1
|
Pease SK, Egerton TA, Reece KS, Sanderson MP, Onofrio MD, Yeargan E, Wood A, Roach A, Huang ISW, Scott GP, Place AR, Hayes AM, Smith JL. Co-occurrence of marine and freshwater phycotoxins in oysters, and analysis of possible predictors for management. Toxicon X 2023; 19:100166. [PMID: 37448555 PMCID: PMC10336265 DOI: 10.1016/j.toxcx.2023.100166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 07/15/2023] Open
Abstract
Oysters (Crassostrea virginica) were screened for 12 phycotoxins over two years in nearshore waters to collect baseline phycotoxin data and to determine prevalence of phycotoxin co-occurrence in the commercially and ecologically-relevant species. Trace to low concentrations of azaspiracid-1 and -2 (AZA1, AZA2), domoic acid (DA), okadaic acid (OA), and dinophysistoxin-1 (DTX1) were detected, orders of magnitude below seafood safety action levels. Microcystins (MCs), MC-RR and MC-YR, were also found in oysters (maximum: 7.12 μg MC-RR/kg shellfish meat wet weight), warranting consideration of developing action levels for freshwater phycotoxins in marine shellfish. Oysters contained phycotoxins that impair shellfish health: karlotoxin1-1 and 1-3 (KmTx1-1, KmTx1-3), goniodomin A (GDA), and pectenotoxin-2 (PTX2). Co-occurrence of phycotoxins in oysters was common (54%, n = 81). AZAs and DA co-occurred most frequently of the phycotoxins investigated that are a concern for human health (n = 13) and PTX2 and KmTxs co-occurred most frequently amongst the phycotoxins of concern for shellfish health (n = 9). Various harmful algal bloom (HAB) monitoring methods and tools were assessed for their effectiveness at indicating levels of phycotoxins in oysters. These included co-deployed solid phase adsorption toxin tracking (SPATT) devices, toxin levels in particulate organic matter (POM, >1.5 μm) and whole water samples and cell concentrations from water samples as determined by microscopy and quantitative real-time PCR (qPCR). The dominant phycotoxin varied between SPATTs and all other phycotoxin sample types, and out of the 11 phycotoxins detected in oysters, only four and seven were detected in POM and whole water respectively, indicating phycotoxin profile mismatch between ecosystem compartments. Nevertheless, there were correlations between DA in oysters and whole water (simple linear regression [LR]: R2 = 0.6, p < 0.0001, n = 40), and PTX2 in oysters and SPATTs (LR: R2 = 0.3, p = 0.001, n = 36), providing additional monitoring tools for these phycotoxins, but oyster samples remain the best overall indicators of seafood safety.
Collapse
Affiliation(s)
- Sarah K.D. Pease
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Todd A. Egerton
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Kimberly S. Reece
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Marta P. Sanderson
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Michelle D. Onofrio
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Evan Yeargan
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Adam Wood
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - Amanda Roach
- Division of Shellfish Safety and Waterborne Hazards, Virginia Department of Health, Norfolk, VA, 23510, USA
| | - I-Shuo Wade Huang
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Gail P. Scott
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Allen R. Place
- Institute of Marine and Environmental Technology, University of Maryland, Center for Environmental Sciences, Baltimore, MD, 21202, USA
| | - Amy M. Hayes
- Public Health Toxicology Program, Virginia Department of Health, Richmond, VA, 23219, USA
| | - Juliette L. Smith
- Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| |
Collapse
|
2
|
Kamali N, Abbas F, Lehane M, Griew M, Furey A. A Review of In Situ Methods-Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the Collection and Concentration of Marine Biotoxins and Pharmaceuticals in Environmental Waters. Molecules 2022; 27:7898. [PMID: 36431996 PMCID: PMC9698218 DOI: 10.3390/molecules27227898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) are in situ methods that have been applied to pre-concentrate a range of marine toxins, pesticides and pharmaceutical compounds that occur at low levels in marine and environmental waters. Recent research has identified the widespread distribution of biotoxins and pharmaceuticals in environmental waters (marine, brackish and freshwater) highlighting the need for the development of effective techniques to generate accurate quantitative water system profiles. In this manuscript, we reviewed in situ methods known as Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) for the collection and concentration of marine biotoxins, freshwater cyanotoxins and pharmaceuticals in environmental waters since the 1980s to present. Twelve different adsorption substrates in SPATT and 18 different sorbents in POCIS were reviewed for their ability to absorb a range of lipophilic and hydrophilic marine biotoxins, pharmaceuticals, pesticides, antibiotics and microcystins in marine water, freshwater and wastewater. This review suggests the gaps in reported studies, outlines future research possibilities and guides researchers who wish to work on water contaminates using Solid Phase Adsorption Toxin Tracking (SPATT) and Polar Organic Chemical Integrative Sampler (POCIS) technologies.
Collapse
Affiliation(s)
- Naghmeh Kamali
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Feras Abbas
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Lehane
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| | - Michael Griew
- HALPIN Centre for Research & Innovation, National Maritime College of Ireland (NMCI), Munster Technological University (MTU), P43 XV65 Ringaskiddy, Ireland
| | - Ambrose Furey
- Mass Spectrometry Group, Department Physical Sciences, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
- CREATE (Centre for Research in Advanced Therapeutic Engineering) and BioExplore, Munster Technological University (MTU), Rossa Avenue, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
3
|
Rubini S, Albonetti S, Menotta S, Cervo A, Callegari E, Cangini M, Dall’Ara S, Baldini E, Vertuani S, Manfredini S. New Trends in the Occurrence of Yessotoxins in the Northwestern Adriatic Sea. Toxins (Basel) 2021; 13:toxins13090634. [PMID: 34564638 PMCID: PMC8471916 DOI: 10.3390/toxins13090634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/27/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022] Open
Abstract
Yessotoxins (YTXs) are polycyclic toxic ether compounds produced by phytoplanktonic dinoflagellates which accumulate in filter-feeding organisms. We know that the water temperature in our areas Northwestern Adriatic Sea is optimal for the growth of potentially toxic algae (around 20 °C). In recent years, these temperatures have remained at these levels for longer and longer periods, probably due to global warming, which has led to an excessive increase in toxin levels. The interruption of mussel harvesting caused by algae negatively affects farmers’ revenues and the availability of local fish, causing a major economic loss in Italy’s main shellfish sector. Methods: In the nine years considered, 3359 samples were examined: 1715 marine waters, 73 common clams; 732 mussels; 66 oysters; and 773 veracious clams. Bivalve molluscs were examined for the presence of marine biotoxins, including YTXs, while potentially toxic algae, including those producing YTXs, were searched for and counted in marine waters. The method adopted for the quantification of lipophilic toxins involves the use of an LC-MS/MS system. The enumeration of phytoplankton cells was performed according to the Utermhöl method. Results: Between 2012 and 2020, 706 molluscs were tested for YTXs. In total, 246 samples tested positive, i.e., 34.84%. Of the positive samples, 30 exceeded the legal limit. Conclusion: In this regard, it is essential to develop and activate, as soon as possible, an “early warning” system that allows a better control of the production areas of live bivalve molluscs, thus allowing an optimal management of the plants in these critical situations.
Collapse
Affiliation(s)
- Silva Rubini
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, 44124 Ferrara, Italy; (S.R.); (E.C.)
| | - Sabrina Albonetti
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano Emilia, 40064 Bologna, Italy; (S.A.); (A.C.)
| | - Simonetta Menotta
- Experimental Zooprophylactic Institute of Lombardia and Emilia Romagna, Food Chemical Department of Bologna, Via P. Fiorini 5, 40127 Bologna, Italy;
| | - Antonio Cervo
- Department of Veterinary Medical Sciences, DIMEVET, University of Bologna, Via Tolara di Sopra 50, Ozzano Emilia, 40064 Bologna, Italy; (S.A.); (A.C.)
| | - Emanuele Callegari
- Experimental Zooprophylactic Institute of Lombardy and Emilia Romagna, 44124 Ferrara, Italy; (S.R.); (E.C.)
| | - Monica Cangini
- National Reference Laboratory for Marine Biotoxins-Viale A. Vespucci, 2-47042 Cesenatico, Italy; (M.C.); (S.D.)
| | - Sonia Dall’Ara
- National Reference Laboratory for Marine Biotoxins-Viale A. Vespucci, 2-47042 Cesenatico, Italy; (M.C.); (S.D.)
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Science, Via Fossato di Mortara 17-19, University of Ferrara, 44121 Ferrara, Italy; (E.B.); (S.M.)
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Science, Via Fossato di Mortara 17-19, University of Ferrara, 44121 Ferrara, Italy; (E.B.); (S.M.)
- Correspondence: ; Tel.: +39-053-245-5294
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Faculty of Medicine, Pharmacy and Prevention, Master Course in Cosmetic Science, Via Fossato di Mortara 17-19, University of Ferrara, 44121 Ferrara, Italy; (E.B.); (S.M.)
| |
Collapse
|
4
|
Leyva-Valencia I, Hernández-Castro JE, Band-Schmidt CJ, Turner AD, O’Neill A, Núñez-Vázquez EJ, López-Cortés DJ, Bustillos-Guzmán JJ, Hernández-Sandoval FE. Lipophilic Toxins in Wild Bivalves from the Southern Gulf of California, Mexico. Mar Drugs 2021; 19:md19020099. [PMID: 33572171 PMCID: PMC7914588 DOI: 10.3390/md19020099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/29/2022] Open
Abstract
Most of the shellfish fisheries of Mexico occur in the Gulf of California. In this region, known for its high primary productivity, blooms of diatoms and dinoflagellates are common, occurring mainly during upwelling events. Dinoflagellates that produce lipophilic toxins are present, where some outbreaks related to okadaic acid and dinophisystoxins have been recorded. From January 2015 to November 2017 samples of three species of wild bivalve mollusks were collected monthly in five sites in the southern region of Bahía de La Paz. Pooled tissue extracts were analyzed using LC-MS/MS to detect lipophilic toxins. Eighteen analogs of seven toxin groups, including cyclic imines were identified, fortunately individual toxins did not exceed regulatory levels and also the total toxin concentration for each bivalve species was lower than the maximum permitted level for human consumption. Interspecific differences in toxin number and concentration were observed in three species of bivalves even when the samples were collected at the same site. Okadaic acid was detected in low concentrations, while yessotoxins and gymnodimines had the highest concentrations in bivalve tissues. Although in low quantities, the presence of cyclic imines and other lipophilic toxins in bivalves from the southern Gulf of California was constant.
Collapse
Affiliation(s)
- Ignacio Leyva-Valencia
- CONACYT-Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico
- Correspondence: ; Tel.: +52-612-123-4734
| | - Jesús Ernestina Hernández-Castro
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico; (J.E.H.-C.); (C.J.B.-S.)
| | - Christine J. Band-Schmidt
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, B.C.S. 23096, Mexico; (J.E.H.-C.); (C.J.B.-S.)
| | - Andrew D. Turner
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK; (A.D.T.); (A.O.)
| | - Alison O’Neill
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset DT4 8UB, UK; (A.D.T.); (A.O.)
| | - Erick J. Núñez-Vázquez
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | - David J. López-Cortés
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | - José J. Bustillos-Guzmán
- Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. 23096, Mexico; (E.J.N.-V.); (J.J.B.-G.); (F.E.H.-S.)
| | | |
Collapse
|
5
|
Tillmann U, Wietkamp S, Gu H, Krock B, Salas R, Clarke D. Multiple New Strains of Amphidomataceae (Dinophyceae) from the North Atlantic Revealed a High Toxin Profile Variability of Azadinium spinosum and a New Non-Toxigenic Az. cf. spinosum. Microorganisms 2021; 9:134. [PMID: 33430155 PMCID: PMC7826828 DOI: 10.3390/microorganisms9010134] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell-1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
Collapse
Affiliation(s)
- Urban Tillmann
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Stephan Wietkamp
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bernd Krock
- Helmholtz Center for Polar and Marine Research, Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany; (S.W.); (B.K.)
| | - Rafael Salas
- Marine Institute, Rinville, Oranmore, H91 R673 Co. Galway, Ireland; (R.S.); (D.C.)
| | - Dave Clarke
- Marine Institute, Rinville, Oranmore, H91 R673 Co. Galway, Ireland; (R.S.); (D.C.)
| |
Collapse
|
6
|
Mudge EM, Miles CO, Hardstaff WR, McCarron P. Fatty acid esters of azaspiracids identified in mussels ( Mytilus edulis) using liquid chromatography-high resolution mass spectrometry. Toxicon X 2020; 8:100059. [PMID: 33073234 PMCID: PMC7549145 DOI: 10.1016/j.toxcx.2020.100059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/02/2022] Open
Abstract
Azaspiracids (AZAs) are lipophilic polyether toxins produced by Azadinium and Amphidoma species of marine microalgae. The main dinoflagellate precursors AZA1 and AZA2 are metabolized by shellfish to produce an array of AZA analogues. Many marine toxins undergo fatty acid esterification in shellfish, therefore mussel tissues contaminated with AZAs were screened for intact fatty acid esters of AZAs using liquid chromatography-high resolution mass spectrometry. Acyl esters were primarily observed for AZAs containing hydroxy groups at C-3 with 3-O-palmitoylAZA4 identified as the most abundant acyl ester, while other fatty acid esters including 18:1, 16:1, 17:0, 20:2 and 18:0 acyl esters were detected. The structures of these acyl derivatives were determined through LC-MS/MS experiments, and supported by periodate cleavage reactions and semi-synthesis of palmitate esters of the AZAs. Esters of the hydroxy groups at C-20 or C-21 were not observed in mussel tissue. The relative proportion of the most abundant AZA ester was less than 3% of the sum of the major free AZA analogues. These findings reveal an additional metabolic pathway for AZAs in shellfish. Fatty acid esters of azaspiracids were identified in mussels (Mytilus edulis). Fatty acid esters of azaspiracids with hydroxy groups at C-3 were primarily observed. Fatty acid esters of regulated azaspiracids (AZA1, 2, −3) were absent. Structures were determined with LC-HRMS and confirmed by semi-synthesis of palmitate esters and periodate cleavage. This work reveals an additional metabolic pathway for azaspiracids in shellfish.
Collapse
|
7
|
Biological Effects of the Azaspiracid-Producing Dinoflagellate Azadinium dexteroporum in Mytilus galloprovincialis from the Mediterranean Sea. Mar Drugs 2019; 17:md17100595. [PMID: 31652521 PMCID: PMC6835248 DOI: 10.3390/md17100595] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Azaspiracids (AZAs) are marine biotoxins including a variety of analogues. Recently, novel AZAs produced by the Mediterranean dinoflagellate Azadinium dexteroporum were discovered (AZA-54, AZA-55, 3-epi-AZA-7, AZA-56, AZA-57 and AZA-58) and their biological effects have not been investigated yet. This study aimed to identify the biological responses (biomarkers) induced in mussels Mytilus galloprovincialis after the bioaccumulation of AZAs from A. dexteroporum. Organisms were fed with A. dexteroporum for 21 days and subsequently subjected to a recovery period (normal diet) of 21 days. Exposed organisms accumulated AZA-54, 3-epi-AZA-7 and AZA-55, predominantly in the digestive gland. Mussels' haemocytes showed inhibition of phagocytosis activity, modulation of the composition of haemocytic subpopulation and damage to lysosomal membranes; the digestive tissue displayed thinned tubule walls, consumption of storage lipids and accumulation of lipofuscin. Slight genotoxic damage was also observed. No clear occurrence of oxidative stress and alteration of nervous activity was detected in AZA-accumulating mussels. Most of the altered parameters returned to control levels after the recovery phase. The toxic effects detected in M. galloprovincialis demonstrate a clear biological impact of the AZAs produced by A. dexteroporum, and could be used as early indicators of contamination associated with the ingestion of seafood.
Collapse
|
8
|
Effects of Temperature, Growth Media, and Photoperiod on Growth and Toxin Production of Azadinium spinosum. Mar Drugs 2019; 17:md17090489. [PMID: 31443393 PMCID: PMC6780083 DOI: 10.3390/md17090489] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 01/02/2023] Open
Abstract
Azaspiracids (AZAs) are microalgal toxins that can accumulate in shellfish and lead to human intoxications. To facilitate their study and subsequent biomonitoring, purification from microalgae rather than shellfish is preferable; however, challenges remain with respect to maximizing toxin yields. The impacts of temperature, growth media, and photoperiod on cell densities and toxin production in Azadinium spinosum were investigated. Final cell densities were similar at 10 and 18 °C, while toxin cell quotas were higher (~3.5-fold) at 10 °C. A comparison of culture media showed higher cell densities and AZA cell quotas (2.5-5-fold) in f10k compared to f/2 and L1 media. Photoperiod also showed differences, with lower cell densities in the 8:16 L:D treatment, while toxin cell quotas were similar for 12:12 and 8:16 L:D treatments but slightly lower for the 16:8 L:D treatment. AZA1, -2 and -33 were detected during the exponential phase, while some known and new AZAs were only detected once the stationary phase was reached. These compounds were additionally detected in field water samples during an AZA event.
Collapse
|
9
|
Shang L, Hu Z, Deng Y, Liu Y, Zhai X, Chai Z, Liu X, Zhan Z, Dobbs FC, Tang YZ. Metagenomic Sequencing Identifies Highly Diverse Assemblages of Dinoflagellate Cysts in Sediments from Ships' Ballast Tanks. Microorganisms 2019; 7:E250. [PMID: 31405065 PMCID: PMC6724030 DOI: 10.3390/microorganisms7080250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 11/17/2022] Open
Abstract
Ships' ballast tanks have long been known as vectors for the introduction of organisms. We applied next-generation sequencing to detect dinoflagellates (mainly as cysts) in 32 ballast tank sediments collected during 2001-2003 from ships entering the Great Lakes or Chesapeake Bay and subsequently archived. Seventy-three dinoflagellates were fully identified to species level by this metagenomic approach and single-cell polymerase chain reaction (PCR)-based sequencing, including 19 toxic species, 36 harmful algal bloom (HAB) forming species, 22 previously unreported as producing cysts, and 55 reported from ballast tank sediments for the first time (including 13 freshwater species), plus 545 operational taxonomic units (OTUs) not fully identified due to a lack of reference sequences, indicating tank sediments are repositories of many previously undocumented taxa. Analyses indicated great heterogeneity of species composition among samples from different sources. Light and scanning electron microscopy and single-cell PCR sequencing supported and confirmed results of the metagenomic approach. This study increases the number of fully identified dinoflagellate species from ballast tank sediments to 142 (> 50% increase). From the perspective of ballast water management, the high diversity and spatiotemporal heterogeneity of dinoflagellates in ballast tanks argues for continuing research and stringent adherence to procedures intended to prevent unintended introduction of non-indigenous toxic and HAB-forming species.
Collapse
Affiliation(s)
- Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Zhai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaohan Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Zhan
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fred C Dobbs
- Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VI 23529, USA
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
10
|
Novel Insights on the Toxicity of Phycotoxins on the Gut through the Targeting of Enteric Glial Cells. Mar Drugs 2019; 17:md17070429. [PMID: 31340532 PMCID: PMC6669610 DOI: 10.3390/md17070429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
In vitro and in vivo studies have shown that phycotoxins can impact intestinal epithelial cells and can cross the intestinal barrier to some extent. Therefore, phycotoxins can reach cells underlying the epithelium, such as enteric glial cells (EGCs), which are involved in gut homeostasis, motility, and barrier integrity. This study compared the toxicological effects of pectenotoxin-2 (PTX2), yessotoxin (YTX), okadaic acid (OA), azaspiracid-1 (AZA1), 13-desmethyl-spirolide C (SPX), and palytoxin (PlTX) on the rat EGC cell line CRL2690. Cell viability, morphology, oxidative stress, inflammation, cell cycle, and specific glial markers were evaluated using RT-qPCR and high content analysis (HCA) approaches. PTX2, YTX, OA, AZA1, and PlTX induced neurite alterations, oxidative stress, cell cycle disturbance, and increase of specific EGC markers. An inflammatory response for YTX, OA, and AZA1 was suggested by the nuclear translocation of NF-κB. Caspase-3-dependent apoptosis and induction of DNA double strand breaks (γH2AX) were also observed with PTX2, YTX, OA, and AZA1. These findings suggest that PTX2, YTX, OA, AZA1, and PlTX may affect intestinal barrier integrity through alterations of the human enteric glial system. Our results provide novel insight into the toxicological effects of phycotoxins on the gut.
Collapse
|
11
|
Azaspiracids Increase Mitochondrial Dehydrogenases Activity in Hepatocytes: Involvement of Potassium and Chloride Ions. Mar Drugs 2019; 17:md17050276. [PMID: 31072021 PMCID: PMC6562809 DOI: 10.3390/md17050276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Azaspiracids (AZAs) are marine toxins that are produced by Azadinium and Amphidoma dinoflagellates that can contaminate edible shellfish inducing a foodborne poisoning in humans, which is characterized by gastrointestinal symptoms. Among these, AZA1, -2, and -3 are regulated in the European Union, being the most important in terms of occurrence and toxicity. In vivo studies in mice showed that, in addition to gastrointestinal effects, AZA1 induces liver alterations that are visible as a swollen organ, with the presence of hepatocellular fat droplets and vacuoles. Hence, an in vitro study was carried out to investigate the effects of AZA1, -2, and -3 on liver cells, using human non-tumor IHH hepatocytes. RESULTS The exposure of IHH cells to AZA1, -2, or -3 (5 × 10-12-1 × 10-7 M) for 24 h did not affect the cell viability and proliferation (Sulforhodamine B assay and 3H-Thymidine incorporation assay), but they induced a significant concentration-dependent increase of mitochondrial dehydrogenases activity (MTT reduction assay). This effect depends on the activity of mitochondrial electron transport chain complex I and II, being counteracted by rotenone and tenoyl trifluoroacetone, respectively. Furthermore, AZAs-increased mitochondrial dehydrogenase activity was almost totally suppressed in the K+-, Cl--, and Na+-free media and sensitive to the specific inhibitors of KATP and hERG potassium channels, Na+/K+, ATPase, and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels. CONCLUSIONS These results suggest that AZA mitochondrial effects in hepatocytes derive from an imbalance of intracellular levels of K+ and, in particular, Cl- ions, as demonstrated by the selective reduction of toxin effects by CFTR chloride channel inhibition.
Collapse
|
12
|
Murray IMT, Rowan NJ, McNamee S, Campbell K, Fogarty AM. Pulsed light reduces the toxicity of the algal toxin okadaic acid to freshwater crustacean Daphnia pulex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:607-614. [PMID: 29052147 DOI: 10.1007/s11356-017-0472-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
This constitutes the first study to report on the reduction in toxicity of the dinoflagellate algal toxin okadaic acid after novel pulsed light (PL) treatments where ecotoxicological assessment was performed using a miniaturised format of the conventional in vivo freshwater crustacean Daphnia sp. acute toxicity test. Bivalves accumulate this toxin, which can then enter the human food chain causing deleterious health effects such as diarrhetic shellfish poisoning. This miniaturised toxicological bioassay used substantially less sample volume and chemical reagents. Findings revealed a 24-h EC50 of 25.87 μg/L for PL-treated okadaic acid at a UV dose of 12.98 μJ/cm2 compared to a 24-h EC50 of 1.68 μg/L for the untreated okadaic acid control, suggesting a 15-fold reduction in toxicity to Daphnia pulex. The bioassay was validated in this study and correlated well with the "classic" ISO format (r = 0.98) using the traditional reference chemical potassium dichromate (K2Cr2O7). Reduction by up to 65% in PL-treated okadaic acid concentration was confirmed by LC-MS/MS analysis. Findings from this study have positive ecological, societal and enterprise implications, such as the development of PL technology for the prevention or reduce algal contamination of fisheries and aquaculture industries.
Collapse
Affiliation(s)
- Iain M T Murray
- Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland.
| | - Neil J Rowan
- Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| | - Sara McNamee
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Co. Antrim, UK
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Co. Antrim, UK
| | - Andrew M Fogarty
- Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
13
|
Ferron PJ, Dumazeau K, Beaulieu JF, Le Hégarat L, Fessard V. Combined Effects of Lipophilic Phycotoxins (Okadaic Acid, Azapsiracid-1 and Yessotoxin) on Human Intestinal Cells Models. Toxins (Basel) 2016; 8:50. [PMID: 26907345 PMCID: PMC4773803 DOI: 10.3390/toxins8020050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/02/2022] Open
Abstract
Phycotoxins are monitored in seafood because they can cause food poisonings in humans. Phycotoxins do not only occur singly but also as mixtures in shellfish. The aim of this study was to evaluate the in vitro toxic interactions of binary combinations of three lipophilic phycotoxins commonly found in Europe (okadaic acid (OA), yessotoxin (YTX) and azaspiracid-1 (AZA-1)) using the neutral red uptake assay on two human intestinal cell models, Caco-2 and the human intestinal epithelial crypt-like cells (HIEC). Based on the cytotoxicity of individual toxins, we studied the interactions between toxins in binary mixtures using the combination index-isobologram equation, a method widely used in pharmacology to study drug interactions. This method quantitatively classifies interactions between toxins in mixtures as synergistic, additive or antagonistic. AZA-1/OA, and YTX/OA mixtures showed increasing antagonism with increasing toxin concentrations. In contrast, the AZA-1/YTX mixture showed increasing synergism with increasing concentrations, especially for mixtures with high YTX concentrations. These results highlight the hazard potency of AZA-1/YTX mixtures with regard to seafood intoxication.
Collapse
Affiliation(s)
- Pierre-Jean Ferron
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Kevin Dumazeau
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, University of Sherbrooke, Sherbrooke, QC J1G 0A2, Canada.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety, Fougères 35300, France.
| |
Collapse
|
14
|
Berdalet E, Fleming LE, Gowen R, Davidson K, Hess P, Backer LC, Moore SK, Hoagland P, Enevoldsen H. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM. MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM 2015; 2015:10.1017/S0025315415001733. [PMID: 26692586 PMCID: PMC4676275 DOI: 10.1017/s0025315415001733] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Microalgal blooms are a natural part of the seasonal cycle of photosynthetic organisms in marine ecosystems. They are key components of the structure and dynamics of the oceans and thus sustain the benefits that humans obtain from these aquatic environments. However, some microalgal blooms can cause harm to humans and other organisms. These harmful algal blooms (HABs) have direct impacts on human health and negative influences on human wellbeing, mainly through their consequences to coastal ecosystem services (fisheries, tourism and recreation) and other marine organisms and environments. HABs are natural phenomena, but these events can be favoured by anthropogenic pressures in coastal areas. Global warming and associated changes in the oceans could affect HAB occurrences and toxicity as well, although forecasting the possible trends is still speculative and requires intensive multidisciplinary research. At the beginning of the 21st century, with expanding human populations, particularly in coastal and developing countries, mitigating HABs impacts on human health and wellbeing is becoming a more pressing public health need. The available tools to address this global challenge include maintaining intensive, multidisciplinary and collaborative scientific research, and strengthening the coordination with stakeholders, policymakers and the general public. Here we provide an overview of different aspects of the HABs phenomena, an important element of the intrinsic links between oceans and human health and wellbeing.
Collapse
Affiliation(s)
- Elisa Berdalet
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
| | - Lora E Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, Truro, Cornwall TR1 3HD, UK
| | - Richard Gowen
- Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX, UK ; Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Keith Davidson
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA, UK
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, BP21105, Rue de l'lle d'Yeu, 44311 Nantes Cedex 03, France
| | - Lorraine C Backer
- National Center for Environmental Health, 4770 Buford Highway NE, MS F-60, Chamblee, GA 30341
| | - Stephanie K Moore
- University Corporation for Atmospheric Research, Joint Office for Science Support. Visiting Scientist at Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - Porter Hoagland
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Henrik Enevoldsen
- Intergovernmental Oceanographic Commission of UNESCO, IOC Science and Communication Centre on Harmful Algae, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
15
|
Krock B, Tillmann U, Potvin É, Jeong HJ, Drebing W, Kilcoyne J, Al-Jorani A, Twiner MJ, Göthel Q, Köck M. Structure Elucidation and in Vitro Toxicity of New Azaspiracids Isolated from the Marine Dinoflagellate Azadinium poporum. Mar Drugs 2015; 13:6687-702. [PMID: 26528990 PMCID: PMC4663548 DOI: 10.3390/md13116687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/14/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Two strains of Azadinium poporum, one from the Korean West coast and the other from the North Sea, were mass cultured for isolation of new azaspiracids. Approximately 0.9 mg of pure AZA-36 (1) and 1.3 mg of pure AZA-37 (2) were isolated from the Korean (870 L) and North Sea (120 L) strains, respectively. The structures were determined to be 3-hydroxy-8-methyl-39-demethyl-azaspiracid-1 (1) and 3-hydroxy-7,8-dihydro-39-demethyl-azaspiracid-1 (2) by ¹H- and (13)C-NMR. Using the Jurkat T lymphocyte cell toxicity assay, (1) and (2) were found to be 6- and 3-fold less toxic than AZA-1, respectively.
Collapse
Affiliation(s)
- Bernd Krock
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Urban Tillmann
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Éric Potvin
- Division of Polar Ocean Environment, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mail:
| | - Hae Jin Jeong
- School of Earth and Environmental Science, Seoul National University, Seoul 151-747, Korea; E-Mail:
| | - Wolfgang Drebing
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co. Galway, H91 R673, Ireland; E-Mail:
| | - Ahmed Al-Jorani
- Department of Natural Sciences, University of Michigan, Dearborn, MI 48202, USA; E-Mails: (A.A.-J.); (M.J.T.)
| | - Michael J. Twiner
- Department of Natural Sciences, University of Michigan, Dearborn, MI 48202, USA; E-Mails: (A.A.-J.); (M.J.T.)
| | - Qun Göthel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| | - Matthias Köck
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven 27570, Germany; E-Mails: (U.T.); (W.D.); (Q.G.)
| |
Collapse
|
16
|
Chevallier OP, Graham SF, Alonso E, Duffy C, Silke J, Campbell K, Botana LM, Elliott CT. New insights into the causes of human illness due to consumption of azaspiracid contaminated shellfish. Sci Rep 2015; 5:9818. [PMID: 25928256 PMCID: PMC4415421 DOI: 10.1038/srep09818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/18/2015] [Indexed: 12/29/2022] Open
Abstract
Azaspiracid (AZA) poisoning was unknown until 1995 when shellfish harvested in Ireland caused illness manifesting by vomiting and diarrhoea. Further in vivo/vitro studies showed neurotoxicity linked with AZA exposure. However, the biological target of the toxin which will help explain such potent neurological activity is still unknown. A region of Irish coastline was selected and shellfish were sampled and tested for AZA using mass spectrometry. An outbreak was identified in 2010 and samples collected before and after the contamination episode were compared for their metabolite profile using high resolution mass spectrometry. Twenty eight ions were identified at higher concentration in the contaminated samples. Stringent bioinformatic analysis revealed putative identifications for seven compounds including, glutarylcarnitine, a glutaric acid metabolite. Glutaric acid, the parent compound linked with human neurological manifestations was subjected to toxicological investigations but was found to have no specific effect on the sodium channel (as was the case with AZA). However in combination, glutaric acid (1mM) and azaspiracid (50nM) inhibited the activity of the sodium channel by over 50%. Glutaric acid was subsequently detected in all shellfish employed in the study. For the first time a viable mechanism for how AZA manifests itself as a toxin is presented.
Collapse
Affiliation(s)
- O P Chevallier
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - S F Graham
- Beaumont Research Institute, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073
| | - E Alonso
- Department of Pharmacology, Faculty of Veterinary, Campus Lugo, USC, 27002 Lugo, Spain
| | - C Duffy
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - J Silke
- Marine Institute, Rinville, Oranmore, Co. Galway, Ireland
| | - K Campbell
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| | - L M Botana
- Department of Pharmacology, Faculty of Veterinary, Campus Lugo, USC, 27002 Lugo, Spain
| | - C T Elliott
- Advanced Asset Technology Centre, Institute for Global Food Security, Queen's University Belfast, Stranmillis Road, Belfast, BT9 5AG, UK
| |
Collapse
|
17
|
Meyer JM, Rödelsperger C, Eichholz K, Tillmann U, Cembella A, McGaughran A, John U. Transcriptomic characterisation and genomic glimps into the toxigenic dinoflagellate Azadinium spinosum, with emphasis on polykeitde synthase genes. BMC Genomics 2015; 16:27. [PMID: 25612855 PMCID: PMC4316588 DOI: 10.1186/s12864-014-1205-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 12/24/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Unicellular dinoflagellates are an important group of primary producers within the marine plankton community. Many of these species are capable of forming harmful algae blooms (HABs) and of producing potent phycotoxins, thereby causing deleterious impacts on their environment and posing a threat to human health. The recently discovered toxigenic dinoflagellate Azadinium spinosum is known to produce azaspiracid toxins. These toxins are most likely produced by polyketide synthases (PKS). Recently, PKS I-like transcripts have been identified in a number of dinoflagellate species. Despite the global distribution of A. spinosum, little is known about molecular features. In this study, we investigate the genomic and transcriptomic features of A. spinosum with a focus on polyketide synthesis and PKS evolution. RESULTS We identify orphan and homologous genes by comparing the transcriptome data of A. spinosum with a diverse set of 18 other dinoflagellates, five further species out of the Rhizaria Alveolate Stramelopile (RAS)-group, and one representative from the Plantae. The number of orphan genes in the analysed dinoflagellate species averaged 27%. In contrast, within the A. spinosum transcriptome, we discovered 12,661 orphan transcripts (18%). The dinoflagellates toxins known as azaspiracids (AZAs) are structurally polyethers; we therefore analyse the transcriptome of A. spinosum with respect to polyketide synthases (PKSs), the primary biosynthetic enzymes in polyketide synthesis. We find all the genes thought to be potentially essential for polyketide toxin synthesis to be expressed in A. spinosum, whose PKS transcripts fall into the dinoflagellate sub-clade in PKS evolution. CONCLUSIONS Overall, we demonstrate that the number of orphan genes in the A. spinosum genome is relatively small compared to other dinoflagellate species. In addition, all PKS domains needed to produce the azaspiracid carbon backbone are present in A. spinosum. Our study underscores the extraordinary evolution of such gene clusters and, in particular, supports the proposed structural and functional paradigm for PKS Type I genes in dinoflagellates.
Collapse
Affiliation(s)
- Jan M Meyer
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany. .,Evolutionary biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Evolutionary biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Karsten Eichholz
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany. .,Adenoviridae: Receptors, Trafficking and Vectorology, Institut de Génétique Moléculaire de Montpellier, Montpellier, France.
| | - Urban Tillmann
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | - Allan Cembella
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | - Angela McGaughran
- Evolutionary biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Uwe John
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|
18
|
Munday R, Reeve J. Risk assessment of shellfish toxins. Toxins (Basel) 2013; 5:2109-37. [PMID: 24226039 PMCID: PMC3847717 DOI: 10.3390/toxins5112109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/23/2013] [Accepted: 10/30/2013] [Indexed: 01/24/2023] Open
Abstract
Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.
Collapse
Affiliation(s)
- Rex Munday
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +64-7-838-5138; Fax: +64-7-838-5012
| | - John Reeve
- Ministry of Primary Industries, PO Box 2526, Wellington, New Zealand; E-Mail:
| |
Collapse
|
19
|
Rodríguez LP, Vilariño N, Louzao MC, Dickerson TJ, Nicolaou KC, Frederick MO, Botana LM. Microsphere-based immunoassay for the detection of azaspiracids. Anal Biochem 2013; 447:58-63. [PMID: 24215909 DOI: 10.1016/j.ab.2013.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/22/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022]
Abstract
Azaspiracids (AZAs) are a group of lipophilic toxins discovered in mussels from Ireland in 1995 following a human poisoning incident. Nowadays the regulatory limit for AZAs in many countries is set at 160 μg of azaspiracid equivalents per kilogram of shellfish meat. In this work a microsphere-based immunoassay has been developed for the detection of AZAs using a Luminex system. This method is based on the competition between AZA-2 immobilized onto the surface of microspheres and free AZAs for the interaction with a monoclonal anti-azaspiracid antibody (mAb 8F4). In this inhibition immunoassay the amount of mAb 8F4 bound to AZA-2 microspheres was quantified using a phycoerythrin-labeled anti-mouse antibody, and the fluorescence was measured with a Luminex analyzer. Simple acetate/methanol or methanol extractions yielded final extracts with no matrix interferences and adequate recovery rates of 86.5 and 75.8%, respectively. In summary, this work presents a sensitive and easily performed screening method capable of detecting AZAs at concentrations below the range of the European regulatory limit using a microsphere/flow cytometry system.
Collapse
Affiliation(s)
- Laura P Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Tobin J Dickerson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Worm Institute for Research and Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - K C Nicolaou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA; Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, TX 77030, USA
| | - Michael O Frederick
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093, USA
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
20
|
Trainer VL, Moore L, Bill BD, Adams NG, Harrington N, Borchert J, da Silva DAM, Eberhart BTL. Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Mar Drugs 2013; 11:1815-35. [PMID: 23760013 PMCID: PMC3721207 DOI: 10.3390/md11061815] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/07/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022] Open
Abstract
The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.
Collapse
Affiliation(s)
- Vera L. Trainer
- Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: (L.M.); (B.D.B.); (N.G.A.); (D.A.M.S.); (B.-T.L.E.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-206-860-6788; Fax: +1-206-860-3335
| | - Leslie Moore
- Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: (L.M.); (B.D.B.); (N.G.A.); (D.A.M.S.); (B.-T.L.E.)
| | - Brian D. Bill
- Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: (L.M.); (B.D.B.); (N.G.A.); (D.A.M.S.); (B.-T.L.E.)
| | - Nicolaus G. Adams
- Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: (L.M.); (B.D.B.); (N.G.A.); (D.A.M.S.); (B.-T.L.E.)
| | - Neil Harrington
- Jamestown S’Klallam Tribe, 1033 Old Blyn Highway, Sequim, WA 98392, USA; E-Mail:
| | - Jerry Borchert
- Office of Shellfish and Water Protection, Washington State Department of Health, 111 Israel Rd SE, Tumwater, WA 98504, USA; E-Mail:
| | - Denis A. M. da Silva
- Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: (L.M.); (B.D.B.); (N.G.A.); (D.A.M.S.); (B.-T.L.E.)
| | - Bich-Thuy L. Eberhart
- Marine Biotoxins Program, Environmental Conservation Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA; E-Mails: (L.M.); (B.D.B.); (N.G.A.); (D.A.M.S.); (B.-T.L.E.)
| |
Collapse
|
21
|
Twiner MJ, Doucette GJ, Rasky A, Huang XP, Roth BL, Sanguinetti MC. Marine algal toxin azaspiracid is an open-state blocker of hERG potassium channels. Chem Res Toxicol 2012; 25:1975-84. [PMID: 22856456 DOI: 10.1021/tx300283t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Azaspiracids (AZA) are polyether marine dinoflagellate toxins that accumulate in shellfish and represent an emerging human health risk. Although human exposure is primarily manifested by severe and protracted diarrhea, this toxin class has been shown to be highly cytotoxic, a teratogen to developing fish, and a possible carcinogen in mice. Until now, AZA's molecular target has not yet been determined. Using three independent methods (voltage clamp, channel binding assay, and thallium flux assay), we have for the first time demonstrated that AZA1, AZA2, and AZA3 each bind to and block the hERG (human ether-à-go-go related gene) potassium channel heterologously expressed in HEK-293 mammalian cells. Inhibition of K(+) current for each AZA analogue was concentration-dependent (IC(50) value range: 0.64-0.84 μM). The mechanism of hERG channel inhibition by AZA1 was investigated further in Xenopus oocytes where it was shown to be an open-state-dependent blocker and, using mutant channels, to interact with F656 but not with Y652 within the S6 transmembrane domain that forms the channel's central pore. AZA1, AZA2, and AZA3 were each shown to inhibit [(3)H]dofetilide binding to the hERG channel and thallium ion flux through the channel (IC(50) value range: 2.1-6.6 μM). AZA1 did not block the K(+) current of the closely related EAG1 channel. Collectively, these data suggest that the AZAs physically block the K(+) conductance pathway of hERG1 channels by occluding the cytoplasmic mouth of the open pore. Although the concentrations necessary to block hERG channels are relatively high, AZA-induced blockage may prove to contribute to the toxicological properties of the AZAs.
Collapse
Affiliation(s)
- Michael J Twiner
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Jauffrais T, Kilcoyne J, Séchet V, Herrenknecht C, Truquet P, Hervé F, Bérard JB, Nulty C, Taylor S, Tillmann U, Miles CO, Hess P. Production and isolation of azaspiracid-1 and -2 from Azadinium spinosum culture in pilot scale photobioreactors. Mar Drugs 2012; 10:1360-1382. [PMID: 22822378 PMCID: PMC3397445 DOI: 10.3390/md10061360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 11/22/2022] Open
Abstract
Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell·mL−1 at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day−1, with optimum toxin production at 0.25 day−1. After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.
Collapse
Affiliation(s)
- Thierry Jauffrais
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
- Authors to whom correspondence should be addressed; (T.J.); (P.H.); Tel.: +33-2-40-37-40-00 (T.J.); Fax: +33-2-40-37-40-73 (T.J.); Tel.: +33-2-40-37-42-57 (P.H.); Fax: +33-2-40-37-40-26 (P.H.)
| | - Jane Kilcoyne
- Marine Institute, Rinville, Oranmore, Co., Galway, Ireland; (J.K.); (C.N.)
| | - Véronique Séchet
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | | | - Philippe Truquet
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | - Fabienne Hervé
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | | | - Cíara Nulty
- Marine Institute, Rinville, Oranmore, Co., Galway, Ireland; (J.K.); (C.N.)
| | - Sarah Taylor
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
| | - Urban Tillmann
- Alfred Wegener Institute, Am Handelshafen 12, D-27570 Bremerhaven, Germany;
| | | | - Philipp Hess
- Ifremer, EMP/PHYC Laboratory, Rue de l'Ile d'Yeu, 44311 Nantes, France; (V.S.); (P.T.); (F.H.); (S.T.)
- Authors to whom correspondence should be addressed; (T.J.); (P.H.); Tel.: +33-2-40-37-40-00 (T.J.); Fax: +33-2-40-37-40-73 (T.J.); Tel.: +33-2-40-37-42-57 (P.H.); Fax: +33-2-40-37-40-26 (P.H.)
| |
Collapse
|
23
|
Abstract
The popularity of shellfish has been increasing worldwide, with a consequent increase in adverse reactions that can be allergic or toxic. The approximate prevalence of shellfish allergy is estimated at 0.5-2.5% of the general population, depending on degree of consumption by age and geographic regions. The manifestations of shellfish allergy vary widely, but it tends to be more severe than most other food allergens. Tropomyosin is the major allergen and is responsible for cross-reactivity between members of the shellfish family, particularly among the crustacea. Newly described allergens and subtle differences in the structures of tropomyosin between different species of shellfish could account for the discrepancy between in vitro cross-antigenicity and clinical cross-allergenicity. The diagnosis requires a thorough medical history supported by skin testing or measurement of specific IgE level, and confirmed by appropriate oral challenge testing unless the reaction was life-threatening. Management of shellfish allergy is basically strict elimination, which in highly allergic subjects may include avoidance of touching or smelling and the availability of self-administered epinephrine. Specific immunotherapy is not currently available and requires the development of safe and effective protocols.
Collapse
|
24
|
Fleming LE, Kirkpatrick B, Backer LC, Walsh CJ, Nierenberg K, Clark J, Reich A, Hollenbeck J, Benson J, Cheng YS, Naar J, Pierce R, Bourdelais AJ, Abraham WM, Kirkpatrick G, Zaias J, Wanner A, Mendes E, Shalat S, Hoagland P, Stephan W, Bean J, Watkins S, Clarke T, Byrne M, Baden DG. Review of Florida Red Tide and Human Health Effects. HARMFUL ALGAE 2011; 10:224-233. [PMID: 21218152 PMCID: PMC3014608 DOI: 10.1016/j.hal.2010.08.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.
Collapse
Affiliation(s)
- Lora E Fleming
- NSF NIEHS Oceans and Human Health Center, University of Miami, 4600 Rickenbacker Causeway, Miami, FL, 33149
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Vale C, Nicolaou KC, Frederick MO, Vieytes MR, Botana LM. Cell volume decrease as a link between azaspiracid-induced cytotoxicity and c-Jun-N-terminal kinase activation in cultured neurons. Toxicol Sci 2009; 113:158-68. [PMID: 19815690 DOI: 10.1093/toxsci/kfp246] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Azaspiracids (AZAs) are a group of marine toxins recently described that currently includes 20 members. Not much is known about their mechanism of action, although the predominant analog in nature, AZA-1 targets several organs in vivo, including the central nervous system, and exhibits high neurotoxicity in vitro. AZA distribution is increasing globally with mussels being most widely implicated in AZA-related food poisoning events, with human poisoning by AZAs emerging as an increasing worldwide problem in recent years. We used pharmacological tools to inhibit the cytotoxic effect of the toxin in primary cultured neurons. Several targets for AZA-induced neurotoxicity were evaluated. AZA-1 elicited a concentration-dependent hyperpolarization in cerebellar granule cells of 2-3 days in vitro; however, it did not modify membrane potential in mature neurons. Furthermore, in immature cells, AZA-1 decreased the membrane depolarization evoked by exposure of the neurons to 50mM K(+). Preincubation of the neurons with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4-acetamido-4'-isothiocyanato-2,2'-stilbenedisulfonic acid (SITS), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), amiloride, or ouabain before addition of AZA-1 decreased the AZA-1-induced neurotoxicity and the increase in phosphorylated c-Jun-N-terminal kinase (JNK) caused by the toxin, indicating that disruption in ion fluxes was involved in the neurotoxic effect of AZA-1. Furthermore, short exposures of cultured neurons to AZA-1 caused a significant decrease in neuronal volume that was reverted by preincubation of the neurons with DIDS or amiloride before addition of the toxin. The results presented here indicate that the JNK activation induced by AZA-1 is secondary to the decrease in cellular volume elicited by the toxin.
Collapse
Affiliation(s)
- Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | | | | | | | | |
Collapse
|
26
|
Nzoughet JK, Hamilton JTG, Botting CH, Douglas A, Devine L, Nelson J, Elliott CT. Proteomics identification of azaspiracid toxin biomarkers in blue mussels, Mytilus edulis. Mol Cell Proteomics 2009; 8:1811-22. [PMID: 19390117 PMCID: PMC2722768 DOI: 10.1074/mcp.m800561-mcp200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/04/2009] [Indexed: 01/09/2023] Open
Abstract
Azaspiracids are a class of recently discovered algae-derived shellfish toxins. Their distribution globally is on the increase with mussels being most widely implicated in azaspiracid-related food poisoning events. Evidence that these toxins were bound to proteins in contaminated mussels has been shown recently. In the present study characterization of these proteins in blue mussels, Mytilus edulis, was achieved using a range of advanced proteomics tools. Four proteins present only in the hepatopancreas of toxin-contaminated mussels sharing identity or homology with cathepsin D, superoxide dismutase, glutathione S-transferase Pi, and a bacterial flagellar protein have been characterized. Several of the proteins are known to be involved in self-defense mechanisms against xenobiotics or up-regulated in the presence of carcinogenic agents. These findings would suggest that azaspiracids should now be considered and evaluated as potential tumorigenic compounds. The presence of a bacterial protein only in contaminated mussels was an unexpected finding and requires further investigation. The proteins identified in this study should assist with development of urgently required processes for the rapid depuration of azaspiracid-contaminated shellfish. Moreover they may serve as early warning indicators of shellfish exposed to this family of toxins.
Collapse
Affiliation(s)
- Judith K Nzoughet
- Institute of Agri-food and Land Use, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5AG, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
27
|
Frederick MO, Janda KD, Nicolaou KC, Dickerson TJ. Monoclonal antibodies with orthogonal azaspiracid epitopes. Chembiochem 2009; 10:1625-9. [PMID: 19492388 PMCID: PMC2750835 DOI: 10.1002/cbic.200900201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Indexed: 12/29/2022]
Abstract
Azaspiracid antibodies: Immunization of azaspiracid immunoconjugates has elicited monoclonal antibodies with distinct epitopes on the marine toxin; this will open the way toward azaspiracid diagnostics and the detection of contaminated shellfish before they can enter the food supply.
Collapse
Affiliation(s)
- Michael O. Frederick
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Kim D. Janda
- Departments of Chemistry and Immunology, The Skaggs Institute of Chemical Biology and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - K. C. Nicolaou
- Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA) and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (USA)
| | - Tobin J. Dickerson
- Department of Chemistry and Worm Institute for Research and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
28
|
Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. SENSORS 2009; 9:4407-45. [PMID: 22408533 PMCID: PMC3291918 DOI: 10.3390/s90604407] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 01/30/2023]
Abstract
Antibody-based sensors permit the rapid and sensitive analysis of a range of pathogens and associated toxins. A critical assessment of the implementation of such formats is provided, with reference to their principles, problems and potential for 'on-site' analysis. Particular emphasis is placed on the detection of foodborne bacterial pathogens, such as Escherichia coli and Listeria monocytogenes, and additional examples relating to the monitoring of fungal pathogens, viruses, mycotoxins, marine toxins and parasites are also provided.
Collapse
|
29
|
Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009. [PMID: 19597572 DOI: 10.3390/md7020071.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.
Collapse
|
30
|
Zhang C, Kim SK. Matrix metalloproteinase inhibitors (MMPIs) from marine natural products: the current situation and future prospects. Mar Drugs 2009; 7:71-84. [PMID: 19597572 PMCID: PMC2707034 DOI: 10.3390/md7020071] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/25/2009] [Accepted: 03/25/2009] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of more than twenty five secreted and membrane-bound zinc-endopeptidases which can degrade extracellular matrix (ECM) components. They also play important roles in a variety of biological and pathological processes. Matrix metalloproteinase inhibitors (MMPIs) have been identified as potential therapeutic candidates for metastasis, arthritis, chronic inflammation and wrinkle formation. Up to present, more than 20,000 new compounds have been isolated from marine organisms, where considerable numbers of these naturally occurring derivatives are developed as potential candidates for pharmaceutical application. Eventhough the quantity of marine derived MMPIs is less when compare with the MMPIs derived from terrestrial materials, huge potential for bioactivity of these marine derived MMPIs has lead to large number of researches. Saccharoids, flavonoids and polyphones, fatty acids are the most important groups of MMPIs derived from marine natural products. In this review we focus on the progress of MMPIs from marine natural products.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
;
| | - Se-Kwon Kim
- Department of Chemistry, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
;
- Marine Bioprocess Research Center, Pukyong National University, Busan, 608-737, Republic of Korea; E-mail:
- *Author to whom corresponding author; E-mail:
; Tel: +82-51-629-7097, Fax: +82-51-629-7099
| |
Collapse
|
31
|
|