1
|
Oumassi F, Chebbac K, Ben Ali N, Kaabi S, El Ansari ZN, Metouekel A, El Barnossi A, El Moussaoui A, Chebaibi M, Bounab L, Mssillou I, Shahat AA, El Bouzdoudi B, L'bachir El Kbiach M. Chemical Composition, Free Radicals and Pathogenic Microbes in the Extract Derived from Dictyota dichotoma: In Silico and In Vitro Approaches. Mar Drugs 2024; 22:565. [PMID: 39728138 DOI: 10.3390/md22120565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024] Open
Abstract
Marine algae are renowned for their health benefits due to the presence of functional bioactive compounds. In this context, this study aims to valorize the extract of a seaweed, Dictyota dichotoma (D. dichotoma), through phytochemical characterization using liquid chromatography-mass spectrometry (HPLC-MS), as well as in vitro and in silico evaluation of its biological activities (antioxidant and antimicrobial). Phytochemical characterization revealed that the ethanolic extract of Dictyota dichotoma (DdEx) is rich in phenolic compounds, with a total of 22 phycocompounds identified. Antioxidant activity, measured by various methods, showed an IC50 of 120 µg/mL for the DPPH assay, an EC50 of 120.53 µg/mL for the FRAP assay, and a total antioxidant power of 685.26 µg AAE/mg according to the phosphomolybdate (TAC) method. Evaluation of antibacterial activity showed a zone of inhibition diameter ranging from 11.93 to 22.58 mm, with the largest zone observed for the Escherichia coli (E. coli) strain. For antifungal activity, inhibition zone diameters ranged from 22.38 to 23.52 mm, with the largest recorded for the Saccharomyces cerevisiae (S. cerevisiae) strain. The in silico study identified tetragalloyl-glucose, apigenin-7-O-glucoside, and pentagalloyl-glucose as the most active compounds against NADPH oxidase, with docking scores of -7.723, -7.424, and -6.402 kcal/mol, respectively. Regarding antibacterial activity, apigenin-7-O-glucoside, pelargonidin-3-O-glucoside, and secoisolariciresinol demonstrated high affinity for E. coli beta-ketoacyl-[acyl carrier protein] synthase, with docking scores of -7.276, -6.811, and -6.594 kcal/mol, respectively. These in vitro and in silico evaluations showed that D. dichotoma extract possesses antioxidant and antimicrobial properties, due to its richness in bioactive compounds identified by HPLC.
Collapse
Affiliation(s)
- Fouad Oumassi
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Khalid Chebbac
- Laboratory of Biotechnology and Preservation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdallah University, Fez 30000, Morocco
| | - Naouar Ben Ali
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Soundouss Kaabi
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Zineb Nejjar El Ansari
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
- Life and Health Sciences Team, Faculty of Medicine and Pharmacy, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Amira Metouekel
- Laboratoire R&D BOI, Bioval Océan Indien Research and Innovation Company, 18 rue des Poivres Roses, 97419 La Possession, Reunion Island, France
- University of Technology of Compiegne, EA 4297 TIMR, CEDEX, 60205 Compiegne, France
| | - Azeddin El Barnossi
- Biological Engineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Abdelfattah El Moussaoui
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez 30000, Morocco
| | - Loubna Bounab
- Advanced Materials, Structures and Civil Engineering Team, ENSA Tetouan, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Ibrahim Mssillou
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health & Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | | | - Brahim El Bouzdoudi
- Plant Biotechnology Team, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | | |
Collapse
|
2
|
Tong A, Wang D, Jia N, Zheng Y, Qiu Y, Chen W, El-Seed HR, Zhao C. Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus. BIOLOGY 2024; 13:904. [PMID: 39596859 PMCID: PMC11591677 DOI: 10.3390/biology13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery. Seaweed active substances, including algal polysaccharides, algal polyphenols, algal unsaturated fatty acids, and algal dietary fiber, have unique biological activities. This article reviews the effects and mechanisms of the types, structures, and compositions of seaweed on inhibiting glucose and lipid metabolism disorders, with a focus on the inhibitory effect of active substances on blood glucose reduction. The aim is to provide a basis for the development of seaweed active substance hypoglycemic drugs.
Collapse
Affiliation(s)
- Aijun Tong
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China;
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusong Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hesham R. El-Seed
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Bouzenad N, Ammouchi N, Chaib N, Messaoudi M, Bousabaa W, Bensouici C, Sawicka B, Atanassova M, Ahmad SF, Zahnit W. Exploring Bioactive Components and Assessing Antioxidant and Antibacterial Activities in Five Seaweed Extracts from the Northeastern Coast of Algeria. Mar Drugs 2024; 22:273. [PMID: 38921584 PMCID: PMC11205126 DOI: 10.3390/md22060273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The main goal of this study was to assess the bioactive and polysaccharide compositions, along with the antioxidant and antibacterial potentials, of five seaweeds collected from the northeastern coast of Algeria. Through Fourier transform infrared spectroscopy analysis and X-ray fluorescence spectroscopy, the study investigated the elemental composition of these seaweeds and their chemical structure. In addition, this study compared and identified the biochemical makeup of the collected seaweed by using cutting-edge methods like tandem mass spectrometry and ultra-high-performance liquid chromatography, and it searched for new sources of nutritionally valuable compounds. According to the study's findings, Sargassum muticum contains the highest levels of extractable bioactive compounds, showing a phenolic compound content of 235.67 ± 1.13 µg GAE·mg-1 and a total sugar content of 46.43 ± 0.12% DW. Both S. muticum and Dictyota dichotoma have high concentrations of good polyphenols, such as vanillin and chrysin. Another characteristic that sets brown algae apart is their composition. It showed that Cladophora laetevirens has an extracted bioactive compound content of 12.07% and a high capacity to scavenge ABTS+ radicals with a value of 78.65 ± 0.96 µg·mL-1, indicating high antioxidant activity. In terms of antibacterial activity, S. muticum seaweed showed excellent growth inhibition. In conclusion, all five species of seaweed under investigation exhibited unique strengths, highlighting the variety of advantageous characteristics of these seaweeds, especially S. muticum.
Collapse
Affiliation(s)
- Nawal Bouzenad
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Interactions, Biodiversity, Ecosystems and Biotechnology (LIBEB), University 20 August 1955, Skikda 21000, Algeria
| | - Nesrine Ammouchi
- Department of Sciences and Technology, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria;
- Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces (LRPCSI), University 20 August 1955, Skikda 21000, Algeria
| | - Nadjla Chaib
- Department of Process Engineering, Faculty of Technology, University 20 August 1955, Skikda 21000, Algeria
- Laboratory of Catalysis, Bioprocesses and Environment (LCBE), University 20 August 1955, Skikda 21000, Algeria
| | | | - Walid Bousabaa
- Scientific and Technical Research Center in Physico-Chemical Analysis (CRAPC), BP384, Bou-Ismail 42004, Algeria;
| | - Chawki Bensouici
- Laboratory of Biochemistry, Biotechnology and Health Division, Center for Research in Biotechnology, Constantine 25000, Algeria;
| | - Barbara Sawicka
- Department of Plant Production Technology and Commoditties Science, University of Life Sciences in Lublin, Akademicka 15 Str., 20-950 Lublin, Poland;
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, University of Chemical Technology and Metallurgy, 1734 Sofia, Bulgaria;
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wafa Zahnit
- Laboratory of Valorization and Promotion of Saharan Resource (VPRS), Faculty of Mathematics and Matter Sciences, University of Ouargla, Road of Ghardaia, Ouargla 30000, Algeria
| |
Collapse
|
4
|
Bharathi VU, Thambidurai S. Phytofabrication of biocompatible chitosan-based ZnO nanocomposite aided by Cissus quadrangularis extract enriched with antimicrobial and antioxidant potential. Int J Biol Macromol 2024; 271:132677. [PMID: 38820903 DOI: 10.1016/j.ijbiomac.2024.132677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
A dynamic chitosan-based ZnO nanocomposite (NC) was fabricated via a cost-effective formulation and an eco-friendly procedure utilizing Cissus quadrangularis (CQ) plant extract. This study investigates the antimicrobial and antioxidant properties, together with the cytocompatibility aspects of chitosan-incorporated ZnO nanocomposite (CS-ZnO/CQE). The formation and structural morphology of the nanocomposites were examined using FTIR, UV-Vis, XRD, XPS, BET, TGA, SEM, and TEM techniques. The antibacterial test results demonstrated the greatest inhibitory zone diameter against S. aureus (19 ± 1.00 mm) and E. coli (17 ± 1.05 mm), assessed through agar well diffusion method. Also, the composite exhibited a DPPH inhibition rate of 78.7 ± 0.34 %, indicating its high effectiveness in neutralizing free radicals. In addition, the nanocomposite exhibited less toxicity towards human erythrocytes, HDF and HEK-293 cells as a result of the biocompatibility exhibited by CS, ZnO, and CQ plant extract. Likewise, it has exceptional cell migratory capacity and possesses biodegradability factors. These observations strongly suggest the potential of CS-ZnO/CQE as a cutting-edge antibacterial and antioxidant agent to be implemented in the medical sector.
Collapse
Affiliation(s)
- V Umaiya Bharathi
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of chemical Sciences, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - S Thambidurai
- Bio-nanomaterials Research Lab, Department of Industrial Chemistry, School of chemical Sciences, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
5
|
Silva M, Avni D, Varela J, Barreira L. The Ocean's Pharmacy: Health Discoveries in Marine Algae. Molecules 2024; 29:1900. [PMID: 38675719 PMCID: PMC11055030 DOI: 10.3390/molecules29081900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Non-communicable diseases (NCDs) represent a global health challenge, constituting a major cause of mortality and disease burden in the 21st century. Addressing the prevention and management of NCDs is crucial for improving global public health, emphasizing the need for comprehensive strategies, early interventions, and innovative therapeutic approaches to mitigate their far-reaching consequences. Marine organisms, mainly algae, produce diverse marine natural products with significant therapeutic potential. Harnessing the largely untapped potential of algae could revolutionize drug development and contribute to combating NCDs, marking a crucial step toward natural and targeted therapeutic approaches. This review examines bioactive extracts, compounds, and commercial products derived from macro- and microalgae, exploring their protective properties against oxidative stress, inflammation, cardiovascular, gastrointestinal, metabolic diseases, and cancer across in vitro, cell-based, in vivo, and clinical studies. Most research focuses on macroalgae, demonstrating antioxidant, anti-inflammatory, cardioprotective, gut health modulation, metabolic health promotion, and anti-cancer effects. Microalgae products also exhibit anti-inflammatory, cardioprotective, and anti-cancer properties. Although studies mainly investigated extracts and fractions, isolated compounds from algae have also been explored. Notably, polysaccharides, phlorotannins, carotenoids, and terpenes emerge as prominent compounds, collectively representing 42.4% of the investigated compounds.
Collapse
Affiliation(s)
- Mélanie Silva
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
| | - Dorit Avni
- MIGAL Galilee Institute, Kiryat Shmona 1106000, Israel;
| | - João Varela
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Barreira
- Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal; (M.S.); (J.V.)
- Green Colab—Associação Oceano Verde, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Mwangi WC, Waudo W, Shigwenya ME, Gichuki J. Phytochemical characterization, antimicrobial and antioxidant activities of Terminalia catappa methanol and aqueous extracts. BMC Complement Med Ther 2024; 24:137. [PMID: 38566161 PMCID: PMC10986026 DOI: 10.1186/s12906-024-04449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND A study carried out by World Health Organization revealed that around 80% of individuals globally depends on herbal forms of medication with 40% of pharmaceutical products being sourced from medicinal plants. The study objective was to evaluate the phytochemicals composition, in vitro antimicrobial and antioxidant properties of the leaves of Terminalia catappa L. aqueous and methanolic extracts. METHODS Antimicrobial activity was analyzed by disk diffusion, the minimum inhibitory concentration in-vitro assays with ciprofloxacin as the standard for antibacterial assay while nystatin for antifungal assay. Ferric reducing antioxidant power and 2,2-diphenyl-1-picryl-hydrazyl-hydrate assays were used for the evaluation of antioxidant properties of the crude extracts while the groups responsible for this activity identified using Fourier transform infrared spectrophotometer. RESULTS The study found that the leaves of Terminalia catappa contained alkaloids, tannins, steroids, cardiac glycosides, flavonoids, phenols, saponins, and coumarins, but terpenoids were absent. Presence of functional groups associated with this class of compounds such as OH vibrational frequencies were observed in IR spectrum of the crude extracts. Methanolic extract from Terminalia catappa exhibited greater antibacterial properties against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus, whereas aqueous extract displayed greater antibacterial activity against Bacillus subtilis for all concentrations tested. The amount of the sample that scavenged 50 percent of DPPH (IC50) was found to be 8.723, 13.42 and 13.04 µg/mL for L-ascorbic acid, Terminalia catappa L. methanolic and aqueous extracts respectively. The antimicrobial and antioxidant activities varied with the extract concentration and solvent used in extractions. CONCLUSION Terminalia catappa L. leaves are prospective for use as a source of therapeutic agents that could lead to the advancement of new antimicrobial and antioxidant products.
Collapse
Affiliation(s)
- Wangui Clement Mwangi
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya.
- Pharmaceutical Chemistry Department, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya.
| | - Walyambillah Waudo
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Madivoli Edwin Shigwenya
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| | - Joyline Gichuki
- Chemistry Department, Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
7
|
Singab ANB, Elhawary EA, Elkhawas YA, Fawzy IM, Moussa AY, Mostafa NM. Role of Nutraceuticals in Obesity Management: A Mechanism and Prospective Supported by Molecular Docking Studies. J Med Food 2024; 27:176-197. [PMID: 38324003 DOI: 10.1089/jmf.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Obesity and its comorbidities represent a major health problem worldwide. Treatment by reducing food intake and physical activity interventions has limited success especially with elderly people with chronic diseases. Nutraceuticals are naturally originated and successfully used for their physiological and nutritional benefit in health care. They might be alternative means to help lose weight and reduce obesity-associated metabolic disorders with the improvement of health, delay the aging process, prevention of chronic diseases, increase of life expectancy, or support to the structure or function of the body. The current study enumerates the inherent role of nutraceuticals in the management of obesity and its related comorbidities. The study is supported with the molecular docking studies discussing the mechanism of action. An attempt to optimize the role of nutraceuticals is made in this article in addition to widen the scope of its use in this chronic worldwide disease.
Collapse
Affiliation(s)
- Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain-Shams University, Cairo, Egypt
| | - Esraa A Elhawary
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Yasmin A Elkhawas
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| | - Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Imran M, Iqbal A, Badshah SL, Ahmad I, Shami A, Ali B, Alatawi FS, Alatawi MS, Mostafa YS, Alamri SA, Alalwiat AA, Bajaber MA. Exploring the hidden treasures of Nitella hyalina: a comprehensive study on its biological compounds, nutritional profile, and unveiling its antimicrobial, antioxidative, and hypoglycemic properties. World J Microbiol Biotechnol 2023; 39:345. [PMID: 37843704 DOI: 10.1007/s11274-023-03795-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Botany, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
- Department of Civil and Environmental Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Imtiaz Ahmad
- Department of Botany, Bacha Khan University, Charsadda, KP, 24460, Pakistan
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fatema Suliman Alatawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohsen Suliman Alatawi
- Department of Pediatrics, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahlam A Alalwiat
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|