1
|
Sarıyer ET, Baş M, Çolak H, Özkan Yenal N, Unay Demirel Ö, Yüksel M. Comparison of Dietary Supplementation with Krill Oil, Fish Oil, and Astaxanthin on an Experimental Ethanol-Induced Gastric Ulcer Model: A Biochemical and Histological Study. Nutrients 2024; 16:3426. [PMID: 39458422 PMCID: PMC11510526 DOI: 10.3390/nu16203426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite advances in ulcer treatment research, the search for new, safe, and effective strategies for preventing and treating ulcer diseases persists. METHODS In this study, the protective effects of dietary supplementation with krill oil (KO), fish oil (FO), and astaxanthin (ASX) on an ethanol-induced gastric ulcer model were compared during biochemical and histological observations. Sprague-Dawley (n = 64) rats randomly divided into four groups-normal control (vehicle), KO, FO, and ASX groups-received the supplements via the orogastric route at a rate of 2.5% (v/w) of their daily feed consumption for 4 weeks. Then, ulcer induction was performed with ethanol. RESULTS The ulcer group showed increased levels of malondialdehyde (MDA), chemiluminescence (CL), and myeloperoxidase (MPO) activity and decreased levels of glutathione in the gastric tissues. While KO, FO, and ASX supplementation decreased chemiluminescence levels in the ulcer group, only ASX supplementation decreased MDA levels and MPO activity. CONCLUSIONS In conclusion, supplementation with KO or FO has a similar protective effect against ethanol-induced ulcer damage, as it inhibits ROS formation and reduces lipid peroxidation. However, ASX supplementation has a higher protective effect than KO or FO supplementations against experimental ethanol-induced gastric lesions in rats, as it inhibits ROS formation and reduces neutrophil infiltration and lipid peroxidation.
Collapse
Affiliation(s)
- Esra Tansu Sarıyer
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Nutrition and Dietetics, Faculty of Health Science, University of Health Sciences, 34668 Istanbul, Turkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey;
| | - Hatice Çolak
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Üsküdar University, 34662 Istanbul, Turkey;
| | - Naziye Özkan Yenal
- Department of Pathology Laboratory Techniques, Vocational School of Health-Related Services, Marmara University, 34865 Istanbul, Turkey;
| | - Özlem Unay Demirel
- Department of Medical Biochemistry, Bahçeşehir University Göztepe Medical Park Hospital Central Laboratory, Faculty of Medicine, Bahçeşehir University, 34353 Istanbul, Turkey;
| | - Meral Yüksel
- Department of Medical Laboratory Techniques, Vocational School of Health-Related Services, Marmara University, 34865 Istanbul, Turkey;
| |
Collapse
|
2
|
Duo L, Yang J, Wang X, Zhang G, Zhao J, Zou H, Wang Z, Li Y. Krill oil: nutraceutical potential in skin health and disease. Front Nutr 2024; 11:1388155. [PMID: 39070257 PMCID: PMC11272659 DOI: 10.3389/fnut.2024.1388155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.
Collapse
Affiliation(s)
- Lan Duo
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianzhong Yang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Xue Wang
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiuxiang Zhao
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhi Wang
- Jiangsu Sunline Deep Sea Fishery Co., Ltd, Lianyungang, Jiangsu, China
| | - Yu Li
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Sun Y, Dong Y, Cui X, Guo X, Zhang J, Yu C, Zhang M, Wang H. Effects of Marine Natural Products on Liver Diseases. Mar Drugs 2024; 22:288. [PMID: 39057397 PMCID: PMC11278422 DOI: 10.3390/md22070288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The prevention and treatment of liver disease, a class of disease that seriously threatens human health, has always been a hot topic of medical research. In recent years, with the in-depth exploration of marine resources, marine natural products have shown great potential and value in the field of liver disease treatment. Compounds extracted and isolated from marine natural products have a variety of biological activities such as significant antiviral properties, showing potential in the management of alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD), protection of the liver from fibrosis, protection from liver injury and inhibition of the growth of hepatocellular carcinoma (HCC). This paper summarizes the progress of research on marine natural products for the treatment of liver diseases in the past decade, including the structural types of active substances from different natural products and the mechanisms underlying the modulation of different liver diseases and reviews their future prospects.
Collapse
Affiliation(s)
- Yandi Sun
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Yansong Dong
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Xiaohang Cui
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Xiaohe Guo
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Juan Zhang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Chong Yu
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
| | - Man Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.S.); (Y.D.); (X.C.); (X.G.); (J.Z.); (C.Y.)
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| |
Collapse
|
4
|
Gao Y, Ding Z, Liu Y, Xu YJ. Advances in encapsulation systems of Antarctic krill oil: From extraction to encapsulation, and future direction. Compr Rev Food Sci Food Saf 2024; 23:e13332. [PMID: 38578167 DOI: 10.1111/1541-4337.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
Antarctic krill oil (AKO) is highly sought after by consumers and the food industry due to its richness in a variety of nutrients and physiological activities. However, current extraction methods are not sufficient to better extract AKO and its nutrients, and AKO is susceptible to lipid oxidation during processing and storage, leading to nutrient loss and the formation of off-flavors and toxic compounds. The development of various extraction methods and encapsulation systems for AKO to improve oil yield, nutritional value, antioxidant capacity, and bioavailability has become a research hotspot. This review summarizes the research progress of AKO from extraction to encapsulation system construction. The AKO extraction mechanism, technical parameters, oil yield and composition of solvent extraction, aqueous enzymatic extraction, supercritical/subcritical extraction, and three-liquid-phase salting-out extraction system are described in detail. The principles, choice of emulsifier/wall materials, preparation methods, advantages and disadvantages of four common encapsulation systems for AKO, namely micro/nanoemulsions, microcapsules, liposomes and nanostructured lipid carriers, are summarized. These four encapsulation systems are characterized by high encapsulation efficiency, low production cost, high bioavailability and high antioxidant capacity. Depending on the unique advantages and conditions of different encapsulation methods, as well as consumer demand for health and nutrition, different products can be developed. However, existing AKO encapsulation systems lack relevant studies on digestive absorption and targeted release, and the single product category of commercially available products limits consumer choice. In conjunction with clinical studies of AKO encapsulation systems, the development of encapsulation systems for special populations should be a future research direction.
Collapse
Affiliation(s)
- Yuhang Gao
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zhansheng Ding
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resource, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Liu W, Liu S, Ren Q, Yang R, Su S, Jiang X. Association between polyunsaturated fatty acids and progression among patients with diabetic kidney disease. Prim Care Diabetes 2024; 18:177-182. [PMID: 38242728 DOI: 10.1016/j.pcd.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
AIMS Diabetic kidney disease (DKD) is the major complication of diabetes mellitus (DM) and one of the leading causes of end-stage renal disease. Early detection and treatment are contributing to delay the progression of DKD. Dietary management has potential benefits for DKD, especially the intake of polyunsaturated fatty acids (PUFAs). However, there is a lack of sufficient evidence, so we aimed to explore the association between PUFAs intake and DKD progression. METHODS In the National Heath and Nutrition Examination Survey (NHANES) between 2011-2018, a cross-sectional study was conducted among adults with T2DM. DKD was diagnosed with urine albumin to creatinine ratio (ACR) ≥ 30 mg/g or estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2. Using Survey package of R to arrange the collected PUFAs intake data in order from small to large and divide them into four equal parts, which were expressed as Q1, Q2, Q3 and Q4 respectively. To investigate the association between PUFAs intake and DKD, a weighted univariate logistic regression analysis was performed and the odds ratio (OR) and 95% confidence interval (CI) were calculated for the association with DKD and PUFAs quartiles. RESULTS The study involved 3287 participants with T2DM, including 2043 non-DKD and 1244 DKD patients. The results showed that the intake of PUFAs was a protective factor for DKD (p = 0.022), and with the increase of the PUFAs, renal function improved in DKD patients, the adjusted mean of eGFR and Scr changing from 57 (41, 86) in Q1 to 71 (55, 101) ml/min in Q4 (p 0.001), 103 (73, 131) in Q1 to 90 (68, 117) in Q4 (p = 0.031), respectively. CONCLUSION Our study indicated that intake of more PUFAs may contribute to delay DKD progression, while different n-6/n-3 ratios need to be explored to protect the kidney.
Collapse
Affiliation(s)
- Wu Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiyi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiuyue Ren
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Su
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China.
| | - Xiaoyu Jiang
- Department of Nephrology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, China.
| |
Collapse
|
6
|
Liu L, Chen Y, Chen B, Xu M, Liu S, Su Y, Qiao K, Liu Z. Advances in Research on Marine-Derived Lipid-Lowering Active Substances and Their Molecular Mechanisms. Nutrients 2023; 15:5118. [PMID: 38140377 PMCID: PMC10745522 DOI: 10.3390/nu15245118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic disorder caused by abnormal lipid metabolism. Recently, the prevalence of HLP caused by poor dietary habits in the population has been increasing year by year. In addition, lipid-lowering drugs currently in clinical use have shown significant improvement in blood lipid levels, but are accompanied by certain side effects. However, bioactive marine substances have been shown to possess a variety of physiological activities such as hypoglycemic, antioxidant, antithrombotic and effects on blood pressure. Therefore, the hypolipidemic efficacy of marine bioactive substances with complex and diverse structures has also attracted attention. This paper focuses on the therapeutic role of marine-derived polysaccharides, unsaturated fatty acids, and bioactive peptides in HLP, and briefly discusses the main mechanisms by which these substances exert their hypolipidemic activity in vivo.
Collapse
Affiliation(s)
- Lina Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Y.C.)
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, Fuzhou 350002, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.L.); (Y.C.)
- Engineering Research Center of Fujian and Taiwan Characteristic Marine Food Processing and Nutrition and Health, Ministry of Education, Fuzhou 350002, China
| | - Bei Chen
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Min Xu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Shuji Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Yongchang Su
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Kun Qiao
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, Xiamen 361013, China; (B.C.); (M.X.); (S.L.); (Y.S.)
| |
Collapse
|
7
|
Huang H, Liao D, He B, Zhou G, Cui Y. Clinical effectiveness of krill oil supplementation on cardiovascular health in humans: An updated systematic review and meta-analysis of randomized controlled trials. Diabetes Metab Syndr 2023; 17:102909. [PMID: 38039646 DOI: 10.1016/j.dsx.2023.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/23/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The potential role of krill oil (KO) supplementation on cardiovascular health are inconsistent in several clinical trials. Therefore, our present meta-analysis aimed to systematically evaluate the impacts of supplementation of KO on cardiovascular disease risk factors (CVDRFs). METHODS Intervention trials assessing KO supplementation on cardiovascular disease (CVD) outcomes were systematically retrieved for pooling. The primary outcome was lipid profile. Secondary outcomes were consisted by blood pressure, glycemic indices, body composition together with inflammatory markers. We synthesized the effect sizes with 95% confidence intervals and weighted mean difference. To explore the heterogeneity source, we employed meta-regression and subgroup analysis. Quality assessment, publication bias, sensitivity-analysis and the certainty of evidence were also carried out. RESULTS We included 14 trials (18 treatment arms) with 1458 participants. KO supplementation had beneficial effects on total cholesterol (P = 0.01), low-density lipoprotein cholesterol (P = 0.006), and triglycerides (P = 0.0005). However, no effects were found for other CVDRFs, such as blood pressure, glycemic control, body composition as well as inflammatory markers. Subgroup analyses indicated that these notably favorable effects were observed in trials with a parallel design, treatment duration <8 weeks and subjects with baseline body mass index <28 kg/m2. The above findings remained consistent in the sensitivity analysis, without obvious publication bias detected. CONCLUSIONS The current evidence demonstrated that daily KO supplementation may as a candidate for lipid management strategies. In future, studies should pay attention to the relationships of KO intake with the incidence of CVD events or all-cause mortality.
Collapse
Affiliation(s)
- Haohai Huang
- Department of Clinical Pharmacy, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China; Medical and Pharmacy Research Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China.
| | - Dan Liao
- Department of Gynaecology, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- Medical and Pharmacy Research Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- Department of Rehabilitation Medicine, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- Department of Clinical Laboratory, Dongguan Songshan Lake Central Hospital, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
8
|
Ku SK, Kim JK, Chun YS, Song CH. Anti-Osteoarthritic Effects of Antarctic Krill Oil in Primary Chondrocytes and a Surgical Rat Model of Knee Osteoarthritis. Mar Drugs 2023; 21:513. [PMID: 37888448 PMCID: PMC10608626 DOI: 10.3390/md21100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Osteoarthritis (OA) is characterized by progressive cartilage destruction and synovitis; however, there are no approved disease-modifying OA drugs. Krill oil (KO) has been reported to possess anti-inflammatory properties and alleviate joint pain in knee OA, indicating its potential to target the inflammatory mechanism of OA. Therefore, the anti-OA effects of KO were investigated in primary chondrocytes and a surgical rat model of knee OA. The oral administration of KO at 200 and 100 mg/kg for 8 weeks improved joint swelling and mobility in the animal model and led to increased bone mineral density and compressive strength in the cartilage. The oral KO doses upregulated chondrogenic genes (type 2 collagen, aggrecan, and Sox9), with inhibition of inflammation markers (5-lipoxygenase and prostaglandin E2) and extracellular matrix (ECM)-degrading enzymes (MMP-2 and MMP-9) in the cartilage and synovium. Consistently, KO treatments increased the viability of chondrocytes exposed to interleukin 1α, accompanied by the upregulation of the chondrogenic genes and the inhibition of the ECM-degrading enzymes. Furthermore, KO demonstrated inhibitory effects on lipopolysaccharide-induced chondrocyte inflammation. Histopathological and immunohistochemical analyses revealed that KO improved joint destruction and synovial inflammation, probably due to the anti-inflammatory, anti-apoptotic, and chondrogenic effects. These findings suggest the therapeutic potential of KO for knee OA.
Collapse
Affiliation(s)
- Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| | - Jong-Kyu Kim
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.-K.K.); (Y.-S.C.)
| | - Yoon-Seok Chun
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.-K.K.); (Y.-S.C.)
| | - Chang-Hyun Song
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea;
| |
Collapse
|
9
|
Kim J, Lee N, Chun YS, Lee SH, Ku SK. Krill Oil's Protective Benefits against Ultraviolet B-Induced Skin Photoaging in Hairless Mice and In Vitro Experiments. Mar Drugs 2023; 21:479. [PMID: 37755092 PMCID: PMC10533088 DOI: 10.3390/md21090479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Krill oil (KO) shows promise as a natural marine-derived ingredient for improving skin health. This study investigated its antioxidant, anti-inflammatory, anti-wrinkle, and moisturizing effects on skin cells and UVB-induced skin photoaging in hairless mice. In vitro assays on HDF, HaCaT, and B16/F10 cells, as well as in vivo experiments on 60 hairless mice were conducted. A cell viability assay, diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity test, elastase inhibition assay, procollagen content test, MMP-1 inhibition test, and hyaluronan production assay were used to experiment on in vitro cell models. Mice received oral KO administration (100, 200, or 400 mg/kg) once a day for 15 weeks and UVB radiation three times a week. L-Ascorbic acid (L-AA) was orally administered at 100 mg/kg once daily for 15 weeks, starting from the initial ultraviolet B (UVB) exposures. L-AA administration followed each UVB session (0.18 J/cm2) after one hour. In vitro, KO significantly countered UVB-induced oxidative stress, reduced wrinkles, and prevented skin water loss by enhancing collagen and hyaluronic synthesis. In vivo, all KO dosages showed dose-dependent inhibition of oxidative stress-induced inflammatory photoaging-related skin changes. Skin mRNA expressions for hyaluronan synthesis and collagen synthesis genes also increased dose-dependently after KO treatment. Histopathological analysis confirmed that krill oil (KO) ameliorated the damage caused by UVB-irradiated skin tissues. The results imply that KO could potentially act as a positive measure in diminishing UVB-triggered skin photoaging and address various skin issues like wrinkles and moisturization when taken as a dietary supplement.
Collapse
Affiliation(s)
- Jongkyu Kim
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.K.); (Y.-S.C.)
| | - Namju Lee
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.K.); (Y.-S.C.)
| | - Yoon-Seok Chun
- AriBnC Co., Ltd., Yongin 16914, Republic of Korea; (J.K.); (Y.-S.C.)
| | - Sang-Hoon Lee
- Department of Veterinary Surgery, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| |
Collapse
|
10
|
Local Application of Krill Oil Accelerates the Healing of Artificially Created Wounds in Diabetic Mice. Nutrients 2022; 14:nu14194139. [PMID: 36235791 PMCID: PMC9571309 DOI: 10.3390/nu14194139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Diabetes mellitus (DM) impairs the wound healing process, seriously threatening the health of the diabetic population. To date, few effective approaches have been developed for the treatment of diabetic wounds. Krill oil (KO) contains bioactive components that have potent anti-inflammatory and anti-oxidative activities. As prolonged inflammation is a crucial contributor to DM-impaired wound healing, we speculated that the local application of KO would accelerate diabetic wound healing. Therefore, KO was applied to artificially created wounds of type 2 diabetic mice induced by streptozotocin and high-fat diet. The diabetic mice had a delayed wound healing process compared with the non-diabetic control mice, with excessive inflammation, impaired collagen deposition, and depressed neovascularization in the wound area. These effects were dramatically reversed by KO. In vitro, KO blocked the TNF-α-induced macrophage inflammation, fibroblast dysfunction, and endothelial angiogenic impairment. The present study in mice suggests that KO local application could be a viable approach in the management of diabetic wounds.
Collapse
|