1
|
Chi J, Wu N, Li P, Hu J, Cai H, Lin C, Lai Y, Yang H, Huang J, Li M, Xu L. Hygrothermal stress increases malignant arrhythmias susceptibility by inhibiting the LKB1-AMPK-Cx43 pathway. Sci Rep 2024; 14:5010. [PMID: 38424223 PMCID: PMC10904738 DOI: 10.1038/s41598-024-55804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
High mortality due to hygrothermal stress during heat waves is mostly linked to cardiovascular malfunction, the most serious of which are malignant arrhythmias. However, the mechanism associated with hygrothermal stress leading to malignant arrhythmias remains unclear. The energy metabolism regulated by liver kinase B1 (LKB1) and adenosine monophosphate-activated protein kinase (AMPK) and the electrical signaling based on gap junction protein, connexin43 (Cx43), plays important roles in the development of cardiac arrhythmias. In order to investigate whether hygrothermal stress induces arrhythmias via the LKB1-AMPK-Cx43 pathway, Sprague-Dawley rats were exposed to high temperature and humidity for constructing the hygrothermal stress model. A final choice of 40 °C and 85% humidity was made by pre-exploration based on different gradient environmental conditions with reference to arrhythmia event-inducing stability and risk of sudden death. Then, the incidence of arrhythmic events, as well as the expression, phosphorylation at Ser368, and distribution of Cx43 in the myocardium, were examined. Meanwhile, the adenosine monophosphate-activated protein kinase activator, Acadesine, was also administered to investigate the role played by AMPK in the process. Our results showed that hygrothermal stress induced malignant arrhythmias such as ventricular tachycardia, ventricular fibrillation, and severe atrioventricular block. Besides, hygrothermal stress decreased the phosphorylation of Cx43 at Ser368, induced proarrhythmic redistribution of Cx43 from polar to lateral sides of the cardiomyocytes, and also caused LKB1 and phosphorylated-AMPK expression to be less abundant. While, pretreatment with Acadesine significantly actived the LKB1-AMPK-Cx43 pathway and thus ameliorated malignant arrhythmias, indicating that the hygrothermal stress-induced arrhythmias is associated with the redistribution of gap junctions in cardiomyocytes and the organism's energy metabolism.
Collapse
Affiliation(s)
- Jianing Chi
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China
| | - Ningxia Wu
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pengfei Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jiaman Hu
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hua Cai
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cailong Lin
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yingying Lai
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Han Yang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Jianyu Huang
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Min Li
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China
| | - Lin Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Geriatric Cardiology, General Hospital of Southern Theater Command, Guangzhou, China.
- Branch of National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Guangzhou, China.
- Guangzhou Key Laboratory of Cardiac Rehabilitation, Guangzhou, China.
| |
Collapse
|
2
|
Liu F, Zhu H, Ma J, Miao L, Chen S, Yin Z, Wang H. Performance of iCare quantitative computed tomography in bone mineral density assessment of the hip and vertebral bodies in European spine phantom. J Orthop Surg Res 2023; 18:777. [PMID: 37845720 PMCID: PMC10578019 DOI: 10.1186/s13018-023-04174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Osteoporosis is a systemic bone disease which can increase the risk of osteoporotic fractures. Dual-energy X-ray absorptiometry (DXA) is considered as the clinical standard for diagnosing osteoporosis by detecting the bone mineral density (BMD) in patients, but it has flaws in distinguishing between calcification and other degenerative diseases, thus leading to inaccurate BMD levels in subjects. Mindways quantitative computed tomography (Mindways QCT) is a classical QCT system. Similar to DXA, Mindways QCT can directly present the density of trabecular bone, vascular or tissue calcification; therefore, it is more accurate and sensitive than DXA and has been widely applied in clinic to evaluate osteoporosis. iCare QCT osteodensitometry was a new phantom-based QCT system, recently developed by iCare Inc. (China). It has been gradually applied in clinic by its superiority of taking 3-dimensional BMD of bone and converting BMD values to T value automatically. This study aimed at evaluating the osteoporosis detection rate of iCare QCT, compared with synchronous Mindways QCT (USA). METHODS In this study, 131 patients who underwent hip phantom-based CT scan were included. Bone mineral density (BMD) of the unified region of interests (ROI) defined at the European spine phantom (ESP, German QRM) including L1 (low), L2 (medium), and L3 (high) vertebral bodies was detected for QCT quality control and horizontal calibration. Every ESP scan were taken for 10 times, and the mean BMD values measured by iCare QCT and Mindways QCT were compared. Hip CT scan was conducted with ESP as calibration individually. T-scores gained from iCare QCT and Mindways QCT were analyzed with Pearson correlation test. The detection rates of osteoporosis were compared between iCare QCT and Mindways QCT. The unified region of interests (ROI) was delineated in the QCT software. RESULTS The results showed that there was no significant difference between iCare QCT and Mindways QCT in the evaluation of L1, L2, and L3 vertebrae bodies in ESP. A strong correlation between iCare QCT and Mindways QCT in the assessment of hip T-score was found. It was illustrated that iCare QCT had a higher detection rate of osteoporosis with the assessment of hip T-score than Mindways QCT did. In patients < 50 years subgroup, the detection rate of osteoporosis with iCare QCT and Mindways QCT was equal. In patients ≥ 50 years subgroup, the detection rate of osteoporosis with iCare QCT (35/92, 38.0%) was higher than that with Mindways QCT. In female subgroup, the detection rate of osteoporosis with iCare QCT was significantly higher than Mindways QCT. In male subgroup, the detection rate of osteoporosis with iCare QCT was also markedly higher than Mindways QCT. The detection rate of osteoporosis by iCare QCT was higher than Mindways QCT with hip bone assessment. Of course, the results of the present study remain to be further verified by multicenter studies in the future.
Collapse
Affiliation(s)
- Feng Liu
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China
| | - Hongmei Zhu
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China
| | - Jinlian Ma
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China
| | - Liqiong Miao
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China
| | - Shuang Chen
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China
| | - Zijie Yin
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China
| | - Huan Wang
- Department of Medical Imaging, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, 130 Renmin Zhong Lu, Jiangyin City, 214400, Jiangsu Province, China.
| |
Collapse
|
3
|
An L, Gao H, Zhong Y, Liu Y, Cao Y, Yi J, Huang X, Wen C, Tong R, Pan Z, Yan X, Liu M, Wang S, Wu H, Hu T. The potential roles of stress-induced phosphoprotein 1 and connexin 43 in rats with reperfusion arrhythmia. Immun Inflamm Dis 2023; 11:e852. [PMID: 37904692 PMCID: PMC10546868 DOI: 10.1002/iid3.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 11/01/2023] Open
Abstract
OBJECTIVE Connexin 43 (Cx43) is a critical gene for maintaining myocardial homeostasis. Interestingly, Cx43 and stress-induced phosphoprotein 1 (STIP1) were recorded to be lowly expressed in ischemia/reperfusion (I/R). However, their impacts on reperfusion arrhythmia (RA) remain to be explored. Our study aimed to find out the related underlying mechanisms. METHODS After the establishment of an isolated heart model through Langendorff perfusion, the heart rate, conduction activation time, conduction velocity, and conduction direction of the left ventricle were evaluated, along with the apoptotic rate detection in the collected myocardial tissues. After the construction of a hypoxia/reoxygenation (H/R)-induced cellular model, cell apoptosis, intercellular communication, cell viability, and the content of reactive oxygen species, superoxide dismutase, malondialdehyde, and lactic dehydrogenase were measured. The expression of Cx43 and STIP1 was determined in both rat heart and cell models. The bindings of STIP3 and Cx43 to heat shock protein 90 (HSP90) and heat shock protein 70 (HSP70) were verified. RESULTS Relative to the corresponding controls, Cx43 and STIP1 were decreased in myocardial tissues of RA rats and H/R-stimulated H9C2 cells, where Cx43-binding HSP70 and HSP90 were respectively increased and decreased, and ubiquitination level of Cx43 was enhanced. STIP1 overexpression promoted protein expression of Cx43, intercellular communication, and cell viability, and reduced cell apoptosis and oxidative stress in H/R-stimulated H9C2 cells. CONCLUSION STIP1 promoted Cx43 expression to improve intercellular communication and reduce oxidative stress in H/R-stimulated H9C2 cells.
Collapse
Affiliation(s)
- Li An
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
- Translational Medicine Research CenterGuizhou Medical UniversityGuiyangGuizhouChina
| | - Hong Gao
- Department of AnesthesiologyGuizhou Hospital of The 1st Affiliated Hospital, Sun Yat‐sen UniversityGuiyangGuizhouChina
| | - Yi Zhong
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Yanqiu Liu
- Department of AnesthesiologyGuiyang Fourth People's HospitalGuiyangGuizhouChina
| | - Ying Cao
- Department of AnesthesiologyGuiyang Second People's HospitalGuiyangGuizhouChina
| | - Jing Yi
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Xiang Huang
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Chunlei Wen
- Department of AnesthesiologyChildren's Hospital of Guiyang Maternal and Child Health HospitalGuiyangGuizhouChina
| | - Rui Tong
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Zhijun Pan
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Xu Yan
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Meiyan Liu
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Shengzhao Wang
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Hao Wu
- School of AnesthesiologyGuizhou Medical UniversityGuiyangGuizhouChina
| | - Tingju Hu
- Department of AnaesthesiologyAffiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| |
Collapse
|
4
|
Sykora M, Andelova K, Szeiffova Bacova B, Egan Benova T, Martiskova A, Knezl V, Tribulova N. Hypertension Induces Pro-arrhythmic Cardiac Connexome Disorders: Protective Effects of Treatment. Biomolecules 2023; 13:biom13020330. [PMID: 36830700 PMCID: PMC9953310 DOI: 10.3390/biom13020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
Prolonged population aging and unhealthy lifestyles contribute to the progressive prevalence of arterial hypertension. This is accompanied by low-grade inflammation and over time results in heart dysfunction and failure. Hypertension-induced myocardial structural and ion channel remodeling facilitates the development of both atrial and ventricular fibrillation, and these increase the risk of stroke and sudden death. Herein, we elucidate hypertension-induced impairment of "connexome" cardiomyocyte junctions. This complex ensures cell-to-cell adhesion and coupling for electrical and molecular signal propagation. Connexome dysfunction can be a key factor in promoting the occurrence of both cardiac arrhythmias and heart failure. However, the available literature indicates that arterial hypertension treatment can hamper myocardial structural remodeling, hypertrophy and/or fibrosis, and preserve connexome function. This suggests the pleiotropic effects of antihypertensive agents, including anti-inflammatory. Therefore, further research is required to identify specific molecular targets and pathways that will protect connexomes, and it is also necessary to develop new approaches to maintain heart function in patients suffering from primary or pulmonary arterial hypertension.
Collapse
|
5
|
Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM. Biomedicines 2022; 10:biomedicines10071707. [PMID: 35885012 PMCID: PMC9313296 DOI: 10.3390/biomedicines10071707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The hearts of spontaneously hypertensive rats (SHR) are prone to malignant arrhythmias, mainly due to disorders of electrical coupling protein Cx43 and the extracellular matrix. Cold acclimation may induce cardio-protection, but the underlying mechanisms remain to be elucidated. We aimed to explore whether the adaptation of 9-month-old hairless SHRM to cold impacts the fundamental cardiac pro-arrhythmia factors, as well as the response to the thyroid status. There were no significant differences in the registered biometric, redox and blood lipids parameters between hairless (SHRM) and wild type SHR. Prominent findings revealed that myocardial Cx43 and its variant phosphorylated at serine 368 were increased, while an abnormal cardiomyocyte Cx43 distribution was attenuated in hairless SHRM vs. wild type SHR males and females. Moreover, the level of β-catenin, ensuring mechanoelectrical coupling, was increased as well, while extracellular matrix collagen-1 and hydroxyproline were lower and the TGF-β1 and SMAD2/3 pathway was suppressed in hairless SHRM males compared to the wild type strain. Of interest, the extracellular matrix remodeling was less pronounced in females of both hypertensive strains. There were no apparent differences in response to the hypothyroid or hyperthyroid status between SHR strains concerning the examined markers. Our findings imply that hairless SHRM benefit from cold acclimation due to the attenuation of the hypertension-induced adverse downregulation of Cx43 and upregulation of extracellular matrix proteins.
Collapse
|
6
|
Andelova K, Bacova BS, Sykora M, Hlivak P, Barancik M, Tribulova N. Mechanisms Underlying Antiarrhythmic Properties of Cardioprotective Agents Impacting Inflammation and Oxidative Stress. Int J Mol Sci 2022; 23:1416. [PMID: 35163340 PMCID: PMC8835881 DOI: 10.3390/ijms23031416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
The prevention of cardiac life-threatening ventricular fibrillation and stroke-provoking atrial fibrillation remains a serious global clinical issue, with ongoing need for novel approaches. Numerous experimental and clinical studies suggest that oxidative stress and inflammation are deleterious to cardiovascular health, and can increase heart susceptibility to arrhythmias. It is quite interesting, however, that various cardio-protective compounds with antiarrhythmic properties are potent anti-oxidative and anti-inflammatory agents. These most likely target the pro-arrhythmia primary mechanisms. This review and literature-based analysis presents a realistic view of antiarrhythmic efficacy and the molecular mechanisms of current pharmaceuticals in clinical use. These include the sodium-glucose cotransporter-2 inhibitors used in diabetes treatment, statins in dyslipidemia and naturally protective omega-3 fatty acids. This approach supports the hypothesis that prevention or attenuation of oxidative and inflammatory stress can abolish pro-arrhythmic factors and the development of an arrhythmia substrate. This could prove a powerful tool of reducing cardiac arrhythmia burden.
Collapse
Affiliation(s)
- Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Barbara Szeiffova Bacova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Peter Hlivak
- Department of Arrhythmias and Pacing, National Institute of Cardiovascular Diseases, Pod Krásnou Hôrkou 1, 83348 Bratislava, Slovakia;
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Dúbravská Cesta 9, 84104 Bratislava, Slovakia; (K.A.); (M.S.); (M.B.)
| |
Collapse
|