1
|
Visuddho V, Halim P, Helen H, Muhar AM, Iqhrammullah M, Mayulu N, Surya R, Tjandrawinata RR, Ribeiro RIMA, Tallei TE, Taslim NA, Kim B, Syahputra RA, Nurkolis F. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Mar Drugs 2024; 22:338. [PMID: 39195454 DOI: 10.3390/md22080338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Marine algae, encompassing both macroalgae and microalgae, have emerged as a promising and prolific source of bioactive compounds with potent anticancer properties. Despite their significant therapeutic potential, the clinical application of these peptides is hindered by challenges such as poor bioavailability and susceptibility to enzymatic degradation. To overcome these limitations, innovative delivery systems, particularly nanocarriers, have been explored. Nanocarriers, including liposomes, nanoparticles, and micelles, have demonstrated remarkable efficacy in enhancing the stability, solubility, and bioavailability of marine algal peptides, ensuring controlled release and prolonged therapeutic effects. Marine algal peptides encapsulated in nanocarriers significantly enhance bioavailability, ensuring more efficient absorption and utilization in the body. Preclinical studies have shown promising results, indicating that nanocarrier-based delivery systems can significantly improve the pharmacokinetic profiles and therapeutic outcomes of marine algal peptides. This review delves into the diverse anticancer mechanisms of marine algal peptides, which include inducing apoptosis, disrupting cell cycle progression, and inhibiting angiogenesis. Further research focused on optimizing nanocarrier formulations, conducting comprehensive clinical trials, and continued exploration of marine algal peptides holds great promise for developing innovative, effective, and sustainable cancer therapies.
Collapse
Affiliation(s)
- Visuddho Visuddho
- Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Muhammad Iqhrammullah
- Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh 23123, Indonesia
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Health Science, Muhammadiyah Manado University, Manado 95249, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | | | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| |
Collapse
|
2
|
Chen J, Jiang Y, Yan J, Xu C, Ye T. Total Syntheses of Colletopeptide A and Colletotrichamide A. Molecules 2023; 28:7194. [PMID: 37894673 PMCID: PMC10608858 DOI: 10.3390/molecules28207194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The first total syntheses of cyclic depsipeptides colletopeptide A and colletotrichamide A, have been accomplished. The key advanced intermediate, a cyclic tridepsipeptide derivative, was constructed using a sequence of transformations that features asymmetric Brown crotylation, cross metathesis, Yamaguchi esterification, ozonolysis, and macrolactamization. A late-stage incorporation of the mannose fragment completed the synthesis of colletotrichamide A, and the desilylation of the common intermediate gave rise to colletopeptide A, which led to unambiguous confirmation of the absolute stereochemistry of the aforementioned natural products.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (J.C.); (Y.J.)
| | - Yangyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (J.C.); (Y.J.)
| | - Jialei Yan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
| | - Chao Xu
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China;
- QianYan (Shenzhen) Pharmatech. Ltd., Building-3, Longcheng Industrial Park, Qinglin Road West, Longgang District, Shenzhen 518172, China
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (J.C.); (Y.J.)
- QianYan (Shenzhen) Pharmatech. Ltd., Building-3, Longcheng Industrial Park, Qinglin Road West, Longgang District, Shenzhen 518172, China
| |
Collapse
|
3
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Solonamides, a Group of Cyclodepsipeptides, Influence Motility in the Native Producer Photobacterium galatheae S2753. Appl Environ Microbiol 2022; 88:e0110522. [PMID: 36000852 PMCID: PMC9469707 DOI: 10.1128/aem.01105-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine bacterium Photobacterium galatheae S2753 produces a group of cyclodepsipeptides, called solonamides, which impede the virulence but not the survival of Staphylococcus aureus. In addition to their invaluable antivirulence activity, little is known about the biosynthesis and physiological function of solonamides in the native producer. This study generated a solonamide-deficient (Δsol) mutant by in-frame deletion of the sol gene, thereby identifying the core gene for solonamide biosynthesis. By annotation from antiSMASH, the biosynthetic pathway of solonamides in S2753 was also proposed. Mass spectrometry analysis of cell extracts found that deficiency of solonamide production influenced the production of a group of unknown compounds but otherwise did not alter the overall secondary metabolite profile. Physiological comparison between Δsol and wild-type S2753 demonstrated that growth dynamics and biofilm formation of both strains were similar; however, the Δsol mutant displayed reduced motility rings compared to the wild type. Reintroduction of sol restored solonamide production and motility to the mutant, indicating that solonamides influence the motility behavior of P. galatheae S2753. Proteomic analysis of the Δsol and wild-type strains found that eliminating solonamides influenced many cellular processes, including swimming-related proteins and proteins adjusting the cellular cyclic di-GMP concentration. In conclusion, our results revealed the biosynthetic pathway of solonamides and their ecological benefits to P. galatheae S2753 by enhancing motility, likely by altering the motile physiology. IMPORTANCE The broad range of bioactive potentials of cyclodepsipeptides makes these compounds invaluable in the pharmaceutical industry. Recently, a few novel cyclodepsipeptides have been discovered in marine Proteobacteria; however, their biosynthetic pathways remain to be revealed. Here, we demonstrated the biosynthetic genetic basis and pathway of the antivirulence compounds known as solonamides in P. galatheae S2753. This can pave the way for the biological overproduction of solonamides on an industrial scale. Moreover, the comparison of a solonamide-deficient mutant and wild-type S2753 demonstrated that solonamides stimulate the swimming behavior of S2753 and also influence a few key physiological processes of the native producers. These results evidenced that, in addition to their importance as novel drug candidates, these compounds play a pivotal role in the physiology of the producing microorganisms and potentially provide the native producer competitive benefits for their survival in nature.
Collapse
|
5
|
Al-Khayri JM, Asghar W, Khan S, Akhtar A, Ayub H, Khalid N, Alessa FM, Al-Mssallem MQ, Rezk AAS, Shehata WF. Therapeutic Potential of Marine Bioactive Peptides against Human Immunodeficiency Virus: Recent Evidence, Challenges, and Future Trends. Mar Drugs 2022; 20:md20080477. [PMID: 35892945 PMCID: PMC9394390 DOI: 10.3390/md20080477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is a chronic and potentially fatal ailment caused by the human immunodeficiency virus (HIV) and remains a major health problem worldwide. In recent years, the research focus has shifted to a greater emphasis on complementing treatment regimens involving conventional antiretroviral (ARV) drug therapies with novel lead structures isolated from various marine organisms that have the potential to be utilized as therapeutics for the management of HIV-AIDS. The present review summarizes the recent developments regarding bioactive peptides sourced from various marine organisms. This includes a discussion encompassing the potential of these novel marine bioactive peptides with regard to antiretroviral activities against HIV, preparation, purification, and processing techniques, in addition to insight into the future trends with an emphasis on the potential of exploration and evaluation of novel peptides to be developed into effective antiretroviral drugs.
Collapse
Affiliation(s)
- Jameel Mohammed Al-Khayri
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
- Correspondence: (J.M.A.-K.); (N.K.)
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Sipper Khan
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Aqsa Akhtar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Haris Ayub
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore 54770, Pakistan; (W.A.); (S.K.); (A.A.); (H.A.)
- Correspondence: (J.M.A.-K.); (N.K.)
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (M.Q.A.-M.)
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (F.M.A.); (M.Q.A.-M.)
| | - Adel Abdel-Sabour Rezk
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
| | - Wael Fathi Shehata
- Department of Plant Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.A.-S.R.); (W.F.S.)
| |
Collapse
|
6
|
Falco A, Adamek M, Pereiro P, Hoole D, Encinar JA, Novoa B, Mallavia R. The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases. Mar Drugs 2022; 20:md20060363. [PMID: 35736166 PMCID: PMC9230875 DOI: 10.3390/md20060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
The high proliferation of microorganisms in aquatic environments has allowed their coevolution for billions of years with other living beings that also inhabit these niches. Among the different existing types of interaction, the eternal competition for supremacy between the susceptible species and their pathogens has selected, as part of the effector division of the immune system of the former ones, a vast and varied arsenal of efficient antimicrobial molecules, which is highly amplified by the broad biodiversity radiated, above any others, at the marine habitats. At present, the great recent scientific and technological advances already allow the massive discovery and exploitation of these defense compounds for therapeutic purposes against infectious diseases of our interest. Among them, antimicrobial peptides and antimicrobial metabolites stand out because of the wide dimensions of their structural diversities, mechanisms of action, and target pathogen ranges. This revision work contextualizes the research in this field and serves as a presentation and scope identification of the Special Issue from Marine Drugs journal “The Immune System of Marine Organisms as Source for Drugs against Infectious Diseases”.
Collapse
Affiliation(s)
- Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
- Correspondence: (A.F.); (M.A.)
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine, 30559 Hannover, Germany
- Correspondence: (A.F.); (M.A.)
| | - Patricia Pereiro
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - David Hoole
- School of Life Sciences, Keele University, Keele ST5 5BG, UK;
| | - José Antonio Encinar
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| | - Beatriz Novoa
- Institute of Marine Research, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (P.P.); (B.N.)
| | - Ricardo Mallavia
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain; (J.A.E.); (R.M.)
| |
Collapse
|
7
|
Naqvi SAR, Sherazi TA, Hassan SU, Shahzad SA, Faheem Z. Anti-inflammatory, anti-infectious and anti-cancer potential of marine algae and sponge: A review. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221075514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Marine organisms are potentially a pretty good source of highly bioactive secondary metabolites that are best known for their anti-inflammation, anti-infection, and anti-cancer potential. The growing threat of bacterial resistance to synthetic antibiotics, is a potential source to screen terrestrial and marine natural organisms to discover promising anti-inflammatory and antimicrobial agents which can synergistically overcome the inflammatory and infectious disases. Algae and sponge have been studied enormously to evaluate their medicinal potential to fix variety of diseases, especially inflammation, infections, cancers, and diabetes. Cytarabine is the first isolated biomolecule from marine organism which was successfully practiced in clinical setup as chemotherapeutic agent against xylogenous leukemia both in acute and chronic conditions. This discovery opened the horizon for systematic evaluation of broad range of human disorders. This review is designed to look into the literature reported on anti-inflammatory, anti-infectious, and anti-cancerous potential of algae and sponge to refine the isolated compounds for value addition process.
Collapse
Affiliation(s)
- Syed Ali Raza Naqvi
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Sadaf U Hassan
- Department of Chemistry, School of Sciences, University of Management and Technology, Lahore Campus, Pakistan
| | - Sohail A Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Zahra Faheem
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
8
|
Possible Functional Roles of Patellamides in the Ascidian-Prochloron Symbiosis. Mar Drugs 2022; 20:md20020119. [PMID: 35200648 PMCID: PMC8875616 DOI: 10.3390/md20020119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Patellamides are highly bioactive compounds found along with other cyanobactins in the symbiosis between didemnid ascidians and the enigmatic cyanobacterium Prochloron. The biosynthetic pathway of patellamide synthesis is well understood, the relevant operons have been identified in the Prochloron genome and genes involved in patellamide synthesis are among the most highly transcribed cyanobacterial genes in hospite. However, a more detailed study of the in vivo dynamics of patellamides and their function in the ascidian-Prochloron symbiosis is complicated by the fact that Prochloron remains uncultivated despite numerous attempts since its discovery in 1975. A major challenge is to account for the highly dynamic microenvironmental conditions experienced by Prochloron in hospite, where light-dark cycles drive rapid shifts between hyperoxia and anoxia as well as pH variations from pH ~6 to ~10. Recently, work on patellamide analogues has pointed out a range of different catalytic functions of patellamide that could prove essential for the ascidian-Prochloron symbiosis and could be modulated by the strong microenvironmental dynamics. Here, we review fundamental properties of patellamides and their occurrence and dynamics in vitro and in vivo. We discuss possible functions of patellamides in the ascidian-Prochloron symbiosis and identify important knowledge gaps and needs for further experimental studies.
Collapse
|
9
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci 2022; 23:ijms23031445. [PMID: 35163367 PMCID: PMC8836030 DOI: 10.3390/ijms23031445] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Bioactive peptides are a group of biological molecules that are normally buried in the structure of parent proteins and become active after the cleavage of the proteins. Another group of peptides is actively produced and found in many microorganisms and the body of organisms. Today, many groups of bioactive peptides have been marketed chemically or recombinantly. This article reviews the various production methods and sources of these important/ubiquitous and useful biomolecules. Their applications, such as antimicrobial, antihypertensive, antioxidant activities, blood-lipid-lowering effect, opioid role, antiobesity, ability to bind minerals, antidiabetic, and antiaging effects, will be explored. The types of pathways proposed for bioactive applications will be in the next part of the article, and at the end, the future perspectives of bioactive peptides will be reviewed. Reading this article is recommended for researchers interested in various fields of physiology, microbiology, biochemistry, and nanotechnology and food industry professionals.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ali Khani
- Department of Radiation Sciences, Faculty of Applied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Sara Eghbalpour
- Department of Obstetrics and Gynecology Surgery, Babol University of Medical Sciences, Babol 4717647745, Iran;
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Health Byrd Alzheimer’s Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-(813)-974-5816
| |
Collapse
|
11
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. Computational peptidology approach to the study of the chemical reactivity and bioactivity properties of Aspergillipeptide D, a cyclopentapeptide of marine origin. Sci Rep 2022; 12:506. [PMID: 35017576 PMCID: PMC8752680 DOI: 10.1038/s41598-021-04513-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Aspergillipeptide D is a cyclic pentapeptide isolated from the marine gorgonian Melitodes squamata-derived fungus Aspergillus sp. SCSIO 41501 that it has been shown to present moderate activity against herpes virus simplex type 1 (HSV-1). Thus, this paper presents the results of a computational study of this cyclopentapeptide's chemical reactivity and bioactivity properties using a CDFT-based computational peptidology (CDFT-CP) methodology, which is derived from combining chemical reactivity descriptors derived from Conceptual Density Functional Theory (CDFT) and some Cheminformatics tools which may be used. This results in an improvement of the virtual screening procedure by a similarity search allowing the identification and validation of the known ability of the peptide to act as a possible useful drug. This was followed by an examination of the drug's bioactivity and pharmacokinetics indices in relation to the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) characteristics. The findings provide further evidence of the MN12SX density functional's superiority in proving the Janak and Ionization Energy theorems using the proposed KID approach. This has proven to be beneficial in accurately predicting CDFT reactivity characteristics, which aid in the understanding of chemical reactivity. The Computational Pharmacokinetics study revealed the potential ability of Aspergillipeptide D as a therapeutic drug through the interaction with different target receptors. The ADMET indices confirm this assertion through the absence of toxicity and good absorption and distribution properties.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, 31136, Chihuahua, CHIH, Mexico
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, 07122, Spain
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, 31136, Chihuahua, CHIH, Mexico.
| |
Collapse
|
12
|
Rauf A, Khalil AA, Khan M, Anwar S, Alamri A, Alqarni AM, Alghamdi A, Alshammari F, Rengasamy KRR, Wan C. Can be marine bioactive peptides (MBAs) lead the future of foodomics for human health? Crit Rev Food Sci Nutr 2022; 62:7072-7116. [PMID: 33840324 DOI: 10.1080/10408398.2021.1910482] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muneeb Khan
- Department of Human Nutrition and Dietetics, Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Lahore, Pakistan
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulwahab Alamri
- Department of Pharmacology and Toxicology, University of Hail, Hail, Saudi Arabia
| | - Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Adel Alghamdi
- Pharmaceutical Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha, Saudi Arabia
| | - Farhan Alshammari
- Department Of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
13
|
Tost M, Andler O, Kazmaier U. A Matteson Homologation‐Based Synthesis of Doliculide and Derivatives. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Tost
- Organic Chemistry Saarland University P.O. Box 151150 66041 Saarbrücken Germany
| | - Oliver Andler
- Organic Chemistry Saarland University P.O. Box 151150 66041 Saarbrücken Germany
| | - Uli Kazmaier
- Organic Chemistry Saarland University P.O. Box 151150 66041 Saarbrücken Germany
| |
Collapse
|
14
|
Asperflomide and asperflosamide, new N-methylated cyclopeptides from the marine sponge-derived fungus Aspergillus flocculosus 16D-1. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Flores‐Holguín N, Frau J, Glossman‐Mitnik D. Computational Pharmacokinetics Report, ADMET Study and Conceptual DFT-Based Estimation of the Chemical Reactivity Properties of Marine Cyclopeptides. ChemistryOpen 2021; 10:1142-1149. [PMID: 34806828 PMCID: PMC8607802 DOI: 10.1002/open.202100178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Homophymines A-E and A1-E1 are bioactive natural cyclodepsipeptides with a complex molecular architecture. These molecules could have a potential use as antimicrobial, antiviral, and anticancer substances. We have carried out a computational study of the properties of this family of marine peptides using a CDFT-based Computational Peptidology (CDFT-CP) methodology that results from the combination of the chemical reactivity descriptors that arise from conceptual Density Functional Theory (CDFT) together with cheminformatics tools. The latter can be used to estimate the associated physicochemical parameters and to improve the process of virtual screening through a similarity search. Using this approach, the ability of the peptides to behave as a potentially useful drugs can be investigated. An analysis of their bioactivity and pharmacokinetics indices related to the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) features has also been carried out.
Collapse
Affiliation(s)
- Norma Flores‐Holguín
- Laboratorio Virtual NANOCOSMOSDepartamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosMiguel de Cervantes 120, Complejo Industrial Chihuahua31136Chihuahua, ChihMexico
| | - Juan Frau
- Departament de QuímicaFacultat de CiencesUniversitat de les Illes Balears07122Pama de MallorcaSpain
| | - Daniel Glossman‐Mitnik
- Laboratorio Virtual NANOCOSMOSDepartamento de Medio Ambiente y EnergíaCentro de Investigación en Materiales AvanzadosMiguel de Cervantes 120, Complejo Industrial Chihuahua31136Chihuahua, ChihMexico
| |
Collapse
|
16
|
An integrated molecular modeling protocol for drug screening based on conceptual density functional theory and chemoinformatics for the study of marine cyclopeptides. J Mol Model 2021; 27:314. [PMID: 34623510 DOI: 10.1007/s00894-021-04901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
An integrated molecular modeling protocol resulting from the combination of conceptual density functional theory (CDFT) chemical reactivity descriptors with several chemoinformatics tools has been used for the study of the chemical reactivity and bioactivity properties of a group of marine cyclic peptides. CP-CDFT is a branch of computational chemistry and molecular modeling dedicated to the study of peptides. The protocol allowed the estimation of the CDFT-based reactivity indices together with the associated physicochemical parameters that can help to identify the ability of the studied peptides to behave as potential useful drugs. This was complemented with an analysis of the bioactivity and pharmacokinetics parameters related to the ADMET (absorption, distribution, metabolism, excretion, and toxicity) features. Some examples related to the ability of the CDFT-based chemical reactivity descriptors for the prediction of the pKas of the peptides as well as their potential as AGE inhibitors are also presented.
Collapse
|
17
|
A CDFT-Based Computational Peptidology (CDFT-CP) Study of the Chemical Reactivity and Bioactivity of the Marine-Derived Alternaramide Cyclopentadepsipeptide. J CHEM-NY 2021. [DOI: 10.1155/2021/2989611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Alternaramide is a cyclic pentadepsipeptide isolated from marine sources that has been shown to present weak antibiotic activity against Bacillus subtilis and Staphylococcus aureus as well as inhibitory effects on inflammatory mediator expressions. Thus, this work reports the results of a computational study of the chemical reactivity and bioactivity properties of this cyclopentadepsipeptide considering a CDFT-based computational peptidology (CDFT-CP) methodology that results from the combination of the chemical reactivity descriptors that arise from conceptual density functional theory (CDFT) together with some cheminformatics tools that can be used to estimate the associated physicochemical parameters, to improve the process of virtual screening through a similarity search, and to identify the ability of the peptide to behave as a potential useful drug, complemented with an analysis of its bioactivity and pharmacokinetics indices related to the ADMET (absorption, distribution, metabolism, excretion, and toxicity) features. The results represent a new confirmation of the superiority of the MN12SX density functional in the fulfilment of the Janak and ionization energy theorems through the proposed KID procedure. This has been useful for the accurate prediction of the CDFT reactivity descriptors that help in understanding the chemical reactivity. The computational pharmacokinetics study revealed the potential ability of alternaramide as a therapeutic drug by interacting with GPCR ligands and protease inhibitors. The ADMET indices confirm this assertion through the absence of toxicity and good absorption and distribution properties.
Collapse
|
18
|
Carbone DA, Pellone P, Lubritto C, Ciniglia C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 2021; 10:746. [PMID: 34202941 PMCID: PMC8234452 DOI: 10.3390/antibiotics10060746] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023] Open
Abstract
During the last year, science has been focusing on the research of antivirally active compounds overall after the SARS-CoV-2 pandemic, which caused a great amount of deaths and the downfall of the economy in 2020. Photosynthetic organisms such as microalgae are known to be a reservoir of bioactive secondary metabolites; this feature, coupled with the possibility of achieving very high biomass levels without excessive energetic expenses, make microalgae worthy of attention in the search for new molecules with antiviral effects. In this work, the antiviral effects of microalgae against some common human or animal viruses were considered, focusing our attention on some possible effects against SARS-CoV-2. We summed up the data from the literature on microalgae antiviral compounds, from the most common ones, such as lectins, polysaccharides and photosynthetic pigments, to the less known ones, such as unidentified proteins. We have discussed the effects of a microalgae-based genetic engineering approach against some viral diseases. We have illustrated the potential antiviral benefits of a diet enriched in microalgae.
Collapse
Affiliation(s)
- Dora Allegra Carbone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| | - Paola Pellone
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Carmine Lubritto
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
- National Institute of Nuclear Physics, Complesso Universitario di Monte S, 80126 Naples, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (C.L.); (C.C.)
| |
Collapse
|
19
|
Alvariño R, Alonso E, Tabudravu JN, Pérez-Fuentes N, Alfonso A, Botana LM. Tavarua Deoxyriboside A and Jasplakinolide as Potential Neuroprotective Agents: Effects on Cellular Models of Oxidative Stress and Neuroinflammation. ACS Chem Neurosci 2021; 12:150-162. [PMID: 33353294 DOI: 10.1021/acschemneuro.0c00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The oceans harbor a great reservoir of molecules with unknown bioactivities, which could be useful for the treatment of illnesses that nowadays have no cure, such as neurodegenerative diseases. In this work, we evaluated the neuroprotective potential of the marine Fijian compounds tavarua deoxyriboside A and jasplakinolide against oxidative stress and neuroinflammation, crucial mechanisms in neurodegeneration. Both metabolites protected SH-SY5Y human neuroblastoma cells from H2O2 damage, improving mitochondrial function and activating the antioxidant systems of cells. These effects were mediated by their ability of inducing Nrf2 translocation. In BV2 microglial cells activated with lipopolysaccharide, Fijian metabolites also displayed promising results, decreasing the release of proinflammatory mediators (ROS, NO, cytokines) through the reduction of gp91 and NFkB-p65 expression. Finally, we performed a coculture among both cell lines, in which treatment with compounds protected SH-SY5Y cells from activated microglia, corroborating their neuroprotective effects. These results suggest that tavarua deoxyriboside A and jasplakinolide could be used as candidate molecules for further studies against neurodegeneration.
Collapse
Affiliation(s)
- Rebeca Alvariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Eva Alonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
- Fundación Instituto de Investigación Sanitario Santiago de Compostela (FIDIS), Hospital Universitario Lucus Augusti, Lugo 27002, Spain
| | - Jioji N. Tabudravu
- School of Natural Sciences, Faculty of Science & Technology, University of Central Lancashire, Preston, Lancashire PR1 2HE, U.K
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE Scotland, U.K
| | - Nadia Pérez-Fuentes
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
20
|
Stadelmann T, Subramanian G, Menon S, Townsend CE, Lokey RS, Ebert MO, Riniker S. Connecting the conformational behavior of cyclic octadepsipeptides with their ionophoric property and membrane permeability. Org Biomol Chem 2020; 18:7110-7126. [PMID: 32902550 PMCID: PMC7796559 DOI: 10.1039/d0ob01447h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclic octadepsipeptides such as PF1022A and its synthetic derivative emodepside exhibit anthelmintic activity with the latter sold as a commercial drug treatment against gastrointestinal nematodes for animal health use. The structure-permeability relationship of these cyclic depsipeptides that could ultimately provide insights into the compound bioavailability is not yet well understood. The fully N-methylated amide backbone and apolar sidechain residues do not allow for the formation of intramolecular hydrogen bonds, normally observed in the membrane-permeable conformations of cyclic peptides. Hence, any understanding gained on these depsipeptides would serve as a prototype for future design strategies. In previous nuclear magnetic resonance (NMR) studies, two macrocyclic core conformers of emodepside were detected, one with all backbone amides in trans-configuration (hereon referred as the symmetric conformer) and the other with one amide in cis-configuration (hereon referred as the asymmetric conformer). In addition, these depsipeptides were also reported to be ionophores with a preference of potassium over sodium. In this study, we relate the conformational behavior of PF1022A, emodepside, and closely related analogs with their ionophoric characteristic probed using NMR and molecular dynamics (MD) simulations and finally evaluated their passive membrane permeability using PAMPA. We find that the equilibrium between the two core conformers shifts more towards the symmetric conformer upon addition of monovalent cations with selectivity for potassium over sodium. Both the NMR experiments and the theoretical Markov state models based on extensive MD simulations indicate a more rigid backbone for the asymmetric conformation, whereas the symmetric conformation shows greater flexibility. The experimental results further advocate for the symmetric conformation binding the cation. The PAMPA results suggest that the investigated depsipeptides are retained in the membrane, which may be advantageous for the likely target, a membrane-bound potassium channel.
Collapse
Affiliation(s)
- Thomas Stadelmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Govindan Subramanian
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Bldg. 300, Kalamazoo, Michigan 49007, USA
| | - Sanjay Menon
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Bldg. 300, Kalamazoo, Michigan 49007, USA
| | - Chad E Townsend
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 93064, USA
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 93064, USA
| | - Marc-Olivier Ebert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| |
Collapse
|
21
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. Virtual Screening of Marine Natural Compounds by Means of Chemoinformatics and CDFT-Based Computational Peptidology. Mar Drugs 2020; 18:E478. [PMID: 32962305 PMCID: PMC7551818 DOI: 10.3390/md18090478] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
This work presents the results of a computational study of the chemical reactivity and bioactivity properties of the members of the theopapuamides A-D family of marine peptides by making use of our proposed methodology named Computational Peptidology (CP) that has been successfully considered in previous studies of this kind of molecular system. CP allows for the determination of the global and local descriptors that come from Conceptual Density Functional Theory (CDFT) that can give an idea about the chemical reactivity properties of the marine natural products under study, which are expected to be related to their bioactivity. At the same time, the validity of the procedure based on the adoption of the KID (Koopmans In DFT) technique, as well as the MN12SX/Def2TZVP/H2O model chemistry is successfully verified. Together with several chemoinformatic tools that can be used to improve the process of virtual screening, some additional properties of these marine peptides are identified related to their ability to behave as useful drugs. With the further objective of analyzing their bioactivity, some useful parameters for future QSAR studies, their predicted biological targets, and the ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) parameters related to the theopapuamides A-D pharmacokinetics are also reported.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico;
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Malllorca, Spain;
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih 31136, Mexico;
| |
Collapse
|
22
|
Patra S, Praharaj PP, Panigrahi DP, Panda B, Bhol CS, Mahapatra KK, Mishra SR, Behera BP, Jena M, Sethi G, Patil S, Patra SK, Bhutia SK. Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. Mol Biol Rep 2020; 47:7209-7228. [PMID: 32797349 DOI: 10.1007/s11033-020-05709-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/02/2020] [Indexed: 12/24/2022]
Abstract
Marine invertebrates are extremely diverse, largely productive, untapped oceanic resources with chemically unique bioactive lead compound contributing a wide range of screening for the discovery of anticancer compounds. The lead compounds have unfurled an extensive array of pharmacological properties owing to the presence of polyphenols, alkaloids, terpenoids and other secondary metabolites. The antioxidant, immunomodulatory and anti-tumor activities exhibited, are possibly regulated by the apoptosis induction, scavenging of ROS and modulation of cellular signaling pathways to defy the cellular deafness during carcinogenesis. Despite the enriched bioactive compounds, the marine invertebrates are largely unexplored as identification, screening, pre-clinical and clinical assessment of lead compounds and their synthetic analogs remain a major task to be solved. In the current review, we focus on the principle strategy and underlying mechanisms deployed by the bioactive anticancer compounds derived from marine invertebrates to combat cancer with special insight into the cell death mechanism.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Biswajit Panda
- College of Basic Science & Humanities OUAT, Bhubaneswar, 751003, India
| | - Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Bishnu Prasad Behera
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Mrutyunjay Jena
- PG Department of Botany, Berhampur University, Berhampur, 760007, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India. .,Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
23
|
|
24
|
Lobo-Ruiz A, Tulla-Puche J. General Fmoc-Based Solid-Phase Synthesis of Complex Depsipeptides Circumventing Problematic Fmoc Removal. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ariadna Lobo-Ruiz
- Department of Inorganic and Organic Chemistry - Organic Chemistry Section; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Catalonia Spain
| | - Judit Tulla-Puche
- Department of Inorganic and Organic Chemistry - Organic Chemistry Section; University of Barcelona; Martí i Franquès 1-11 08028 Barcelona Catalonia Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB); Martí i Franquès 1-11 08028 Barcelona Catalonia Spain
| |
Collapse
|
25
|
Kurhekar JV. Antimicrobial lead compounds from marine plants. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020. [PMCID: PMC7153345 DOI: 10.1016/b978-0-12-817890-4.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Marine environment is a home to a very wide diversity of flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species, microbial species, their habitats, ecosystems, and supporting ecological processes. The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine plants are a store house of a variety of antimicrobial compounds like classes of marine flavonoids—flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids, polyketides, polysaccharides, phenolic compounds, and steroids. Lot of research today is directed toward marine species, which have proved to be a potent source of structurally widely diverse and yet highly bioactive secondary metabolites. Varied species of phylum Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta, and Phaeophyta, bacteria, fungi, and weeds have been exploited by mankind for their inherent indigenous biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature, atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of bioactive marine compounds possessing antimicrobial potency.
Collapse
|
26
|
Ashaolu TJ. Applications of soy protein hydrolysates in the emerging functional foods: a review. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14380] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tolulope Joshua Ashaolu
- Department for Management of Science and Technology Development Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
27
|
Aaghaz S, Gohel V, Kamal A. Peptides as Potential Anticancer Agents. Curr Top Med Chem 2019; 19:1491-1511. [DOI: 10.2174/1568026619666190125161517] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/26/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022]
Abstract
Cancer consists of heterogeneous multiple cell subpopulation which at a later stage develop resistant phenotypes, which include resistance to pro-apoptotic stimuli and/or cytotoxic resistance to anticancer compounds. The property of cancerous cells to affect almost any part of the body categorizes cancer to many anatomic and molecular subtypes, each requiring a particular therapeutic intervention. As several modalities are hindered in a variety of cancers and as the cancer cells accrue varied types of oncogenic mutations during their progression the most likely benefit will be obtained by a combination of therapeutic agents that might address the diverse hallmarks of cancer. Natural compounds are the backbone of cancer therapeutics owing to their property of affecting the DNA impairment and restoration mechanisms and also the gene expression modulated via several epigenetic molecular mechanisms. Bioactive peptides isolated from flora and fauna have transformed the arena of antitumour therapy and prompt progress in preclinical studies is promising. The difficulties in creating ACP rest in improving its delivery to the tumour site and it also must maintain a low toxicity profile. The substantial production costs, low selectivity and proteolytic stability of some ACP are some of the factors hindering the progress of peptide drug development. Recently, several publications have tried to edify the field with the idea of using peptides as adjuvants with established drugs for antineoplastic use. This review focuses on peptides from natural sources that precisely target tumour cells and subsequently serve as anticancer agents that are less toxic to normal tissues.
Collapse
Affiliation(s)
- Shams Aaghaz
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, India
| | - Vivek Gohel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, Mohali, India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
28
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. Calculation of the Global and Local Conceptual DFT Indices for the Prediction of the Chemical Reactivity Properties of Papuamides A-F Marine Drugs. Molecules 2019; 24:E3312. [PMID: 31514433 PMCID: PMC6767314 DOI: 10.3390/molecules24183312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022] Open
Abstract
A well-behaved model chemistry previously validated for the study of the chemical reactivity of peptides was considered for the calculation of the molecular properties and structures of the Papuamide family of marine peptides. A methodology based on Conceptual Density Functional Theory (CDFT) was chosen for the determination of the reactivity descriptors. The molecular active sites were associated with the active regions of the molecules related to the nucleophilic and electrophilic Parr functions. Finally, the drug-likenesses and the bioactivity scores for the Papuamide peptides were predicted through a homology methodology relating them with the calculated reactivity descriptors, while other properties such as the pKas were determined following a methodology developed by our group.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico.
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico.
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| |
Collapse
|
29
|
Izumida M, Suga K, Ishibashi F, Kubo Y. The Spirocyclic Imine from a Marine Benthic Dinoflagellate, Portimine, Is a Potent Anti-Human Immunodeficiency Virus Type 1 Therapeutic Lead Compound. Mar Drugs 2019; 17:md17090495. [PMID: 31450557 PMCID: PMC6780162 DOI: 10.3390/md17090495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
- Department of Community Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| | - Koushirou Suga
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Fumito Ishibashi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshinao Kubo
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
30
|
Recent advances in the applications of Wittig reaction in the total synthesis of natural products containing lactone, pyrone, and lactam as a scaffold. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-019-02465-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Fernández-Valparis J, Romea P, Urpí F. Stereoselective Synthesis of Protected Peptides Containing an anti
β-Hydroxy Tyrosine. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Javier Fernández-Valparis
- Department of Inorganic and Organic Chemistry; Section of Organic Chemistry, and Institute of Biomedicine (IBUB); University of Barcelona; Carrer Martí i Franqués 1-11 08028 Barcelona, Catalonia Spain
| | - Pedro Romea
- Department of Inorganic and Organic Chemistry; Section of Organic Chemistry, and Institute of Biomedicine (IBUB); University of Barcelona; Carrer Martí i Franqués 1-11 08028 Barcelona, Catalonia Spain
| | - Fèlix Urpí
- Department of Inorganic and Organic Chemistry; Section of Organic Chemistry, and Institute of Biomedicine (IBUB); University of Barcelona; Carrer Martí i Franqués 1-11 08028 Barcelona, Catalonia Spain
| |
Collapse
|
32
|
Wu Q, Nay B, Yang M, Ni Y, Wang H, Yao L, Li X. Marine sponges of the genus Stelletta as promising drug sources: chemical and biological aspects. Acta Pharm Sin B 2019; 9:237-257. [PMID: 30972275 PMCID: PMC6437601 DOI: 10.1016/j.apsb.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/20/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Marine sponges of the genus Stelletta are well known as rich sources of diverse and complex biologically relevant natural products, including alkaloids, terpenoids, peptides, lipids, and steroids. Some of these metabolites, with novel structures and promising biological activities, have attracted a lot of attention from chemists seeking to perform their total synthesis in parallel to intensive biological studies towards new drug leads. In this review, we summarized the distribution of the chemically investigated Stelletta sponges, the isolation, synthesis and biological activities of their secondary metabolites, covering the literature from 1982 to early 2018.
Collapse
|
33
|
Abdalla MA, McGaw LJ. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review. Molecules 2018; 23:molecules23082080. [PMID: 30127265 PMCID: PMC6222632 DOI: 10.3390/molecules23082080] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023] Open
Abstract
Peptides are important biomolecules which facilitate the understanding of complex biological processes, which in turn could be serendipitous biological targets for future drugs. They are classified as a unique therapeutic niche and will play an important role as fascinating agents in the pharmaceutical landscape. Until now, more than 40 cyclic peptide drugs are currently in the market, and approximately one new cyclopeptide drug enters the market annually on average. Interestingly, the majority of clinically approved cyclic peptides are derived from natural sources, such as peptide antibiotics and human peptide hormones. In this report, the importance of cyclic peptides is discussed, and their role in drug discovery as interesting therapeutic biomolecules will be highlighted. Recently isolated naturally occurring cyclic peptides from microorganisms, sponges, and other sources with a wide range of pharmacological properties are reviewed herein.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
- Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan.
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
34
|
Natural product-derived compounds in HIV suppression, remission, and eradication strategies. Antiviral Res 2018; 158:63-77. [PMID: 30063970 DOI: 10.1016/j.antiviral.2018.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/10/2018] [Accepted: 07/21/2018] [Indexed: 12/12/2022]
Abstract
While combination antiretroviral therapy (cART) has successfully converted HIV to a chronic but manageable infection in many parts of the world, HIV continues to persist within latent cellular reservoirs, which can become reactivated at any time to produce infectious virus. New therapies are therefore needed not only for HIV suppression but also for containing or eliminating HIV reservoirs. Compounds derived from plant, marine, and other natural products have been found to combat HIV infection and/or target HIV reservoirs, and these discoveries have substantially guided current HIV therapy-based studies. Here we summarize the role of natural product-derived compounds in current HIV suppression, remission, and cure strategies.
Collapse
|
35
|
Giordano D, Costantini M, Coppola D, Lauritano C, Núñez Pons L, Ruocco N, di Prisco G, Ianora A, Verde C. Biotechnological Applications of Bioactive Peptides From Marine Sources. Adv Microb Physiol 2018; 73:171-220. [PMID: 30262109 DOI: 10.1016/bs.ampbs.2018.05.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review is an overview on marine bioactive peptides with promising activities for the development of alternative drugs to fight human pathologies. In particular, we focus on potentially prolific producers of peptides in microorganisms, including sponge-associated bacteria and marine photoautotrophs such as microalgae and cyanobacteria. Microorganisms are still poorly explored for drug discovery, even if they are highly metabolically plastic and potentially amenable to culturing. This offers the possibility of obtaining a continuous source of bioactive compounds to satisfy the challenging demands of pharmaceutical industries. This review targets peptides because of the variety of potent biological activities demonstrated by these molecules, including antiviral, antimicrobial, antifungal, antioxidant, anticoagulant, antihypertensive, anticancer, antidiabetic, antiobesity, and calcium-binding bioactivities. Several of these peptides have already gained recognition as effective drug agents in recent years. We also focus on cutting-edge omic approaches for the discovery of novel compounds for pharmacological applications. With rapid depletion of natural resources, omic technologies may be the solution to efficiently produce a vast variety of novel peptides with unique pharmacological potential.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Maria Costantini
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Chiara Lauritano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Núñez Pons
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Department of Biology, University of Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, Napoli, Italy; Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy
| | - Adrianna Ianora
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Napoli, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy; Dipartimento di Biologia, Università Roma 3, Roma, Italy.
| |
Collapse
|
36
|
Xie S, Savchenko AI, Krenske EH, Grange RL, Gahan LR, Williams CM. Developing Cyclic Peptide Heteroatom Interchange: Synthesis and DFT Modelling of a HI‐Ascidiacyclamide Isomer. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sida Xie
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
- Southwest Forestry University 650224 Kunming P. R. China
| | - Andrei I. Savchenko
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Rebecca L. Grange
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences University of Queensland 4072 Brisbane Australia
| |
Collapse
|
37
|
Xie S, Savchenko AI, Kerscher M, Grange RL, Krenske EH, Harmer JR, Bauer MJ, Broit N, Watters DJ, Boyle GM, Bernhardt PV, Parsons PG, Comba P, Gahan LR, Williams CM. Heteroatom-Interchanged Isomers of Lissoclinamide 5: Copper(II) Complexation, Halide Binding, and Biological Activity. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sida Xie
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
- Southwest Forestry University; 650224 Kunming P. R. China
| | - Andrei I. Savchenko
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Marion Kerscher
- Anorganisch-Chemisches Institut and Interdisciplinary Centre for Scientific Computing; Universität Heidelberg; INF 270; 69120 Heidelberg Germany
| | - Rebecca L. Grange
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Michelle J. Bauer
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Dianne J. Watters
- School of Environment and Science; Griffith University; 4111 Brisbane QLD Australia
| | - Glen M. Boyle
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Peter G. Parsons
- QIMR Berghofer Medical Research Institute; PO Royal Brisbane Hospital; 4029 Brisbane Queensland Australia
| | - Peter Comba
- Anorganisch-Chemisches Institut and Interdisciplinary Centre for Scientific Computing; Universität Heidelberg; INF 270; 69120 Heidelberg Germany
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences; The University of Queensland; 4072 Brisbane Queensland Australia
| |
Collapse
|
38
|
Wang X, Gong X, Li P, Lai D, Zhou L. Structural Diversity and Biological Activities of Cyclic Depsipeptides from Fungi. Molecules 2018; 23:E169. [PMID: 29342967 PMCID: PMC6017592 DOI: 10.3390/molecules23010169] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 11/16/2022] Open
Abstract
Cyclic depsipeptides (CDPs) are cyclopeptides in which amide groups are replaced by corresponding lactone bonds due to the presence of a hydroxylated carboxylic acid in the peptide structure. These peptides sometimes display additional chemical modifications, including unusual amino acid residues in their structures. This review highlights the occurrence, structures and biological activities of the fungal CDPs reported until October 2017. About 352 fungal CDPs belonging to the groups of cyclic tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, and tridecadepsipeptides have been isolated from fungi. These metabolites are mainly reported from the genera Acremonium, Alternaria, Aspergillus, Beauveria, Fusarium, Isaria, Metarhizium, Penicillium, and Rosellina. They are known to exhibit various biological activities such as cytotoxic, phytotoxic, antimicrobial, antiviral, anthelmintic, insecticidal, antimalarial, antitumoral and enzyme-inhibitory activities. Some CDPs (i.e., PF1022A, enniatins and destruxins) have been applied as pharmaceuticals and agrochemicals.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Xiao Gong
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Peng Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
39
|
Wang X, Lin M, Xu D, Lai D, Zhou L. Structural Diversity and Biological Activities of Fungal Cyclic Peptides, Excluding Cyclodipeptides. Molecules 2017; 22:E2069. [PMID: 29186926 PMCID: PMC6150023 DOI: 10.3390/molecules22122069] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/20/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022] Open
Abstract
Cyclic peptides are cyclic compounds formed mainly by the amide bonds between either proteinogenic or non-proteinogenic amino acids. This review highlights the occurrence, structures and biological activities of fungal cyclic peptides (excluding cyclodipeptides, and peptides containing ester bonds in the core ring) reported until August 2017. About 293 cyclic peptides belonging to the groups of cyclic tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, undeca-, dodeca-, tetradeca-, and octadecapeptides as well as cyclic peptides containing ether bonds in the core ring have been isolated from fungi. They were mainly isolated from the genera Aspergillus, Penicillium, Fusarium, Acremonium and Amanita. Some of them were screened to have antimicrobial, antiviral, cytotoxic, phytotoxic, insecticidal, nematicidal, immunosuppressive and enzyme-inhibitory activities to show their potential applications. Some fungal cyclic peptides such as the echinocandins, pneumocandins and cyclosporin A have been developed as pharmaceuticals.
Collapse
Affiliation(s)
- Xiaohan Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Minyi Lin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Mao ZY, Si CM, Liu YW, Dong HQ, Wei BG, Lin GQ. Divergent Synthesis of Revised Apratoxin E, 30-epi-Apratoxin E, and 30S/30R-Oxoapratoxin E. J Org Chem 2017; 82:10830-10845. [DOI: 10.1021/acs.joc.7b01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuo-Ya Mao
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yi-Wen Liu
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| | - Han-Qing Dong
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| | - Bang-Guo Wei
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| |
Collapse
|
41
|
Lee Y, Phat C, Hong SC. Structural diversity of marine cyclic peptides and their molecular mechanisms for anticancer, antibacterial, antifungal, and other clinical applications. Peptides 2017; 95:94-105. [PMID: 28610952 DOI: 10.1016/j.peptides.2017.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 01/28/2023]
Abstract
Many cyclic peptides and analogues derived from marine sources are known to possess biological properties, including anticancer, antitumor, antibacterial, antifungal, antiparasitic, anti-inflammation, anti-proliferative, anti-hypertensive, cytotoxic, and antibiotic properties. These compounds demonstrate different activities and modes of action according to their structure such as cyclic oligopeptide, cyclic lipopeptide, cyclic glycopeptide and cyclic depsipeptide. The recent advances in application of the above-mentioned cyclic peptides were reported in dolastatins, soblidotin, didemnin B, aplidine, salinosporamide A, kahalalide F and bryostatin 1 and they are currently in clinical trials. These cyclic peptides are possible novel drugs discovered and developed from marine origin. Literature data concerning the potential properties of marine cyclic peptides were reviewed here, and the structural diversity and biological activities of marine cyclic peptides are discussed in relation to the molecular mechanisms of these marine cyclic peptides.
Collapse
Affiliation(s)
- Yeji Lee
- College of Medicine, Korea University, Seoul, Republic of Korea
| | - Chanvorleak Phat
- School of Food Science and Technology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Soon-Cheol Hong
- College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Wang L, Dong C, Li X, Han W, Su X. Anticancer potential of bioactive peptides from animal sources (Review). Oncol Rep 2017; 38:637-651. [PMID: 28677775 DOI: 10.3892/or.2017.5778] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
Abstract
Cancer is the most common cause of human death worldwide. Conventional anticancer therapies, including chemotherapy and radiation, are associated with severe side effects and toxicities as well as low specificity. Peptides are rapidly being developed as potential anticancer agents that specifically target cancer cells and are less toxic to normal tissues, thus making them a better alternative for the prevention and management of cancer. Recent research has focused on anticancer peptides from natural animal sources, such as terrestrial mammals, marine animals, amphibians, and animal venoms. However, the mode of action by which bioactive peptides inhibit the proliferation of cancer cells remains unclear. In this review, we present the animal sources from which bioactive peptides with anticancer activity are derived and discuss multiple proposed mechanisms by which these peptides exert cytotoxic effects against cancer cells.
Collapse
Affiliation(s)
- Linghong Wang
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Chao Dong
- College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xian Li
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Wenyan Han
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| | - Xiulan Su
- Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China
| |
Collapse
|
43
|
Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Mar Drugs 2017; 15:md15040124. [PMID: 28441741 PMCID: PMC5408270 DOI: 10.3390/md15040124] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Nature provides a variety of peptides that are expressed in most living species. Evolutionary pressure and natural selection have created and optimized these peptides to bind to receptors with high affinity. Hence, natural resources provide an abundant chemical space to be explored in peptide-based drug discovery. Marine peptides can be extracted by simple solvent extraction techniques. The advancement of analytical techniques has made it possible to obtain pure peptides from natural resources. Extracted peptides have been evaluated as possible therapeutic agents for a wide range of diseases, including antibacterial, antifungal, antidiabetic and anticancer activity as well as cardiovascular and neurotoxin activity. Although marine resources provide thousands of possible peptides, only a few peptides derived from marine sources have reached the pharmaceutical market. This review focuses on some of the peptides derived from marine sources in the past ten years and gives a brief review of those that are currently in clinical trials or on the market.
Collapse
|
44
|
Muthiyan R, Nambikkairaj B, Mahanta N, Immanuel T, Mandal RS, Kumaran K, De AK. Antiproliferative and Proapoptotic Activities of Marine Sponge Hyrtios erectus Extract on Breast Carcinoma Cell Line (MCF-7). Pharmacogn Mag 2017; 13:S41-S47. [PMID: 28479725 PMCID: PMC5407115 DOI: 10.4103/0973-1296.203983] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/28/2016] [Indexed: 01/01/2023] Open
Abstract
Background: Marine sponge is a rich natural resource of many pharmacologically important compounds. Objective: Marine sponge Hyrtios erectus, collected from North Bay, South Andaman Sea, India, was screened for potential antiproliferative and proapoptotic properties on a breast adenocarcinoma cell line (MCF-7). Materials and Methods: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to test the antiproliferative and cytotoxicity effects of the sponge extract. Analysis of apoptosis and cell cycle stages were done by flow cytometry. The expression of several apoptotic-related proteins in MCF-7 cells treated by the extract was evaluated by Western blot analysis. Various analytical techniques including Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and nuclear magnetic resonance were employed to determine the identity of the active compounds in the sponge extract. Results: N-Hexane extract of the sponge inhibited proliferation of the MCF-7 cell line in a dose- and time-dependent manner. Exposure of the sponge extract triggered apoptosis of the MCF-7 cells, induced DNA fragmentation, and arrested the cells in G2/M phase. Treatment of the sponge extract induced downregulation of antiapoptotic Bcl-2 protein and upregulation of Bax, caspase-3, caspase-9, and fragmented poly(ADP ribose)polymerase proteins in MCF-7 cells. Five bioactive compounds have been identified in the extract. Conclusion: The antiproliferative and proapoptotic activities of the tested extract suggested the pharmacologic potential of the identified compounds. Further characterization of the identified compounds are in progress. SUMMARY The N-hexane extract of the marine sponge Hyrtios erectus, collected from North Bay, South Andaman Sea, India, showed potential antiproliferative and proapoptotic properties against a breast adenocarcinoma cell line (MCF-7). The sponge extract retarded the growth of breast carcinoma cell line MCF-7 cells in a time- and dose-dependent manner. The sponge extract induced apoptosis of breast cancer cell line MCF-7 and arrested cells in G2/M phase. The sponge extract induced downregulation of Bcl-2 protein in MCF-7 cell line and upregulation of Bax, caspase-3, and cleaved PARP. Five bioactive compounds have been identified in the extract.
Abbreviations used: GC-MS: Gas chromatography-mass spectrometry; FT-IR: Fourier transform infrared spectroscopy; NMR: Nuclear magnetic resonance; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.
Collapse
Affiliation(s)
| | - Balwin Nambikkairaj
- Department of Zoology, Voorhees College, Thiruvalluvar University, Vellore, India
| | - Nilkamal Mahanta
- Department of Chemistry, Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Titus Immanuel
- Division of Fisheries Sciences, Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Centre, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | | | - Arun Kumar De
- Department of Animal Sciences, Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois, USA
| |
Collapse
|
45
|
Phakellistatins: An Underwater Unsolved Puzzle. Mar Drugs 2017; 15:md15030078. [PMID: 28335479 PMCID: PMC5367035 DOI: 10.3390/md15030078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
A critical summary on the discovery of the nineteen members of the phakellistatin family (phakellistatin 1–19), cytotoxic proline-rich cyclopeptides of marine origin, is reported. Isolation, structural elucidation, and biological properties of the various-sized natural macrocycles are described, along with the total syntheses and the enigmatic issues of the cytotoxic activity reproducibility.
Collapse
|
46
|
Mioso R, Marante FJT, Bezerra RDS, Borges FVP, Santos BVDO, Laguna IHBD. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010-2012). Molecules 2017; 22:E208. [PMID: 28134844 PMCID: PMC6155849 DOI: 10.3390/molecules22020208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Abstract: This extensive review covers research published between 2010 and 2012 regarding new compounds derived from marine sponges, including 62 species from 60 genera belonging to 33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel chemical structures from 337 compounds isolated have been found to support this work. Details on the source and taxonomy of the sponges, their geographical occurrence, and a range of chemical structures are presented. The compounds discovered from the reviewed marine sponges fall into mainly four chemical classes: terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides (6.3%) which, along with polyketides, sterols, and others show a range of biological activities. The key sponge orders studied in the reviewed research were Dictyoceratida, Haplosclerida, Tetractinellida, Poecilosclerida, and Agelasida. Petrosia, Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida), Coscinoderma and Hyppospongia (Dictyioceratida), were found to be the most promising genera because of their capacity for producing new bioactive compounds. Several of the new compounds and their synthetic analogues have shown in vitro cytotoxic and pro-apoptotic activities against various tumor/cancer cell lines, and some of them will undergo further in vivo evaluation.
Collapse
Affiliation(s)
- Roberto Mioso
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Francisco J Toledo Marante
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain.
| | - Ranilson de Souza Bezerra
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Flávio Valadares Pereira Borges
- Post-Graduation Program in Natural Products and Synthetic Bioactives, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Bárbara V de Oliveira Santos
- Post-Graduation Program in Development and Technological Innovation in Medicines, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Paraíba, Brazil.
| | | |
Collapse
|
47
|
Dahiya R, Singh S, Sharma A, Chennupati SV, Maharaj S. First Total Synthesis and Biological Screening of a Proline-Rich Cyclopeptide from a Caribbean Marine Sponge. Mar Drugs 2016; 14:md14120228. [PMID: 27983681 PMCID: PMC5192465 DOI: 10.3390/md14120228] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
A natural heptacyclopeptide, stylissamide G (7), previously isolated from the Bahamian marine sponge Stylissa caribica from the Caribbean Sea, was synthesized via coupling of the tetrapeptide l-phenylalanyl-l-prolyl-l-phenylalanyl-l-proline methyl ester with the tripeptide Boc-l-leucyl-l-isoleucyl-l-proline, followed by cyclization of the linear heptapeptide fragment. The structure of the synthesized cyclooligopeptide was confirmed using quantitative elemental analysis, FT-IR, 1H NMR, 13C NMR and mass spectrometry. Results of pharmacological activity studies indicated that the newly synthesized cycloheptapeptide displayed good anthelmintic potential against Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus eugeniea at 2 mg/mL and in addition, potent antifungal activity against pathogenic Candida albicans and dermatophytes Trichophyton mentagrophytes and Microsporum audouinii at a concentration of 6 μg/mL.
Collapse
Affiliation(s)
- Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| | - Sunil Singh
- Department of Pharmacy, Mewar University, Gangrar, Chittorgarh, Rajasthan 312901, India.
| | - Ajay Sharma
- Department of Pharmacy, College of Health Sciences, Mizan-Tepi University, Mizan Teferi 5140, Ethiopia.
| | - Suresh V Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, P.O. Box 395 Nekemte, Ethiopia.
| | - Sandeep Maharaj
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
48
|
Alkynyl-Containing Peptides of Marine Origin: A Review. Mar Drugs 2016; 14:md14110216. [PMID: 27886049 PMCID: PMC5128759 DOI: 10.3390/md14110216] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022] Open
Abstract
Since the 1990s, a number of terminal alkynyl residue-containing cyclic/acyclic peptides have been identified from marine organisms, especially cyanobacteria and marine mollusks. This review has presented 66 peptides, which covers over 90% marine peptides with terminal alkynyl fatty acyl units. In fact, more than 90% of these peptides described in the literature are of cyanobacterial origin. Interestingly, all the linear peptides featured with terminal alkyne were solely discovered from marine cyanobacteria. The objective of this article is to provide an overview on the types, structural characterization of these unusual terminal alkynyl fatty acyl units, as well as the sources and biological functions of their composed peptides. Many of these peptides have a variety of biological activities, including antitumor, antibacterial, antimalarial, etc. Further, we have also discussed the evident biosynthetic origin responsible for formation of terminal alkynes of natural PKS (polyketide synthase)/NRPS (nonribosome peptide synthetase) hybrids.
Collapse
|
49
|
Pelay-Gimeno M, Albericio F, Tulla-Puche J. Synthesis of complex head-to-side-chain cyclodepsipeptides. Nat Protoc 2016; 11:1924-1947. [DOI: 10.1038/nprot.2016.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Pourahmad J, Salimi A, Saharkhiz M, Motallebi A, Seydi E, Mohseni A, Nazemi M. Standardized Extract of the Persian Gulf Sponge, Axinella Sinoxea Selectively Induces Apoptosis through Mitochondria in Human Chronic Lymphocytic Leukemia Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.6000/1927-7229.2015.04.04.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|