1
|
Binsi P, Parvathy U, Jeyakumari A, George Thomas N, Zynudheen A. Marine biopolymers in cosmetics. MARINE BIOPOLYMERS 2025:677-752. [DOI: 10.1016/b978-0-443-15606-9.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Muñoz-Quintana M, Padrón-Sanz C, Dolbeth M, Arenas F, Vasconcelos V, Lopes G. Revealing the Potential of Fucus vesiculosus Linnaeus for Cosmetic Purposes: Chemical Profile and Biological Activities of Commercial and Wild Samples. Mar Drugs 2024; 22:548. [PMID: 39728123 DOI: 10.3390/md22120548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
The natural products industry is gaining increasing interest, not only due to modern lifestyles becoming more aware of environmental and sustainability issues but also because of the loss of efficacy and undesirable side effects of synthetic ingredients. This pioneering study provides a comprehensive comparison between extracts obtained from wild and commercial samples of Fucus vesiculosus Linnaeus, highlighting their multifaceted benefits in cosmetic applications. The antiaging potential of acetone (70 and 90%) and ethanol 60% extracts from wild and commercial samples of F. vesiculosus, focusing on their application in cosmetics, was explored. The extracts were chemically characterized, their carotenoid profiles being established by HPLC, and the total phenolic content and phlorotannins by spectrophotometry. The extracts were evaluated for their antioxidant potential against the physiologic free radicals superoxide anion radical (O2•-) and nitric oxide (•NO), for their ability to inhibit the enzymes hyaluronidase and tyrosinase, and for their anti-inflammatory potential in the macrophage cell model RAW 264.7. The acetone 70% extract of wild F. vesiculosus was the richest in fucoxanthin, which accounted for more than 67% of the total pigments identified, followed by the acetone 90% extract of the same sample, where both fucoxanthin and pheophytin-a represented 40% of the total pigments. The same behavior was observed for phenolic compounds, with the ethanol 60% presenting the lowest values. A chemical correlation could be established between the chemical composition and the biological activities, with acetone extracts from the wild F. vesiculosus, richer in fucoxanthin and phlorotannins, standing out as natural ingredients with anti-aging potential. Acetone 90% can be highlighted as the most effective extraction solvent, their extracts presenting the highest radicals scavenging capacity, ability to inhibit tyrosinase to a greater extent than the commercial ingredient kojic acid, and potential to slow down the inflammatory process.
Collapse
Affiliation(s)
- Marina Muñoz-Quintana
- Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia "San Vicente Mártir", Guillem de Castro 94, 46001 Valencia, Spain
| | - Carolina Padrón-Sanz
- Translational Research Center San Alberto Magno (CITSAM), Catholic University of Valencia "San Vicente Mártir", C/Quevedo, 2, 46001 Valencia, Spain
| | - Marina Dolbeth
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Francisco Arenas
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Graciliana Lopes
- Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
3
|
Sousa K, Picada JN, da Silva GR, Solka LDC, de Oliveira IM, Henriques JAP, Campo LF, Corrêa DS. Innovative Photoprotection Strategy: Development of 2-(Benzoxazol-2-Yl)[(2-Hydroxynaphthyl)Diazenyl] Phenol Derivatives for Comprehensive Absorption of UVB, UVA, and Blue Light. Chem Biol Drug Des 2024; 104:e70020. [PMID: 39567468 DOI: 10.1111/cbdd.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Overexposure to blue light due to the excessive use of electronic devices has been implicated in premature skin aging and eye damage, among other injuries to health. This study aimed to synthesize two azo derivatives of the 2-(amino-2'-hydroxyphenyl) benzoxazole and explore their potential as UV and blue light filters, proposing a new spectral profile. The synthesis of the heterocyclic compounds involved condensation reactions and diazotation. The derivatives 2-(benzoxazol-2-yl)-5-[(2-hydroxynaphthyl)diazenyl]phenol and 2-(benzoxazol-2-yl)-4-[(2-hydroxynaphthyl)diazenyl]phenol were synthesized with a yield greater than 70%. Solubility was evaluated in seven different solvents. The maximum absorption wavelengths (λmax) were determined using UV-Vis scanning spectrophotometry in the range of 200-600 nm. Photostability was assessed using a solar simulator and the Sun protection factor (SPF) was determined using in vitro methodology. Cytotoxicity was evaluated using the MTT assay in V79 cells. These compounds were able to absorb UVA, UVB, and blue light, with λmax ranging from 300 to 500 nm and demonstrated photostability after 3 h of exposure to solar simulator with an SPF higher than 45. The compounds exhibited solubility in all lipophilic solvents tested. Regarding cytotoxicity, IC50 values were comparable to other filters. These findings indicate that both compounds hold promise as potential organic filters.
Collapse
Affiliation(s)
- Karen Sousa
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | | | - Gabriela Rodrigues da Silva
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Larissa da Cunha Solka
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| | - Iuri Marques de Oliveira
- Department of Biophysics, Biotechnology Center, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Department of Biophysics, Biotechnology Center, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Postgraduate Program in Biotechnology and Medical Sciences, University of Vale Do Taquari (UNIVATES), Lajeado, RS, Brazil
| | - Leandra Franciscato Campo
- Laboratory of New Organic Materials and Forensic Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Dione Silva Corrêa
- Center for Research in Product and Development (CEPPED), Lutheran University of Brazil (ULBRA), Canoas, RS, Brazil
| |
Collapse
|
4
|
Kregiel D, Krajewska A, Kowalska-Baron A, Czarnecka-Chrebelska KH, Nowak A. Photoprotective Effects of Yeast Pulcherrimin. Molecules 2024; 29:4873. [PMID: 39459241 PMCID: PMC11510698 DOI: 10.3390/molecules29204873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Sunscreen products can protect the skin against the harmful effects of UV radiation, including reddening, aging, and cancer. The aim of this research was to evaluate the photoprotective effects of yeast pulcherrimin, an iron-chelating dipeptide. We first investigated the cytotoxicity of pulcherrimin produced by Metschnikowia pulcherrima yeast on the human keratinocyte HaCaT cell line, using the PrestoBlue assay. We assessed the ability of pulcherrimin to induce DNA repair after the exposure of HaCaT cells to oxidative stress. We also evaluated its protective activity against UVC radiation. The sun protective factor (SPF) was calculated using the Mansur equation. The UVA/UVB ratio values for pure pulcherrimin were evaluated using the Boots Star Rating system. The critical wavelength was determined by calculating the integrated optical density curve area. Based on the results, pulcherrimin shows strong cytoprotective effects through antioxidant and photoprotective activities on the HaCaT cell line. The calculated SPFs were 20 and 15 at pH = 7 and pH = 10, respectively. The critical wavelength above 370 nm and the UVA/UVB ratio R > 1 suggest that yeast pulcherrimin-a cyclic dipeptide containing iron-may be considered a promising photoprotective agent.
Collapse
Affiliation(s)
- Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland;
| | - Agnieszka Krajewska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (A.K.); (A.K.-B.)
| | - Agnieszka Kowalska-Baron
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (A.K.); (A.K.-B.)
| | | | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland;
| |
Collapse
|
5
|
Obluchinskaya ED, Pozharitskaya ON, Shevyrin VA, Kovaleva EG, Flisyuk EV, Shikov AN. Optimization of Extraction of Phlorotannins from the Arctic Fucus vesiculosus Using Natural Deep Eutectic Solvents and Their HPLC Profiling with Tandem High-Resolution Mass Spectrometry. Mar Drugs 2023; 21:263. [PMID: 37233457 PMCID: PMC10223229 DOI: 10.3390/md21050263] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Phlorotannins are secondary metabolites produced mainly by brown seaweeds (Phaeophyceae) and belong to the class of polyphenolic compounds with diverse bioactivities. The key factors in the extraction of polyphenols are the selection of a suitable solvent, method of extraction and selection of optimal conditions. Ultrasonic-assisted extraction (UAE) is one of the advanced energy-saving methods suitable for the extraction of labile compounds. Methanol, acetone, ethanol and ethyl acetate are the most commonly used solvents for polyphenol extraction. As alternatives to toxic organic solvents, a new class of green solvents, natural deep eutectic solvents (NADES), has been proposed for the efficient extraction of a wide range of natural compounds including polyphenols. Several NADES were screened previously for the extraction of phlorotannins; however, the extraction conditions were not optimized and chemical profiling of NADES extract was not performed. The purpose of this work was to study the effect of selected extraction parameters on the phlorotannin content in NADES extract from Fucus vesiculosus, optimization of extraction conditions and chemical profiling of phlorotannins in the NADES extract. A fast and green NADES-UAE procedure was developed for the extraction of phlorotannins. Optimization was performed through an experimental design and showed that NADES (lactic acid:choline chloride; 3:1) provides a high yield (137.3 mg phloroglucinol equivalents per g dry weight of algae) of phlorotannins under the following extraction conditions: extraction time 23 min, 30.0% water concentration and 1:12 sample to solvent ratio. The antioxidant activity of the optimized NADES extract was equal to that of EtOH extract. In total, 32 phlorotannins have been identified (one trimer, two tetramers, six pentamers, four hexamers, six heptamers, six octamers and seven nonamers) in NADES extracts from arctic F. vesiculosus using the HPLC-HRMS and MS/MS technique. It was noted that all the above-mentioned phlorotannins were identified in both EtOH and NADES extracts. Our results suggest that NADES could be considered as an alternative to the conventional techniques for the effective extraction of phlorotannins from F. vesiculosus with high antioxidant potential.
Collapse
Affiliation(s)
- Ekaterina D. Obluchinskaya
- Research Group of Biochemistry and Technology of Hydrobionts of Algae and Invertebrates, Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183010 Murmansk, Russia; (E.D.O.); (O.N.P.)
| | - Olga N. Pozharitskaya
- Research Group of Biochemistry and Technology of Hydrobionts of Algae and Invertebrates, Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183010 Murmansk, Russia; (E.D.O.); (O.N.P.)
| | - Vadim A. Shevyrin
- Scientific, Educational and Innovation Center of Chemical and Pharmaceutical Technologies, Ural Federal University Named after the First President of Russia B. N. Yeltsin (UrFU), 19 Mira Str., 620002 Ekaterinburg, Russia; (V.A.S.); (E.G.K.)
| | - Elena G. Kovaleva
- Scientific, Educational and Innovation Center of Chemical and Pharmaceutical Technologies, Ural Federal University Named after the First President of Russia B. N. Yeltsin (UrFU), 19 Mira Str., 620002 Ekaterinburg, Russia; (V.A.S.); (E.G.K.)
| | - Elena V. Flisyuk
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14a Prof. Popov Str., 197376 Saint Petersburg, Russia;
| | - Alexander N. Shikov
- Research Group of Biochemistry and Technology of Hydrobionts of Algae and Invertebrates, Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), 17 Vladimirskaya Str., 183010 Murmansk, Russia; (E.D.O.); (O.N.P.)
- Department of Technology of Pharmaceutical Formulations, St. Petersburg State Chemical Pharmaceutical University, 14a Prof. Popov Str., 197376 Saint Petersburg, Russia;
| |
Collapse
|
6
|
Consumer Behavior, Skin Phototype, Sunscreens, and Tools for Photoprotection: A Review. COSMETICS 2023. [DOI: 10.3390/cosmetics10020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Sunscreens and photoprotection tools along with consumer habits and behaviors, can mitigate the skin damage caused by excessive solar radiation. For example, protecting oneself in the shade, avoiding inadequate sun exposure at times of higher incidence of UVB radiation (between 10:00 a.m. and 4:00 p.m.), wearing clothes with sun protection factors, applying sunscreens at the correct amounts and intervals, and wearing glasses with anti-UVA and UVB lenses are effective measures for protecting an individual. Therefore, the objective of this review was to highlight the importance of photoprotection for all skin phototypes, as skin cancer is a worldwide public health problem. In this review of the scientific literature on the Scopus platform between 2015 and 2022, we addressed the most common behaviors among different individuals and their phototypes, the importance of clarifying population habits against solar radiation, and the use of sunscreens and photoprotection tools to provide advice on healthy and safe sun exposure.
Collapse
|
7
|
Catarino MD, Pires SMG, Silva S, Costa F, Braga SS, Pinto DCGA, Silva AMS, Cardoso SM. Overview of Phlorotannins' Constituents in Fucales. Mar Drugs 2022; 20:754. [PMID: 36547901 PMCID: PMC9786115 DOI: 10.3390/md20120754] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Fucales are an order within the Phaeophyceae that include most of the common littoral seaweeds in temperate and subtropical coastal regions. Many species of this order have long been a part of human culture with applications as food, feedand remedies in folk medicine. Apart from their high nutritional value, these seaweeds are also a well-known reservoir of multiple bioactive compounds with great industrial interest. Among them, phlorotannins, a unique and diverse class of brown algae-exclusive phenolics, have gathered much attention during the last few years due to their numerous potential health benefits. However, due to their complex structural features, combined with the scarcity of standards, it poses a great challenge to the identification and characterization of these compounds, at least with the technology currently available. Nevertheless, much effort has been taken towards the elucidation of the structural features of phlorotannins, which have resulted in relevant insights into the chemistry of these compounds. In this context, this review addresses the major contributions and technological advances in the field of phlorotannins extraction and characterization, with a particular focus on Fucales.
Collapse
Affiliation(s)
- Marcelo D Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia M G Pires
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipa Costa
- School of Engineering, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal
| | - Susana S Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|