1
|
Galitz A, Vargas S, Thomas OP, Reddy MM, Wörheide G, Erpenbeck D. Genomics of Terpene Biosynthesis in Dictyoceratid Sponges (Porifera) - What Do We (Not) Know? Chem Biodivers 2024; 21:e202400549. [PMID: 39177427 DOI: 10.1002/cbdv.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Sponges are recognized as promising sources for novel bioactive metabolites. Among them are terpenoid metabolites that constitute key biochemical defense mechanisms in several sponge taxa. Despite their significance, the genetic basis for terpenoid biosynthesis in sponges remains poorly understood. Dictyoceratida comprise demosponges well-known for their bioactive terpenoids. In this study, we explored the currently available genomic data for insights into the metabolic pathways of dictyoceratid terpenoids. We first identified prenyltransferase (PT) and terpene cyclase (TC) enzymes essential for the terpenoid biosynthetic processes in the terrestrial realm by analyzing available transcriptomic and genomic data of Dictyoceratida sponges and 10 other sponge species. All Dictyoceratida sponges displayed various PTs involved in either sesqui- or diterpene, steroid and carotenoid production. Additionally, it was possible to identify a potential candidate for a dictyoceratid sesterterpene PT. However, analogs of common terrestrial TCs were absent, suggesting the existence of a distinct or convergently evolved sponge-specific TC. Our study aims to contribute to the foundational understanding of terpene biosynthesis in sponges, unveiling the currently evident genetic components for terpenoid production in species not previously studied. Simultaneously, it aims to identify the known and unknown factors, as a starting point for biochemical and genetic investigations in sponge terpenoid production.
Collapse
Affiliation(s)
- Adrian Galitz
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Sergio Vargas
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Olivier P Thomas
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
| | - Maggie M Reddy
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
- Department of Biological Sciences, University of Cape Town, Private Bag X3, 7701, Rondebosch, South Africa
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- SNSB-Bavarian State Collection of Palaeontology and Geology, 80333, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| |
Collapse
|
2
|
Rathi J, Kumar S, Sindhu RK, Dhiman A, Faujdar S. Pharmacognostical characterization, GC-MS profiling, and elemental analysis of Curcuma caesia Roxb. rhizomes for public health. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2024-0151. [PMID: 38940214 DOI: 10.1515/jcim-2024-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES The study provides a thorough examination of the rhizomes of Curcuma caesia Roxb., which is a medicinal substance sometimes referred to as black turmeric and has not been well studied. METHODS The study examines the pharmacognostical characteristics, GC-MS profiling, and elemental analysis of the substance to determine its potential for use in medicine. The presence of heavy metal contamination in herbal products is a significant issue, which necessitates the use of Atomic Absorption Spectrophotometry to quantitatively analyze eight elements. RESULTS The investigation validates the existence of crucial trace elements while guaranteeing that the levels of heavy metals are within the toxicity limits set by the World Health Organization. This indicates that the rhizome is safe for medicinal purposes. The selection of a solvent has a substantial impact on the efficiency of extraction. Acetone has the highest extraction yield, followed by ethanol and ethyl acetate. The GC-MS analysis uncovers a wide range of phytochemicals, such as alkaloids, flavonoids, phenols, tannins, steroids, and proteins. Additionally, particular solvents exclusively detect specific molecules. Epicurzerenone and zederone are chemicals that show promise for use in reducing inflammation and fighting cancer. CONCLUSIONS On the basis of results it can be concluded that rhizome's quality based on acceptable physicochemical characteristics and provides a strong basis for future pharmacological research. The research has potential for the development of novel organic drugs, utilizing the abundant phytochemical composition of C. caesia Roxb. rhizomes.
Collapse
Affiliation(s)
- Jyoti Rathi
- Department of Pharmacy, 29803 Banasthali Vidyapith , Jaipur, Rajasthan, India
| | - Satyender Kumar
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anju Dhiman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Samriti Faujdar
- Department of Pharmacy, 29803 Banasthali Vidyapith , Jaipur, Rajasthan, India
| |
Collapse
|
3
|
Borkunov GV, Leshchenko EV, Berdyshev DV, Popov RS, Chingizova EA, Shlyk NP, Gerasimenko AV, Kirichuk NN, Khudyakova YV, Chausova VE, Antonov AS, Kalinovsky AI, Chingizov AR, Yurchenko EA, Isaeva MP, Yurchenko AN. New piperazine derivatives helvamides B-C from the marine-derived fungus Penicillium velutinum ZK-14 uncovered by OSMAC (One Strain Many Compounds) strategy. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:32. [PMID: 38769256 PMCID: PMC11106049 DOI: 10.1007/s13659-024-00449-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Four extracts of the marine-derived fungus Penicillium velutinum J.F.H. Beyma were obtained via metal ions stress conditions based on the OSMAC (One Strain Many Compounds) strategy. Using a combination of modern approaches such as LC/UV, LC/MS and bioactivity data analysis, as well as in silico calculations, influence metal stress factors to change metabolite profiles Penicillium velutinum were analyzed. From the ethyl acetate extract of the P. velutinum were isolated two new piperazine derivatives helvamides B (1) and C (2) together with known saroclazin A (3) (4S,5R,7S)-4,11-dihydroxy-guaia-1(2),9(10)-dien (4). Their structures were established based on spectroscopic methods. The absolute configuration of helvamide B (1) as 2R,5R was determined by a combination of the X-ray analysis and by time-dependent density functional theory (TD-DFT) calculations of electronic circular dichroism (ECD) spectra. The cytotoxic activity of the isolated compounds against human prostate cancer PC-3 and human embryonic kidney HEK-293 cells and growth inhibition activity against yeast-like fungi Candida albicans were assayed.
Collapse
Affiliation(s)
- Gleb V Borkunov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Elena V Leshchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation.
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation.
| | - Dmitrii V Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Nadezhda P Shlyk
- Far Eastern Federal University, Vladivostok, 690922, Russian Federation
| | - Andrey V Gerasimenko
- Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Natalya N Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Yuliya V Khudyakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Viktoria E Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Alexandr S Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anatoly I Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Artur R Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| | - Anton N Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 159 Prospect 100-Letiya Vladivostoka, Vladivostok, 690022, Russian Federation
| |
Collapse
|
4
|
Song YP, Ji NY. Chemistry and biology of marine-derived Trichoderma metabolites. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:14. [PMID: 38302800 PMCID: PMC10834931 DOI: 10.1007/s13659-024-00433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Marine-derived fungi of the genus Trichoderma have been surveyed for pharmaceuticals and agrochemicals since 1993, with various new secondary metabolites being characterized from the strains of marine animal, plant, sediment, and water origin. Chemical structures and biological activities of these metabolites are comprehensively reviewed herein up to the end of 2022 (covering 30 years). More than 70 strains that belong to at least 18 known Trichoderma species have been chemically investigated during this period. As a result, 445 new metabolites, including terpenes, steroids, polyketides, peptides, alkaloids, and others, have been identified, with over a half possessing antimicroalgal, zooplankton-toxic, antibacterial, antifungal, cytotoxic, anti-inflammatory, and other activities. The research is highlighted by the molecular diversity and antimicroalgal potency of terpenes and steroids. In addition, metabolic relevance along with co-culture induction in the production of new compounds is also concluded. Trichoderma strains of marine origin can transform and degrade heterogeneous molecules, but these functions need further exploration.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China.
| |
Collapse
|
5
|
Shamsian S, Nabipour I, Mohebbi G, Baghban N, Zare M, Zandi K, Vazirizadeh A, Maryamabadi A, Delattre C. In-vitro and in-silico anti-HSV-1 activity of a marine steroid from the jellyfish Cassiopea andromeda venom. Microb Pathog 2024; 186:106486. [PMID: 38056601 DOI: 10.1016/j.micpath.2023.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we investigated the potential in vitro anti-HSV-1 activities of the Cassiopea andromeda jellyfish tentacle extract (TE) and its fractions, as well as computational work on the thymidine kinase (TK) inhibitory activity of the identified secondary metabolites. The LD50, secondary metabolite identification, preparative and analytical chromatography, and in silico TK assessment were performed using the Spearman-Karber, GC-MS, silica gel column chromatography, RP-HPLC, LC-MS, and docking methods, respectively. The antiviral activity of TE and the two purified compounds Ca2 and Ca7 against HSV-1 in Vero cells was evaluated by MTT and RT-PCR assays. The LD50 (IV, mouse) values of TE, Ca2, and Ca7 were 104.0 ± 4, 5120 ± 14, and 197.0 ± 7 (μg/kg), respectively. They exhibited extremely effective antiviral activity against HSV-1. The CC50 and MNTD of TE, Ca2, and Ca7 were (125, 62.5), (25, 12.5), and (50, 3.125) μg/ml, respectively. GC-MS analysis of the tentacle extract revealed seven structurally distinct chemical compositions. Four of the seven compounds had a steroid structure. According to the docking results, all compounds showed binding affinity to the active sites of both thymidine kinase chains. Among them, the steroid compound Pregn-5-ene-3,11-dione, 17,20:20,21 bis [methylenebis(oxy)]-, cyclic 3-(1,2-ethane diyl acetal) (Ca2) exhibited the highest affinity for both enzyme chains, surpassing that of standard acyclovir. In silico data confirmed the experimental results. We conclude that the oxosteroid Ca2 may act as a potent agent against HSV-1.
Collapse
Affiliation(s)
- Shakib Shamsian
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Masoud Zare
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Keivan Zandi
- Tropical Infectious Diseases Research and Education Center (TIDREC), University of Malaya, Kuala Lumpur, Malaysia.
| | - Amir Vazirizadeh
- Department of Marine Biotechnology, The Persian Gulf Research and Studies Center, The Persian Gulf University, Bushehr, Iran.
| | - Ammar Maryamabadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Cédric Delattre
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 Rue Descartes, 7500, Paris, France.
| |
Collapse
|
6
|
Chen K, Zhou J, Dun B, Zhang W, Wang C, Xie L, Xu Y. Onygenaleosides A-F, 6/5 Bicyclic Ring Skeleton Triterpene Glycosides with Insecticidal Activity from Onygenales sp. YX1425. JOURNAL OF NATURAL PRODUCTS 2023; 86:2621-2629. [PMID: 37984868 DOI: 10.1021/acs.jnatprod.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Six new squalene derived polyether glycosides, onygenaleosides A-F (1-6), that possess a 6/5 bicyclic fused ring skeleton were isolated from the cultures of Onygenales sp. YX1425, along with two known analogues (7 and 8). The planar structures of the new compounds were elucidated based on analysis of NMR and MS spectroscopy data, and the absolute configuration of 1 was determined by the advanced Mosher method and quantum chemical calculations. Compound 2 was active against Spodoptera frugiperda with an LC50 value of 193.4 ± 1.1 μg/mL.
Collapse
Affiliation(s)
- Kang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Jianshuang Zhou
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
| | - Baoqing Dun
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, People's Republic of China
| | - Wenfei Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, People's Republic of China
| | - Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, People's Republic of China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, People's Republic of China
| |
Collapse
|
7
|
Li H, Fu Y, Song F, Xu X. Recent Updates on the Antimicrobial Compounds from Marine-Derived Penicillium fungi. Chem Biodivers 2023; 20:e202301278. [PMID: 37877324 DOI: 10.1002/cbdv.202301278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
In this review, 72 compounds isolated from marine-derived Penicillium fungi and their antimicrobial activities are reviewed from 2020 to 2023. According to their structures, these compounds can be divided into terpenoids, polyketides, alkaloids and other structural compounds, among which terpenoids and polyketides are relatively large in number. Some compounds have powerful inhibitory effects against different pathogenic bacteria and fungi. This review aims to provide more useful information and enlightenment for further efficient utilization of Penicillium spp. and their secondary metabolites.
Collapse
Affiliation(s)
- Honghua Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Yanqi Fu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China, School of Light Industry, Beijing Technology and Business University, 100048, Beijing, P. R. China
| | - Xiuli Xu
- School of Ocean Sciences, China University of Geosciences, 100083, Beijing, P. R. China
| |
Collapse
|
8
|
Li DD, Luo X, Ying W, La Kim E, Hong J, Lee JH, Jung JH. Peroxisome Proliferator Activated Receptor-γ Agonistic Compounds from the Jellyfish-Derived Fungus Cladosporium oxysporum. Chem Biodivers 2023; 20:e202300851. [PMID: 37584103 DOI: 10.1002/cbdv.202300851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
In our search for peroxisome proliferator-activated receptor (PPAR) agonists, five undescribed compounds, namely two acyclic diterpenes (1 and 2; cladopsol A and cladopsol B), two sesquiterpenes (3 and 4; cladopsol C and cladopsol D), and one C21-ecdysteroid (5; cladopsol E), and 15 known compounds were isolated from the jellyfish-derived fungus - Cladosporium oxysporum. The structures of the undescribed compounds were defined using UV, NMR, HR-ESI-MS, and electronic circular dichroism (ECD) spectroscopy and a modified Mosher's method. Luciferase reporter assay and docking analysis suggested that cladopsol B may function as a PPAR-γ partial agonist with a potential antidiabetic lead which may evade the side effects of full agonists. Moreover, cladopsol B stimulated glucose uptake in HepG2 cells with an efficacy comparable to that of rosiglitazone, but with less side effect induced by lipid accumulation in 3T3-L1 cells. Therefore, cladopsol B could serve as a molecular skeleton in a study of advanced antidiabetic lead with less side effect.
Collapse
Affiliation(s)
- Dan-Dan Li
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Xiaowei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, P.R. China
| | - Wang Ying
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun La Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joon-Hee Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Jee H Jung
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
- Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
9
|
Dembitsky VM. Fascinating Furanosteroids and Their Pharmacological Profile. Molecules 2023; 28:5669. [PMID: 37570639 PMCID: PMC10419491 DOI: 10.3390/molecules28155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This review article delves into the realm of furanosteroids and related isoprenoid lipids derived from diverse terrestrial and marine sources, exploring their wide array of biological activities and potential pharmacological applications. Fungi, fungal endophytes, plants, and various marine organisms, including sponges, corals, molluscs, and other invertebrates, have proven to be abundant reservoirs of these compounds. The biological activities exhibited by furanosteroids and related lipids encompass anticancer, cytotoxic effects against various cancer cell lines, antiviral, and antifungal effects. Notably, the discovery of exceptional compounds such as nakiterpiosin, malabaricol, dysideasterols, and cortistatins has revealed their potent anti-tuberculosis, antibacterial, and anti-hepatitis C attributes. These compounds also exhibit activity in inhibiting protein kinase C, phospholipase A2, and eliciting cytotoxicity against cancer cells. This comprehensive study emphasizes the significance of furanosteroids and related lipids as valuable natural products with promising therapeutic potential. The remarkable biodiversity found in both terrestrial and marine ecosystems offers an extensive resource for unearthing novel biologically active compounds, paving the way for future drug development and advancements in biomedical research. This review presents a compilation of data obtained from various studies conducted by different authors who employed the PASS software 9.1 to evaluate the biological activity of natural furanosteroids and compounds closely related to them. The utilization of the PASS software in this context offers valuable advantages, such as screening large chemical libraries, identifying compounds for subsequent experimental investigations, and gaining insights into potential biological activities based on their structural features. Nevertheless, it is crucial to emphasize that experimental validation remains indispensable for confirming the predicted activities.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
10
|
Luo C, Lou DJ, Li YF, Yang L, Shao LJ, Liu JK, Yang XY. A new chamigrane sesquiterpene from the basidiomycete Antrodiella albocinnamomea. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:191-196. [PMID: 35442135 DOI: 10.1080/10286020.2022.2064283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
One new chamigrane sesquiterpene, antroalbol A (1), was isolated from the cultures of the higher fungus Antrodiella albocinnamomea. Its structure was established by means of spectroscopic methods, and the absolute configuration of 1 was confirmed by single crystal x-ray diffraction analysis. The compound was evaluated for its cytotoxicity against five human cancer cell lines, but no significant cytotoxicity was found.
Collapse
Affiliation(s)
- Cheng Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Deng-Ji Lou
- School of Chemical, Biological and Environmental Sciences, Yuxi Normal University, Yuxi 653100, China
| | - Yin-Fei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lin-Jiao Shao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Xiao-Yan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
11
|
The Tetrahydrofuran Motif in Marine Lipids and Terpenes. Mar Drugs 2022; 20:md20100642. [PMID: 36286465 PMCID: PMC9605582 DOI: 10.3390/md20100642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Heterocycles are particularly common moieties within marine natural products. Specifically, tetrahydrofuranyl rings are present in a variety of compounds which present complex structures and interesting biological activities. Focusing on terpenoids, a high number of tetrahydrofuran-containing metabolites have been isolated during the last decades. They show promising biological activities, making them potential leads for novel antibiotics, antikinetoplastid drugs, amoebicidal substances, or anticancer drugs. Thus, they have attracted the attention of the synthetics community and numerous approaches to their total syntheses have appeared. Here, we offer the reader an overview of marine-derived terpenoids and related compounds, their isolation, structure determination, and a special focus on their total syntheses and biological profiles.
Collapse
|
12
|
Zhai G, Chen S, Shen H, Guo H, Jiang M, Liu L. Bioactive Monoterpenes and Polyketides from the Ascidian-Derived Fungus Diaporthe sp. SYSU-MS4722. Mar Drugs 2022; 20:553. [PMID: 36135742 PMCID: PMC9504586 DOI: 10.3390/md20090553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
There has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered, while new monoterpenes were rarely isolated from marine-derived fungi in the past two decades. Three new monoterpenes, diaporterpenes A-C (1-3), and one new α-pyrones, diaporpyrone A (6), along with nine known polyketides 4, 5, and 7-13 were isolated from the ascidian-derived fungus Diaporthe sp. SYSU-MS4722. Their planar structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR and HR-ESIMS). The absolute configurations of 1 and 3 were identified by an X-ray crystallographic diffraction experiment using Cu-Ka radiation, and those of compound 2 were assigned by calculating NMR chemical shifts and ECD spectra. It afforded an example of natural epimers with different physical properties, especially crystallization, due to the difference in intermolecular hydrogen bonding. Compounds 9, 10, and 13 showed moderate total antioxidant capacity (0.82 of 9; 0.70 of 10; 0.48 of 13) with Trolox (total antioxidant capacity: 1.0) as a positive control, and compounds 5 and 7 showed anti-inflammatory activity with IC50 values of 35.4 and 40.8 µM, respectively (positive control indomethacin: IC50 = 35.8 µM).
Collapse
Affiliation(s)
- Guifa Zhai
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- School of Medicine, Shenzhen Campus, Sun Yat-Sen University, Shenzhen 518107, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Hongjie Shen
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
- Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai 519082, China
| |
Collapse
|
13
|
Sesquiterpenoids from the Mangrove-Derived Aspergillus ustus 094102. Mar Drugs 2022; 20:md20070408. [PMID: 35877701 PMCID: PMC9322191 DOI: 10.3390/md20070408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Four new drimane sesquiterpenoids (1–4) and three known ones (5–7) were isolated from the fermentation broth of the mangrove-derived Aspergillus ustus 094102. Compound 5 was further resolved as four purified compounds 5a–5d. By means of extensive spectroscopic and ECD analysis as well as the chemical transformation, their structures were identified as (2R,3R,5S,9R,10S)-2,3,9,11-tetrahydroxydrim-7-en-6-one (ustusol F, 1), (2R,3R,5R,9S,10R)-2,3,11-trihydroxydrim-7-en-6-one (9-deoxyustusol F, 2), (3S,5R,9R,10R)-3,11,12-trihydroxydrim-7-en-6-one (ustusol G, 3), (5S,6R,9S,10S, 11R,2′E,4′E)-(11-dideoxy-11-hydroxystrobilactone A-6-yl)-5-carboxypenta-2,4-dienoate (ustusolate H, 4), ((5S,6R,9S,10S)-strobilactone A-6-yl) (2E,4E)-6,7-dihydroxyocta-2,4-dienoate (ustusolate I, 5), (2′E,4′E;6′,7′-erythro)-ustusolate I (5a) and (2′E,4′E;ent-6′,7′-erythro)-ustusolate I (5b), (2′E,4′E,6′R,7′R)-ustusolate I (5c) and (2′E,4′E,6′S,7′S)-ustusolate I (5d), (5S,6R,9S,10S,2′E,4′E)-(strobilactone A-6-yl)-5-carboxypenta-2,4-dienoate (ustusolate J, 6), and (2S,5S,9R,10S)-2,9,11-trihydroxydrim-7-en-6-one (ustusol B, 7), respectively. Compound 5 showed antiproliferation against the human tumor cells CAL-62 and MG-63 with the IC50 values of 16.3 and 10.1 µM, respectively.
Collapse
|
14
|
Reboleira J, Félix R, Vicente TFL, Januário AP, Félix C, de Melo MMR, Silva CM, Ribeiro AC, Saraiva JA, Bandarra NM, Sapatinha M, Paulo MC, Coutinho J, Lemos MFL. Uncovering the Bioactivity of Aurantiochytrium sp.: a Comparison of Extraction Methodologies. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:40-54. [PMID: 34855032 DOI: 10.1007/s10126-021-10085-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Aurantiochytrium sp. is an emerging alternative source of polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA), and squalene, playing an important role in the phasing out of traditional fish sources for these compounds. Novel lipid extraction techniques with a focus on sustainability and low environmental footprint are being developed for this organism, but the exploration of other added-value compounds within it is still very limited. In this work, a combination of novel green extraction techniques (high hydrostatic pressure extraction (HPE) and supercritical fluid extraction (SFE)) and traditional techniques (organic solvent Soxhlet extraction and hydrodistillation (HD)) was used to obtain lipophilic extracts of Aurantiochytrium sp., which were then screened for antioxidant (DPPH radical reduction capacity and ferric-reducing antioxidant potential (FRAP) assays), lipid oxidation protection, antimicrobial, anti-aging enzyme inhibition (collagenase, elastase and hyaluronidase), and anti-inflammatory (inhibition of NO production) activities. The screening revealed promising extracts in nearly all categories of biological activity tested, with only the enzymatic inhibition being low in all extracts. Powerful lipid oxidation protection and anti-inflammatory activity were observed in most SFE samples. Ethanolic HPEs inhibited both lipid oxidation reactions and microbial growth. The HD extract demonstrated high antioxidant, antimicrobial, and anti-inflammatory activities making, it a major contender for further studies aiming at the valorization of Aurantiochytrium sp. Taken together, this study presents compelling evidence of the bioactive potential of Aurantiochytrium sp. and encourages further exploration of its composition and application.
Collapse
Affiliation(s)
- João Reboleira
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal.
- Edifício CETEMARES, Avenida Do Porto de Pesca, 2520-630, Peniche, Portugal.
| | - Rafael Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Tânia F L Vicente
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Adriana P Januário
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Carina Félix
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Marcelo M R de Melo
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carlos M Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Ana C Ribeiro
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 1495-006, Lisboa, Portugal
| | - Maria Sapatinha
- Division of Aquaculture and Upgrading, Portuguese Institute of the Sea and Atmosphere, Rua Alfredo Magalhães Ramalho, 1495-006, Lisboa, Portugal
| | - Maria C Paulo
- DEPSIEXTRACTA Tecnologias E Biológicas, Lda, Zona Industrial do Monte da Barca rua H, lote 62, 2100-057, Coruche, Portugal
| | - Joana Coutinho
- DEPSIEXTRACTA Tecnologias E Biológicas, Lda, Zona Industrial do Monte da Barca rua H, lote 62, 2100-057, Coruche, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal.
- Edifício CETEMARES, Avenida Do Porto de Pesca, 2520-630, Peniche, Portugal.
| |
Collapse
|
15
|
Sharma K, Surineni N, Dalal A, Gholap SL. The First Total Synthesis and Structure Revision of (+)‐Isostreptenol III. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kapil Sharma
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Naresh Surineni
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Anu Dalal
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Shivajirao L. Gholap
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
16
|
A Sumilat D, Ginting EL, A V Pollo G, A Adam A, E Tallei T. Antimicrobial Activities of <i>Rhopalaea</i>-Associated Fungus <i>Aspergillus flavus</i> strain MFABU9. Pak J Biol Sci 2021; 23:911-916. [PMID: 32700838 DOI: 10.3923/pjbs.2020.911.916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Rhopalaea is a genus of ascidian belonging to the family Diazonidae. Ascidians provide niches for various microorganisms including fungi. This present study describes the potential new source for natural bioactive compounds from Rhopalaea-associated fungi obtained from Bunaken marine park. MATERIALS AND METHODS As part of an on-going research program to explore the chemical diversity of marine derived fungi, we performed an antimicrobial bioactivity-guided screening of EtOAc extracts of the fungi isolated from ascidian Rhopalaea sp. RESULTS The study confirms that the ascidian obtained from Bunaken marine park was Rhopalaea sp. The fungus isolated from the ascidian was Aspergillus flavus which showed antimicrobial activity against bacteria Escherichia coli, Staphylococcus aereus, Aeromonas hydrophila and antifungal against the human pathogenic fungus Candida albicans. CONCLUSION Aspergillus flavus isolated from ascidian Rhopalaea sp. has the potential as antibacterial and antifungal.
Collapse
|
17
|
Guo K, Liu Y, Li SH. The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis. Nat Prod Rep 2021; 38:2293-2314. [PMID: 34114591 DOI: 10.1039/d1np00021g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1969 up to 2021Sesterterpenoids, biosynthetically derived from the precursor, namely geranylfarnesyl diphosphate (GFDP) are amongst the rarest of all isoprenoids with approximately 1300 compounds known. Most sesterterpenoids originate from marine organisms (especially sponges), while only about 15% of these compounds are isolated from several families of plants such as Lamiaceae, Gentianaceae, and Nartheciaceae. Many plant sesterterpenoids possess highly oxygenated and complex cyclic skeletons and exhibit remarkable biological activities involving cytotoxic, anti-inflammatory, antimicrobial, and antifeedant properties. Thus, due to their intrinsic chemical complexity and intriguing biological profiles, plant sesterterpenoids have attracted continuing interest from both chemists and biologists. However, the biosynthesis and distribution of sesterterpenoids in the plant kingdom still remain elusive, although substantial progress has been achieved in recent years. This review provides an overall coverage of sesterterpenoids originating from plant sources, followed by a classification of their chemical skeletons, which summarizes the distribution, chemistry, biological activities, biosynthesis and evolution of plant sesterterpenoids, aiming at strengthening the research efforts toward the untapped great potential of these unique natural product resources.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| |
Collapse
|
18
|
Fungal Secondary Metabolites: Current Research, Commercial Aspects, and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Insights about clinically approved and Preclinically investigated marine natural products. CURRENT RESEARCH IN BIOTECHNOLOGY 2020. [DOI: 10.1016/j.crbiot.2020.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
20
|
Duecker FL, Heinze RC, Steinhauer S, Heretsch P. Discoveries and Challenges en Route to Swinhoeisterol A. Chemistry 2020; 26:9971-9981. [PMID: 32315103 PMCID: PMC7497115 DOI: 10.1002/chem.202001405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Indexed: 01/29/2023]
Abstract
In this work, a full account of the authors' synthetic studies is reported that culminated in the first synthesis of 13(14→8),14(8→7)diabeo-steroid swinhoeisterol A as well as the related dankasterones A and B, 13(14→8)abeo-steroids, and periconiastone A, a 13(14→8)abeo-4,14-cyclo-steroid. Experiments are described in detail that provided further insight into the mechanism of the switchable radical framework reconstruction approach. By discussing failed strategies and tactics towards swinhoeisterol A, the successful route that also allowed an access to structurally closely related analogues, such as Δ22 -24-epi-swinhoeisterol A, is eventually presented.
Collapse
Affiliation(s)
- Fenja L. Duecker
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Robert C. Heinze
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Simon Steinhauer
- Institut für Chemie und BiochemieAnorganische ChemieFreie Universität BerlinFabeckstrasse 34–3614195BerlinGermany
| | - Philipp Heretsch
- Institut für Chemie und BiochemieOrganische ChemieFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
21
|
Jiang M, Wu Z, Guo H, Liu L, Chen S. A Review of Terpenes from Marine-Derived Fungi: 2015-2019. Mar Drugs 2020; 18:E321. [PMID: 32570903 PMCID: PMC7345631 DOI: 10.3390/md18060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
22
|
Chaturvedi M, Rani R, Sharma D, Yadav JP. Comparison of Curcuma Caesia extracts for bioactive metabolite composition, antioxidant and antimicrobial potential. Nat Prod Res 2019; 35:3131-3135. [PMID: 31691594 DOI: 10.1080/14786419.2019.1687472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of this study was to compare the antioxidant and antibacterial activity of Curcuma caesia rhizome extracts and to characterise its bioactive metabolites by Fourier Transform-Infrared (FTIR) spectroscopy and Gas Chromatography-Mass Spectroscopy (GC-MS). Extracts were prepared using methanol, acetone and ethyl acetate by cold percolation methods. Compared to other extracts, methanol extract discovered to have the greatest antioxidant capacity. Analysis of FTIR spectra of all the extracts of Curcuma caesia shows the existence of several functional groups such as phenol, aldehydes and carboxylic group. But in methanol extract C≡C stretching bond, nitro compound and conjugated aldehyde were also presented. GC-MS extract assessment showed that sesquiterpene and monoterpenes were primarily presented. This research provides an efficient basis for separating the innovative bioactive compound from plant and assessing their effectiveness for antioxidant and antibacterial operations in particular.[Figure: see text].
Collapse
Affiliation(s)
- Monika Chaturvedi
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Reena Rani
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Dushyant Sharma
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Jaya Parkash Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
23
|
Driller R, Garbe D, Mehlmer N, Fuchs M, Raz K, Major DT, Brück T, Loll B. Current understanding and biotechnological application of the bacterial diterpene synthase CotB2. Beilstein J Org Chem 2019; 15:2355-2368. [PMID: 31666870 PMCID: PMC6808215 DOI: 10.3762/bjoc.15.228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
CotB2 catalyzes the first committed step in cyclooctatin biosynthesis of the soil bacterium Streptomyces melanosporofaciens. To date, CotB2 represents the best studied bacterial diterpene synthase. Its reaction mechanism has been addressed by isoptope labeling, targeted mutagenesis and theoretical computations in the gas phase, as well as full enzyme molecular dynamic simulations. By X-ray crystallography different snapshots of CotB2 from the open, inactive, to the closed, active conformation have been obtained in great detail, allowing us to draw detailed conclusions regarding the catalytic mechanism at the molecular level. Moreover, numerous alternative geranylgeranyl diphosphate cyclization products obtained by CotB2 mutagenesis have exciting applications for the sustainable production of high value bioactive substances.
Collapse
Affiliation(s)
- Ronja Driller
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- present address: Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
- present address: Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Aarhus C, Denmark
| | - Daniel Garbe
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Norbert Mehlmer
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Keren Raz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Dept. of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| |
Collapse
|
24
|
Lardon N, Liffert R, Linden A, Gademann K. The Furan Shuffling Hypothesis: A Biogenetic Proposal for Eremophilane Sesquiterpenoids. Angew Chem Int Ed Engl 2019; 58:7004-7007. [PMID: 30901154 DOI: 10.1002/anie.201901898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Based on the structural similarities of the recently isolated eremophilane-type sesquiterpenoids microsphaeropsisin B and C and the iso-eremophilane periconianone C, a revised biogenetic hypothesis for C8-C11-connected iso-eremophilanes is presented and corroborated by strong experimental evidence. The first enantioselective total syntheses of microsphaeropsisin B and C were achieved starting from a known intermediate, whose synthesis was elaborated previously in the total synthesis of periconianone A, and in a total of 15 steps starting from γ-hydroxy carvone. Mild reaction conditions for the subsequent α-ketol rearrangement not only resulted in the herein proposed conversion of microsphaeropsisin B into periconianone C, but also in the conversion of microsphaeropsisin C into 4-epi-periconianone C.
Collapse
Affiliation(s)
- Nicolas Lardon
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Raphael Liffert
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
25
|
Lardon N, Liffert R, Linden A, Gademann K. The Furan Shuffling Hypothesis: A Biogenetic Proposal for Eremophilane Sesquiterpenoids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas Lardon
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Raphael Liffert
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Anthony Linden
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Karl Gademann
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| |
Collapse
|
26
|
Identification of Cyanobacterial Strains with Potential for the Treatment of Obesity-Related Co-Morbidities by Bioactivity, Toxicity Evaluation and Metabolite Profiling. Mar Drugs 2019; 17:md17050280. [PMID: 31083362 PMCID: PMC6562398 DOI: 10.3390/md17050280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is a complex disease resulting in several metabolic co-morbidities and is increasing at epidemic rates. The marine environment is an interesting resource of novel compounds and in particular cyanobacteria are well known for their capacity to produce novel secondary metabolites. In this work, we explored the potential of cyanobacteria for the production of compounds with relevant activities towards metabolic diseases using a blend of target-based, phenotypic and zebrafish assays as whole small animal models. A total of 46 cyanobacterial strains were grown and biomass fractionated, yielding in total 263 fractions. Bioactivities related to metabolic function were tested in different in vitro and in vivo models. Studying adipogenic and thermogenic gene expression in brown adipocytes, lipid metabolism and glucose uptake in hepatocytes, as well as lipid metabolism in zebrafish larvae, we identified 66 (25%) active fractions. This together with metabolite profiling and the evaluation of toxicity allowed the identification of 18 (7%) fractions with promising bioactivity towards different aspects of metabolic disease. Among those, we identified several known compounds, such as eryloside T, leptosin F, pheophorbide A, phaeophytin A, chlorophyll A, present as minor peaks. Those compounds were previously not described to have bioactivities in metabolic regulation, and both known or unknown compounds could be responsible for such effects. In summary, we find that cyanobacteria hold a huge repertoire of molecules with specific bioactivities towards metabolic diseases, which needs to be explored in the future.
Collapse
|
27
|
Song YP, Miao FP, Liu XH, Yin XL, Ji NY. Seven chromanoid norbisabolane derivatives from the marine-alga-endophytic fungus Trichoderma asperellum A-YMD-9-2. Fitoterapia 2019; 135:107-113. [PMID: 31048011 DOI: 10.1016/j.fitote.2019.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
An examination of the endophytic fungus Trichoderma asperellum A-YMD-9-2 obtained from the marine red alga Gracilaria verrucosa led to the isolation of seven new chromanoid norbisabolane derivatives, trichobisabolins I-L (1-4) and trichaspsides C-E (5-7). Their structures and relative configurations were established on the basis of spectroscopic techniques, mainly including 1D/2D NMR and MS, and the absolute configuration of 1 was assigned by X-ray crystallographic analysis using Cu Kα radiation. All of these isolates feature a 1,9-epoxy ring system, and 5-7 represent the second occurrence of norbisabolane aminoglycosides. Compounds 1-7 exhibited potent inhibition of several marine phytoplankton species.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Ping Miao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiang-Hong Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Li Yin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
28
|
Secondary Metabolites from Marine Endophytic Fungi: Emphasis on Recent Advances in Natural Product Research. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-03589-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
29
|
Seven new guanacastane-type diterpenoids from the fungus Verticillium dahliae. Fitoterapia 2019; 133:219-224. [PMID: 30659876 DOI: 10.1016/j.fitote.2019.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/13/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022]
Abstract
Seven new guanacastane-type diterpenoids, namely dahlianes E-K (1-7), and three known ones (8-10) were isolated from the cultures of the fungus Verticillium dahliae. Their structures were established by extensive spectroscopic data analysis along with Rh2(OCOCF3)4- and Mo2(OAc)4-induced electronic circular dichroism (ECD) experiment. Dahliane G showed an 80-fold potentiation effect on the sensitization of doxorubicin at the concentration of 15 μM when screening the reversal activity on doxorubicin-resistant human breast cancer cells (MCF-7/DOX).
Collapse
|
30
|
Jeewon R, Luckhun AB, Bhoyroo V, Sadeer NB, Mahomoodally MF, Rampadarath S, Puchooa D, Sarma VV, Durairajan SSK, Hyde KD. Pharmaceutical Potential of Marine Fungal Endophytes. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76900-4_6-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Raimundo I, Silva SG, Costa R, Keller-Costa T. Bioactive Secondary Metabolites from Octocoral-Associated Microbes-New Chances for Blue Growth. Mar Drugs 2018; 16:E485. [PMID: 30518125 PMCID: PMC6316421 DOI: 10.3390/md16120485] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/25/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Octocorals (Cnidaria, Anthozoa Octocorallia) are magnificent repositories of natural products with fascinating and unusual chemical structures and bioactivities of interest to medicine and biotechnology. However, mechanistic understanding of the contribution of microbial symbionts to the chemical diversity of octocorals is yet to be achieved. This review inventories the natural products so-far described for octocoral-derived bacteria and fungi, uncovering a true chemical arsenal of terpenes, steroids, alkaloids, and polyketides with antibacterial, antifungal, antiviral, antifouling, anticancer, anti-inflammatory, and antimalarial activities of enormous potential for blue growth. Genome mining of 15 bacterial associates (spanning 12 genera) cultivated from Eunicella spp. resulted in the identification of 440 putative and classifiable secondary metabolite biosynthetic gene clusters (BGCs), encompassing varied terpene-, polyketide-, bacteriocin-, and nonribosomal peptide-synthase BGCs. This points towards a widespread yet uncharted capacity of octocoral-associated bacteria to synthetize a broad range of natural products. However, to extend our knowledge and foster the near-future laboratory production of bioactive compounds from (cultivatable and currently uncultivatable) octocoral symbionts, optimal blending between targeted metagenomics, DNA recombinant technologies, improved symbiont cultivation, functional genomics, and analytical chemistry are required. Such a multidisciplinary undertaking is key to achieving a sustainable response to the urgent industrial demand for novel drugs and enzyme varieties.
Collapse
Affiliation(s)
- Inês Raimundo
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Sandra G Silva
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal.
| |
Collapse
|
32
|
Niu S, Liu D, Shao Z, Proksch P, Lin W. Eremophilane-type sesquiterpenoids in a deep-sea fungus Eutypella sp. activated by chemical epigenetic manipulation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.056] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Rai M, Gade A, Zimowska B, Ingle AP, Ingle P. Marine-derived Phoma-the gold mine of bioactive compounds. Appl Microbiol Biotechnol 2018; 102:9053-9066. [PMID: 30187101 DOI: 10.1007/s00253-018-9329-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/28/2022]
Abstract
The genus Phoma contains several species ubiquitously present in soil, water, and environment. There are two major groups of Phoma, viz., terrestrial and marine. After 1981 researchers all over the world have focused on marine-derived Phoma for their bioactive compounds. The marine Phoma are very rich sources for novel bioactive secondary metabolites, which could potentially be used as drugs. Recently, a large number of structurally unique metabolites with potential biological and pharmacological activities have been isolated from the marine Phoma species particularly Phoma herbarum, P. sorghina, and P. tropica. These metabolites mainly include diterpenes, enolides, lactones, quinine, phthalate, and anthraquinone. Most of these compounds possess antimicrobial, anticancer, radical scavenging, and cytotoxic properties. The present review has been focused on the general background of Phoma, current approaches used for its identification and their limitations, difference between terrestrial and marine Phoma species. In addition, this review summarizes the novel bioactive compounds derived from marine Phoma and their biological activities.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, S.G.B. Amravati University, Amravati, Maharashtra, 444602, India.
| | - Aniket Gade
- Department of Biotechnology, S.G.B. Amravati University, Amravati, Maharashtra, 444602, India
| | - Beata Zimowska
- Department of Plant Protection, Institute of Plant Pathology and Mycology, University of Life Sciences in Lublin, 7 K. St. Leszczyńskiego Street, 20-068, Lublin, Poland
| | - Avinash P Ingle
- Department of Biotechnology, S.G.B. Amravati University, Amravati, Maharashtra, 444602, India.,Department of Biotechnology, Engineering School of Lorena, University of Sao Paulo, Lorena, Sao Paulo, Brazil
| | - Pramod Ingle
- Department of Biotechnology, S.G.B. Amravati University, Amravati, Maharashtra, 444602, India
| |
Collapse
|
34
|
|
35
|
Identification of Enzymes Involved in Sesterterpene Biosynthesis in Marine Fungi. Methods Enzymol 2018; 604:441-498. [DOI: 10.1016/bs.mie.2018.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
36
|
Yuyama KT, Fortkamp D, Abraham WR. Eremophilane-type sesquiterpenes from fungi and their medicinal potential. Biol Chem 2017; 399:13-28. [PMID: 28822220 DOI: 10.1515/hsz-2017-0171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 01/26/2023]
Abstract
Eremophilanes are sesquiterpenes with a rearranged carbon skeleton formed both by plants and fungi, however, almost no plant eremophilanes are found in fungi. These eremophilanes possess mainly phytotoxic, antimicrobial, anticancer and immunomodulatory properties and in this review fungal eremophilanes with bioactivities of potential medicinal applications are reviewed and discussed. A special focus is set on natural products bearing highly functionalized fatty acids at C-1 or C-3 position of the eremophilane backbone. Many of these fatty acids seem to contribute to the bioactivity of the metabolites enhancing the activity of the sesquiterpene moieties. Several approaches for optimization of these natural products for clinical needs and testing of the resulting derivatives are presented and discussed. The combination of identification of bioactive natural products with their subsequent improvement using a variety of genetical or chemical tools and the pharmacokinetic assessment of the products is presented here as a promising approach to new drugs.
Collapse
Affiliation(s)
- Kamila Tomoko Yuyama
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Diana Fortkamp
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.,Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), Department of Exact Sciences, Piracicaba, SP, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
37
|
Ruiz-Torres V, Encinar JA, Herranz-López M, Pérez-Sánchez A, Galiano V, Barrajón-Catalán E, Micol V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules 2017; 22:E1037. [PMID: 28644406 PMCID: PMC6152364 DOI: 10.3390/molecules22071037] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Marine secondary metabolites are a promising source of unexploited drugs that have a wide structural diversity and have shown a variety of biological activities. These compounds are produced in response to the harsh and competitive conditions that occur in the marine environment. Invertebrates are considered to be among the groups with the richest biodiversity. To date, a significant number of marine natural products (MNPs) have been established as antineoplastic drugs. This review gives an overview of MNPs, both in research or clinical stages, from diverse organisms that were reported as being active or potentially active in cancer treatment in the past seventeen years (from January 2000 until April 2017) and describes their putative mechanisms of action. The structural diversity of MNPs is also highlighted and compared with the small-molecule anticancer drugs in clinical use. In addition, this review examines the use of virtual screening for MNP-based drug discovery and reveals that classical approaches for the selection of drug candidates based on ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering may miss potential anticancer lead compounds. Finally, we introduce a novel and publically accessible chemical library of MNPs for virtual screening purposes.
Collapse
Affiliation(s)
- Verónica Ruiz-Torres
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Jose Antonio Encinar
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Almudena Pérez-Sánchez
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Galiano
- Physics and Computer Architecture Department, Miguel Hernández University, Avda. Universidad s/n, Elche 03202, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III., Palma de Mallorca 07122, Spain (CB12/03/30038).
| |
Collapse
|
38
|
Ren Z, Hao Y, Hu X. Total Synthesis and Structural Reassignment of (±)-Cereoanhydride. Org Lett 2016; 18:4958-4961. [DOI: 10.1021/acs.orglett.6b02424] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhiqiang Ren
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, China
| | - Yu Hao
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, China
| | - Xiangdong Hu
- Department of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, China
| |
Collapse
|
39
|
Chamigrane Sesquiterpenes from a Basidiomycetous Endophytic Fungus XG8D Associated with Thai Mangrove Xylocarpus granatum. Mar Drugs 2016; 14:md14070132. [PMID: 27428984 PMCID: PMC4962022 DOI: 10.3390/md14070132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 12/23/2022] Open
Abstract
Six new chamigrane sesquiterpenes, merulinols A‒F (1‒6), and four known metabolites (7‒10) were isolated from the culture of the basidiomycetous fungus XG8D, a mangrove-derived endophyte. Their structures were elucidated mainly by 1D and 2D NMR, while the structures of 1 and 2 were further confirmed by single-crystal X-ray diffraction analysis. The in vitro cytotoxicity of all compounds was evaluated against three human cancer cell lines, MCF-7, Hep-G2, and KATO-3. Compounds 3 and 4 selectively displayed cytotoxicity against KATO-3 cells with IC50 values of 35.0 and 25.3 μM, respectively.
Collapse
|
40
|
Sesterterpene ophiobolin biosynthesis involving multiple gene clusters in Aspergillus ustus. Sci Rep 2016; 6:27181. [PMID: 27273151 PMCID: PMC4895135 DOI: 10.1038/srep27181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/13/2016] [Indexed: 12/18/2022] Open
Abstract
Terpenoids are the most diverse and abundant natural products among which sesterterpenes account for less than 2%, with very few reports on their biosynthesis. Ophiobolins are tricyclic 5–8–5 ring sesterterpenes with potential pharmaceutical application. Aspergillus ustus 094102 from mangrove rizhosphere produces ophiobolin and other terpenes. We obtained five gene cluster knockout mutants, with altered ophiobolin yield using genome sequencing and in silico analysis, combined with in vivo genetic manipulation. Involvement of the five gene clusters in ophiobolin synthesis was confirmed by investigation of the five key terpene synthesis relevant enzymes in each gene cluster, either by gene deletion and complementation or in vitro verification of protein function. The results demonstrate that ophiobolin skeleton biosynthesis involves five gene clusters, which are responsible for C15, C20, C25, and C30 terpenoid biosynthesis.
Collapse
|
41
|
Calling in the Dark: The Role of Volatiles for Communication in the Rhizosphere. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Spakowicz DJ, Strobel SA. Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 2015; 99:4943-51. [PMID: 25957494 DOI: 10.1007/s00253-015-6641-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
Recent advances in the biological production of fuels have relied on the optimization of pathways involving genes from diverse organisms. Several recent articles have highlighted the potential to expand the pool of useful genes by looking to filamentous fungi. This review highlights the enzymes and organisms used for the production of a variety of fuel types and commodity chemicals with a focus on the usefulness and promise of those from filamentous fungi.
Collapse
Affiliation(s)
- Daniel J Spakowicz
- Department of Molecular Biophysics and Biochemistry, Yale University, 260/266 Whitney Avenue, PO Box 208114, New Haven, CT, 06520-8114, USA
| | | |
Collapse
|
43
|
Elissawy AM, El-Shazly M, Ebada SS, Singab AB, Proksch P. Bioactive terpenes from marine-derived fungi. Mar Drugs 2015; 13:1966-92. [PMID: 25854644 PMCID: PMC4413195 DOI: 10.3390/md13041966] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/25/2015] [Accepted: 03/14/2015] [Indexed: 12/29/2022] Open
Abstract
Marine-derived fungi continue to be a prolific source of secondary metabolites showing diverse bioactivities. Terpenoids from marine-derived fungi exhibit wide structural diversity including numerous compounds with pronounced biological activities. In this review, we survey the last five years’ reports on terpenoidal metabolites from marine-derived fungi with particular attention on those showing marked biological activities.
Collapse
Affiliation(s)
- Ahmed M. Elissawy
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Sherif S. Ebada
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - AbdelNasser B. Singab
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 1, 11566 Cairo, Egypt; E-Mails: (A.M.E.); (M.E.-S.); (S.S.E.); (A.B.S.)
| | - Peter Proksch
- Institut für Pharmazeutische Biologie und Biotechnologie, Heinrich-Heine Universität, Geb. 26.23, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-211-811-4163; Fax: +49-211-811-1923
| |
Collapse
|
44
|
Del Valle P, Figueroa M, Mata R. Phytotoxic eremophilane sesquiterpenes from the coprophilous fungus Penicillium sp. G1-a14. JOURNAL OF NATURAL PRODUCTS 2015; 78:339-342. [PMID: 25603174 DOI: 10.1021/np5009224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bioassay-directed fractionation of an extract from the grain-based culture of the coprophilous fungus Penicillium sp. G1-a14 led to the isolation of a new eremophilane-type sesquiterpene, 3R,6R-dihydroxy-9,7(11)-dien-8-oxoeremophilane (1), along with three known analogues, namely, isopetasol (2), sporogen AO-1 (3), and dihydrosporogen AO-1 (4). The structure of 1 was elucidated using 1D and 2D NMR and single-crystal X-ray diffraction. Assignment of absolute configuration at the stereogenic centers of 1 was achieved using ECD spectroscopy combined with time-dependent density functional theory calculations. Sporogen AO-1 (3) and dihydrosporogen AO-1 (4) caused significant inhibition of radicle growth against Amaranthus hypochondriacus (IC50 = 0.17 mM for both compounds) and Echinochloa crus-galli (IC50 = 0.17 and 0.30 mM, respectively).
Collapse
Affiliation(s)
- Paulina Del Valle
- Facultad de Química, Universidad Nacional Autónoma de México , México DF 04510, México
| | | | | |
Collapse
|
45
|
Abstract
This review summarizes new findings concerning the sources and characteristics of various natural products that can be extracted from mangrove-associated microbes over the past three years (January 2011–December 2013).
Collapse
Affiliation(s)
- Jing Xu
- Key Laboratory of Protection and Development Utilization of Tropical Crop Germplasm Resources
- Ministry of Education
- College of Material and Chemical Engineering
- Hainan University
- Haikou 570228
| |
Collapse
|
46
|
Brück T, Kourist R, Loll B. Production of Macrocyclic Sesqui- and Diterpenes in Heterologous Microbial Hosts: A Systems Approach to Harness Nature’s Molecular Diversity. ChemCatChem 2014. [DOI: 10.1002/cctc.201300733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Potent anti-inflammatory activity of pyrenocine A isolated from the marine-derived fungus Penicillium paxilli Ma(G)K. Mediators Inflamm 2014; 2014:767061. [PMID: 24574582 PMCID: PMC3916108 DOI: 10.1155/2014/767061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022] Open
Abstract
Very little is known about the immunomodulatory potential of secondary metabolites isolated from marine microorganisms. In the present study, we characterized pyrenocine A, which is produced by the marine-derived fungus Penicillium paxilli Ma(G)K and possesses anti-inflammatory activity. Pyrenocine A was able to suppress, both pretreatment and posttreatment, the LPS-induced activation of macrophages via the inhibition of nitrite production and the synthesis of inflammatory cytokines and PGE2. Pyrenocine A also exhibited anti-inflammatory effects on the expression of receptors directly related to cell migration (Mac-1) as well as costimulatory molecules involved in lymphocyte activation (B7.1). Nitrite production was inhibited by pyrenocine A in macrophages stimulated with CpG but not Poly I:C, suggesting that pyrenocine A acts through the MyD88-dependent intracellular signaling pathway. Moreover, pyrenocine A is also able to inhibit the expression of genes related to NFκB-mediated signal transduction on macrophages stimulated by LPS. Our results indicate that pyrenocine A has promissory anti-inflammatory properties and additional experiments are necessary to confirm this finding in vivo model.
Collapse
|
48
|
Felix S, Sandjo LP, Opatz T, Erkel G. SF002-96-1, a new drimane sesquiterpene lactone from an Aspergillus species, inhibits survivin expression. Beilstein J Org Chem 2013; 9:2866-76. [PMID: 24367452 PMCID: PMC3869210 DOI: 10.3762/bjoc.9.323] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/13/2013] [Indexed: 12/19/2022] Open
Abstract
Survivin, a member of the IAP (inhibitor of apoptosis) gene family, is overexpressed in virtually all human cancers and is functionally involved in the inhibition of apoptosis, regulation of cell proliferation, metastasis and resistance to therapy. Because of its upregulation in malignancy, survivin has currently attracting considerable interest as a new target for anticancer therapy. In a screening of approximately 200 strains of imperfect fungi for the production of inhibitors of survivin promoter activity, a new drimane sesquiterpene lactone, SF002-96-1, was isolated from fermentations of an Aspergillus species. The compound inhibited survivin promoter activity in transiently transfected Colo 320 cells in a dose dependent manner with IC50 values of 3.42 µM (1.3 µg/mL). Moreover, it also reduced mRNA levels and protein synthesis of survivin and triggered apoptosis.
Collapse
Affiliation(s)
- Silke Felix
- Institute of Biotechnology and Drug Research (IBWF), Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
| | - Louis P Sandjo
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, University of Mainz, Duesbergweg 10–14, D-55128 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, University of Kaiserslautern, Paul-Ehrlich-Straße 23, D-67663 Kaiserslautern, Germany
| |
Collapse
|
49
|
Geiger M, Guitton Y, Vansteelandt M, Kerzaon I, Blanchet E, Robiou du Pont T, Frisvad JC, Hess P, Pouchus YF, Grovel O. Cytotoxicity and mycotoxin production of shellfish-derived Penicillium spp., a risk for shellfish consumers. Lett Appl Microbiol 2013; 57:385-92. [PMID: 24006923 DOI: 10.1111/lam.12143] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 11/27/2022]
Abstract
In order to assess the putative toxigenic risk associated with the presence of fungal strains in shellfish-farming areas, Penicillium strains were isolated from bivalve molluscs and from the surrounding environment, and the influence of the sample origin on the cytotoxicity of the extracts was evaluated. Extracts obtained from shellfish-derived Penicillia exhibited higher cytotoxicity than the others. Ten of these strains were grown on various media including a medium based on mussel extract (Mytilus edulis), mussel flesh-based medium (MES), to study the influence of the mussel flesh on the production of cytotoxic compounds. The MES host-derived medium was created substituting the yeast extract of YES medium by an aqueous extract of mussel tissues, with other constituent identical to YES medium. When shellfish-derived strains of fungi were grown on MES medium, extracts were found to be more cytotoxic than on the YES medium for some of the strains. HPLC-UV/DAD-MS/MS dereplication of extracts from Penicillium marinum and P. restrictum strains grown on MES medium showed the enhancement of the production of some cytotoxic compounds. The mycotoxin patulin was detected in some P. antarcticum extracts, and its presence seemed to be related to their cytotoxicity. Thus, the enhancement of the toxicity of extracts obtained from shellfish-derived Penicillium strains grown on a host-derived medium, and the production of metabolites such as patulin suggests that a survey of mycotoxins in edible shellfish should be considered.
Collapse
Affiliation(s)
- M Geiger
- MMS, University of Nantes, Nantes, France; Phycotoxins Laboratory, IFREMER, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li YX, Himaya SWA, Kim SK. Triterpenoids of marine origin as anti-cancer agents. Molecules 2013; 18:7886-909. [PMID: 23884125 PMCID: PMC6269678 DOI: 10.3390/molecules18077886] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 06/10/2013] [Accepted: 06/27/2013] [Indexed: 01/11/2023] Open
Abstract
Triterpenoids are the most abundant secondary metabolites present in marine organisms, such as marine sponges, sea cucumbers, marine algae and marine-derived fungi. A large number of triterpenoids are known to exhibit cytotoxicity against a variety of tumor cells, as well as anticancer efficacy in preclinical animal models. In this review efforts have been taken to review the structural features and the potential use of triterpenoids of marine origin to be used in the pharmaceutical industry as potential anti-cancer drug leads.
Collapse
Affiliation(s)
- Yong-Xin Li
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - S. W. A. Himaya
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Korea; E-Mail:
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-51-629-7097; Fax: +82-51-629-7099
| |
Collapse
|