1
|
De Domenico S, Toso A, De Rinaldis G, Mammone M, Fumarola LM, Piraino S, Leone A. Wild or Reared? Cassiopea andromeda Jellyfish as a Potential Biofactory. Mar Drugs 2025; 23:19. [PMID: 39852521 DOI: 10.3390/md23010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/26/2025] Open
Abstract
The zooxanthellate jellyfish Cassiopea andromeda (Forsskål, 1775), a Lessepsian species increasingly common in the western and central Mediterranean Sea, was investigated here to assess its potential as a source of bioactive compounds from medusa specimens both collected in the wild (the harbor of Palermo, NW Sicily) and reared under laboratory-controlled conditions. A standardized extraction protocol was used to analyze the biochemical composition of the two sampled populations in terms of protein, lipid, and pigment contents, as well as for their relative concentrations of dinoflagellate symbionts. The total extracts and their fractions were also biochemically characterized and analyzed for their in vitro antioxidant activity to quantify differences in functional compounds between wild and reared jellyfish. The two populations were similar in terms of extract yield, but with substantial differences in biomass, the number of zooxanthellae, protein and lipid contents, and fatty acid composition. The hydroalcoholic extracts obtained from jellyfish grown under controlled conditions showed greater antioxidant activity due to the presence of a higher content of bioactive compounds compared to wild jellyfish. This study could be the basis for considering the sustainable breeding of this holobiont or other similar organisms as a source of valuable compounds that can be used in the food, nutraceutical, or pharmaceutical sectors.
Collapse
Affiliation(s)
- Stefania De Domenico
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, (CNR-ISPA)-Lecce, Via Monteroni, 73100 Lecce, Italy
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Andrea Toso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Monteroni, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Gianluca De Rinaldis
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, (CNR-ISPA)-Lecce, Via Monteroni, 73100 Lecce, Italy
- ENEA Research Centre of Brindisi, Department of Sustainability, Circularity and Climate Change Adaption of Production and Territorial Systems, SS 7 Appia Km 706, 72100 Brindisi, Italy
| | - Marta Mammone
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | - Lara M Fumarola
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Monteroni, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Monteroni, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Antonella Leone
- Consiglio Nazionale delle Ricerche, Istituto di Scienze delle Produzioni Alimentari, (CNR-ISPA)-Lecce, Via Monteroni, 73100 Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Local Unit of Lecce, Via Monteroni, 73100 Lecce, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
2
|
Xie Y, Sun Y, Li R, Liu S, Xing R, Li P, Yu H. Superhydrophobic Surfaces as a Potential Skin Coating to Prevent Jellyfish Stings: Inhibition and Anti-Tentacle Adhesion in Nematocysts of Jellyfish Nemopilema nomurai. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5983. [PMID: 39685417 DOI: 10.3390/ma17235983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
The development of skin-protective materials that prevent the adhesion of cnidarian nematocysts and enhance the mechanical strength of these materials is crucial for addressing the issue of jellyfish stings. This study aimed to construct superhydrophobic nanomaterials capable of creating a surface that inhibits nematocyst adhesion, therefore preventing jellyfish stings. We investigated wettability and nematocyst adhesion on four different surfaces: gelatin, polydimethylsiloxane (PDMS), dodecyl trichlorosilane (DTS)-modified SiO2, and perfluorooctane triethoxysilane (PFOTS)-modified TiO2. Our findings revealed that an increase in hydrophobicity significantly inhibited nematocyst adhesion. Furthermore, DTS-modified sprayed SiO2 and PFOTS-modified sprated TiO2 were further enhanced with low-surface-energy substances-cellulose nanofibers (CNF) and chitin nanocrystals (ChNCs)-to improve both hydrophobicity and mechanical strength. After incorporating CNF and ChNCs, the surface of s-TiO2-ChNCs exhibited a contact angle of 153.49° even after undergoing abrasion and impact tests, and it maintained its hydrophobic properties with a contact angle of 115.21°. These results indicate that s-TiO2-ChNCs can serve as an effective skin coating to resist tentacle friction. In conclusion, this study underscores the importance of utilizing hydrophobic skin materials to inhibit the adhesion of tentacle nematocysts, providing a novel perspective for protection against jellyfish stings.
Collapse
Affiliation(s)
- Yichen Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rongfeng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
3
|
Prommasith P, Surayot U, Autsavapromporn N, Rod-in W, Rachtanapun P, Wangtueai S. Immunomodulatory, Anticancer, and Antioxidative Activities of Bioactive Peptide Fractions from Enzymatically Hydrolyzed White Jellyfish ( Lobonema smithii). Foods 2024; 13:3350. [PMID: 39517134 PMCID: PMC11545224 DOI: 10.3390/foods13213350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to develop bioactive protein hydrolysates from low-value edible jellyfish obtained from local fisheries using enzymatic hydrolysis. Fresh white jellyfish were hydrolyzed using several commercial proteases, including alcalase (WJH-Al), flavourzyme (WJH-Fl), and papain (WJH-Pa). The antioxidant, immunomodulatory, and anticancer activities of these white jellyfish hydrolysates (WJH) were investigated. The results demonstrated that the crude WJH exhibited strong antioxidant properties, including DPPH, ABTS, and hydroxyl radical scavenging activities, as well as ferric-reducing antioxidant power. Additionally, the hydrolysates showed notable immunomodulatory activity. However, all WJH samples displayed relatively low ability to inhibit HepG2 cell proliferation at the tested concentrations. Among the hydrolysates, WJH-Pa demonstrated the highest antioxidant and immunomodulatory activities and was therefore selected for further bioactive peptide isolation and characterization. Ultrafiltration membranes with three molecular weight (MW) cut-offs (1, 3, 10 kDa) were used for peptide fractionation from WJH-Pa. Six potential peptides were identified with the MW range of 1049-1292 Da, comprising 9-12 residues, which exhibited strong antioxidant and immunomodulatory activities.
Collapse
Affiliation(s)
| | - Utoomporn Surayot
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovation for Sustainable Seafood Industry and Value Chain Management, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weerawan Rod-in
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Pornchai Rachtanapun
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sutee Wangtueai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Cluster of Innovation for Sustainable Seafood Industry and Value Chain Management, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
4
|
Wang B, Zhang P, Wang Q, Zou S, Song J, Zhang F, Liu G, Zhang L. Protective Effects of a Jellyfish-Derived Thioredoxin Fused with Cell-Penetrating Peptide TAT-PTD on H 2O 2-Induced Oxidative Damage. Int J Mol Sci 2023; 24:ijms24087340. [PMID: 37108504 PMCID: PMC10138494 DOI: 10.3390/ijms24087340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Thioredoxin (Trx) plays a critical role in maintaining redox balance in various cells and exhibits anti-oxidative, anti-apoptotic, and anti-inflammatory effects. However, whether exogenous Trx can inhibit intracellular oxidative damage has not been investigated. In previous study, we have identified a novel Trx from the jellyfish Cyanea capillata, named CcTrx1, and confirmed its antioxidant activities in vitro. Here, we obtained a recombinant protein, PTD-CcTrx1, which is a fusion of CcTrx1 and protein transduction domain (PTD) of HIV TAT protein. The transmembrane ability and antioxidant activities of PTD-CcTrx1, and its protective effects against H2O2-induced oxidative damage in HaCaT cells were also detected. Our results revealed that PTD-CcTrx1 exhibited specific transmembrane ability and antioxidant activities, and it could significantly attenuate the intracellular oxidative stress, inhibit H2O2-induced apoptosis, and protect HaCaT cells from oxidative damage. The present study provides critical evidence for application of PTD-CcTrx1 as a novel antioxidant to treat skin oxidative damage in the future.
Collapse
Affiliation(s)
- Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
- Department of Infectious Disease, No. 971 Hospital of the PLA Navy, Qingdao 266071, China
| | - Peipei Zhang
- Department of Marine Biological Injury and Dermatology, Naval Special Medical Center, Naval Medical University, Shanghai 200052, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Juxingsi Song
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
5
|
Cadar E, Pesterau AM, Sirbu R, Negreanu-Pirjol BS, Tomescu CL. Jellyfishes—Significant Marine Resources with Potential in the Wound-Healing Process: A Review. Mar Drugs 2023; 21:md21040201. [PMID: 37103346 PMCID: PMC10142942 DOI: 10.3390/md21040201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.
Collapse
|
6
|
Riccio G, Martinez KA, Martín J, Reyes F, D’Ambra I, Lauritano C. Jellyfish as an Alternative Source of Bioactive Antiproliferative Compounds. Mar Drugs 2022; 20:md20060350. [PMID: 35736153 PMCID: PMC9227539 DOI: 10.3390/md20060350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Jellyfish are commonly considered a nuisance for their negative effects on human activities (e.g., fisheries, power plants and tourism) and human health. However, jellyfish provide several benefits to humans and are commonly eaten in eastern countries. Additionally, recent studies have suggested that jellyfish may become a source of high-value molecules. In this study, we tested the effects of the methanolic extracts and enriched fractions, obtained by solid-phase extraction fractionation, from the scyphomedusae Pelagia noctiluca, Rhizostoma pulmo, Cotylorhiza tuberculata and the cubomedusa Caryddea marsupialis on different human cancer cell lines in order to evaluate a potential antiproliferative activity. Our results indicated that fraction C from Caryddea marsupialis-(CM) and C. tuberculata oral arms (CTOA) were the most active to reduce cell viability in a dose-dependent manner. LC/MS based dereplication analyses highlighted that both bioactive fractions contained mainly fatty acids and derivatives, with CM additionally containing small peptides (0.7–0.8 kDa), which might contribute to its higher biological activity. The mechanism of action behind the most active fraction was investigated using PCR arrays. Results showed that the fraction C of CM can reduce the expression of genes involved in apoptosis inhibition in melanoma-treated cells, which makes jellyfish a potential new source of antiproliferative drugs to be exploited in the future.
Collapse
Affiliation(s)
- Gennaro Riccio
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Kevin A. Martinez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (K.A.M.); (J.M.); (F.R.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (K.A.M.); (J.M.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (K.A.M.); (J.M.); (F.R.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: ; Tel.: +39-0815833221
| |
Collapse
|
7
|
D’Ambra I, Merquiol L. Jellyfish from Fisheries By-Catches as a Sustainable Source of High-Value Compounds with Biotechnological Applications. Mar Drugs 2022; 20:266. [PMID: 35447939 PMCID: PMC9029601 DOI: 10.3390/md20040266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The world's population growth and consequent increased demand for food, energy and materials together with the decrease of some natural resources have highlighted the compelling need to use sustainably existing resources and find alternative sources to satisfy the needs of growing and longer-aging populations. In this review, we explore the potential use of a specific fisheries by-catch, jellyfish, as a sustainable source of high-value compounds. Jellyfish are often caught up with fish into fishing gear and nets, then sorted and discarded. Conversely, we suggest that this by-catch may be used to obtain food, nutraceutical products, collagen, toxins and fluorescent compounds to be used for biomedical applications and mucus for biomaterials. These applications are based on studies which indicate the feasibility of using jellyfish for biotechnology. Because jellyfish exhibit seasonal fluctuations in abundance, jellyfish by-catches likely follow the same pattern. Therefore, this resource may not be constantly available throughout the year, so the exploitation of the variable abundances needs to be optimized. Despite the lack of data about jellyfish by-catches, the high value of their compounds and their wide range of applications suggest that jellyfish by-catches are a resource which is discarded at present, but needs to be re-evaluated for exploitation within the context of a circular economy in the era of zero waste.
Collapse
Affiliation(s)
- Isabella D’Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | | |
Collapse
|