Reales E, Anguís V, Fernández-Díaz C. Evaluation of an oral DNA nanovaccine against photobacteriosis in Solea senegalensis. FISH & SHELLFISH IMMUNOLOGY 2021; 117:157-168. [PMID: 34358703 DOI: 10.1016/j.fsi.2021.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Infectious diseases are one of the main causes of social and economical losses in world aquaculture. Senegalese sole (Solea senegalensis) is an important species for aquaculture in southern Europe, whose production is affected by the appearance of bacterial diseases such as photobacteriosis, a septicemia caused by Photobacterium damselae subsp. piscicida (Phdp). The aim of this study was to obtain an oral DNA nanovaccine and to evaluate its efficacy against Phdp in S. senegalensis juveniles. For this purpose, the amplified product corresponding to the protein inosine-5'-monophophate dehydrogenase (IMPDH) from Phdp, was cloned into the expression vector pcDNA™6.2/C-EmGFP-GW obtaining the DNA vaccine named as pPDPimpdh. The correct transcription and protein expression was verified at 48 h post tansfection in HEK293 cells. Chitosan nanoparticles (CS-TPP NPs) were prepared by ionotropic gelation and their features were appropriate for use as oral delivery system. Therefore, pPDPimpdh was protected with chitosan CS-TPP NPs throughout complex coacervation method giving as a result a DNA nanovaccine referred as CS-TPP+pPDPimpdh NPs. Sole juveniles were vaccinated orally with CS-TPP NPs, pPDPimpdh and CS-TPP+pPDPimpdh NPs followed by a challenge with Phdp at 30 days post vaccination (dpv). The relative percentage survival (RPS) for pPDPimpdh vaccinated groups was 6.25%, probably due to its degradation in the digestive tract. RPS value obtained for CS-TPP NPs and CS-TPP+pPDPimpdh NPs was 40% and antibodies were observed in both cases. However, a delay in mortality was observed in sole juveniles vaccinated orally with CS-TPP+pPDPimpdh NPs. In fact, an upregulation of tf, mhcII, cd8a and igm in the posterior gut and c3, hamp1, tf and cd4 in spleen was observed in juveniles vaccinated with CS-TPP+pPDPimpdh NPs. After challenge, a modulation of cd8a and cd4 expression levels in the posterior gut and c3, tf, lyg, cd4, igm and igt expression levels in spleen was observed. Moreover, the concentration of lysozyme in skin mucus significantly increased in fish vaccinated orally with CS-TPP+pPDPimpdh NPs at 11 dpc. These data indicate that oral vaccination with CS-TPP+pPDPimpdh NPs could be acting through the non-specific immune responses as well as the specific humoral and cell mediated immunity and provide the first step toward a development of an oral DNA nanovaccine against Phdp in sole.
Collapse
Affiliation(s)
- Marian Ponce
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - Eugenia Zuasti
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Elena Reales
- Department of Organic Chemistry, School of Sciences, University of Cadiz, and Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cádiz, Spain
| | - Victoria Anguís
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain
| | - Catalina Fernández-Díaz
- IFAPA Centro El Toruño. Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| |
Collapse
|