1
|
Wei S, Wang W, Xiao F. Biological Oxidation of Manganese Mediated by the Fungus Neoroussoella solani MnF107. Int J Mol Sci 2023; 24:17093. [PMID: 38069415 PMCID: PMC10707580 DOI: 10.3390/ijms242317093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Manganese oxides are highly reactive minerals and influence the geochemical cycling of carbon, nutrients, and numerous metals in natural environments. Natural Mn oxides are believed to be dominantly formed by biotic processes. A marine Mn-oxidizing fungus Neoroussoella solani MnF107 was isolated and characterized in this study. SEM observations show that the Mn oxides are formed on the fungal hyphal surfaces and parts of the hypha are enveloped by Mn oxides. TEM observations show that the Mn oxides have a filamentous morphology and are formed in a matrix of EPS enveloping the fungal cell wall. Mineral phase analysis of the fungal Mn oxides by XRD indicates that it is poorly crystalline. Chemical oxidation state analysis of the fungal Mn oxides confirms that it is predominantly composed of Mn(IV), indicating that Mn(II) has been oxidized to Mn (IV) by the fungus.
Collapse
Affiliation(s)
- Shiping Wei
- Key Laboratory of Polar Geology and Marine Mineral Resources (China University of Geosciences, Beijing), Ministry of Education, Beijing 100083, China
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China; (W.W.); (F.X.)
| | - Wenxiu Wang
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China; (W.W.); (F.X.)
| | - Feirong Xiao
- School of Marine Sciences, China University of Geosciences, Beijing 100083, China; (W.W.); (F.X.)
| |
Collapse
|
2
|
Cyclic di-GMP Signaling Links Biofilm Formation and Mn(II) Oxidation in Pseudomonas resinovorans. mBio 2022; 13:e0273422. [PMID: 36374078 PMCID: PMC9765421 DOI: 10.1128/mbio.02734-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioaugmentation of biological sand filters with Mn(II)-oxidizing bacteria (MOB) is used to increase the efficiency of Mn removal from groundwater. While the biofilm-forming ability of MOB is important to achieve optimal Mn filtration, the regulatory link between biofilm formation and Mn(II) oxidation remains unclear. Here, an environmental isolate of Pseudomonas resinovorans strain MOB-513 was used as a model to investigate the role of c-di-GMP, a second messenger crucially involved in the regulation of biofilm formation by Pseudomonas, in the oxidation of Mn(II). A novel role for c-di-GMP in the upregulation of Mn(II) oxidation through induction of the expression of manganese-oxidizing peroxidase enzymes was revealed. MOB-513 macrocolony biofilms showed a strikingly stratified pattern of biogenic Mn oxide (BMnOx) accumulation in a localized top layer. Remarkably, elevated cellular levels of c-di-GMP correlated not only with increased accumulation of BMnOx in the same top layer but also with the appearance of a second BMnOx stratum in the bottom region of macrocolony biofilms, and the expression of mop genes correlated with this pattern. Proteomic analysis under Mn(II) conditions revealed changes in the abundance of a PilZ domain protein. Subsequent analyses supported a model in which this protein sensed c-di-GMP and affected a regulatory cascade that ultimately inhibited mop gene expression, providing a molecular link between c-di-GMP signaling and Mn(II) oxidation. Finally, we observed that high c-di-GMP levels were correlated with higher lyophilization efficiencies and higher groundwater Mn(II) oxidation capacities of freeze-dried bacterial cells, named lyophiles, showing the biotechnological relevance of understanding the role of c-di-GMP in MOB-513. IMPORTANCE The presence of Mn(II) in groundwater, a common source of drinking water, is a cause of water quality impairment, interfering with its disinfection, causing operation problems, and affecting human health. Purification of groundwater containing Mn(II) plays an important role in environmental and social safety. The typical method for Mn(II) removal is based on bacterial oxidation of metals to form insoluble oxides that can be filtered out of the water. Evidence of reducing the start-up periods and enhancing Mn removal efficiencies through bioaugmentation with appropriate biofilm-forming and MOB has emerged. As preliminary data suggest a link between these two phenotypes in Pseudomonas strains, the need to investigate the underlying regulatory mechanisms is apparent. The significance of our research lies in determining the role of c-di-GMP for increased biofilm formation and Mn(II)-oxidizing capabilities in MOB, which will allow the generation of super-biofilm-elaborating and Mn-oxidizing strains, enabling their implementation in biotechnological applications.
Collapse
|
3
|
Mineralogical and Genomic Constraints on the Origin of Microbial Mn Oxide Formation in Complexed Microbial Community at the Terrestrial Hot Spring. Life (Basel) 2022; 12:life12060816. [PMID: 35743847 PMCID: PMC9224936 DOI: 10.3390/life12060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Manganese (Mn) oxides are widespread on the surface environments of the modern Earth. The role of microbial activities in the formation of Mn oxides has been discussed for several decades. However, the mechanisms of microbial Mn oxidation, and its role in complex microbial communities in natural environments, remain uncertain. Here, we report the geochemical, mineralogical, and metagenomic evidence for biogenic Mn oxides, found in Japanese hot spring sinters. The low crystallinity of Mn oxides, and their spatial associations with organic matter, support the biogenic origin of Mn oxides. Specific multicopper oxidases (MCOs), which are considered Mn-oxidizing enzymes, were identified using metagenomic analyses. Nanoscale nuggets of copper sulfides were, also, discovered in the organic matter in Mn-rich sinters. A part of these copper sulfides most likely represents traces of MCOs, and this is the first report of traces of Mn-oxidizing enzyme in geological samples. Metagenomic analyses, surprisingly, indicated a close association of Mn oxides, not only in aerobic but also in anaerobic microbial communities. These new findings offer the unique and unified positions of Mn oxides, with roles that have not been ignored, to sustain anaerobic microbial communities in hot spring environments.
Collapse
|
4
|
Soldatova AV, Fu W, Romano CA, Tao L, Casey WH, Britt RD, Tebo BM, Spiro TG. Metallo-inhibition of Mnx, a bacterial manganese multicopper oxidase complex. J Inorg Biochem 2021; 224:111547. [PMID: 34403930 DOI: 10.1016/j.jinorgbio.2021.111547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 11/29/2022]
Abstract
The manganese oxidase complex, Mnx, from Bacillus sp. PL-12 contains a multicopper oxidase (MCO) and oxidizes dissolved Mn(II) to form insoluble manganese oxide (MnO2) mineral. Previous kinetic and spectroscopic analyses have shown that the enzyme's mechanism proceeds through an activation step that facilitates formation of a series of binuclear Mn complexes in the oxidation states II, III, and IV on the path to MnO2 formation. We now demonstrate that the enzyme is inhibited by first-row transition metals in the order of the Irving-Williams series. Zn(II) strongly (Ki ~ 1.5 μM) inhibits both activation and turnover steps, as well as the rate of Mn(II) binding. The combined Zn(II) and Mn(II) concentration dependence establishes that the inhibition is non-competitive. This result is supported by electron paramagnetic resonance (EPR) spectroscopy, which reveals unaltered Mnx-bound Mn(II) EPR signals, both mono- and binuclear, in the presence of Zn(II). We infer that inhibitory metals bind at a site separate from the substrate sites and block the conformation change required to activate the enzyme, a case of allosteric inhibition. The likely biological role of this inhibitory site is discussed in the context of Bacillus spore physiology. While Cu(II) inhibits Mnx strongly, in accord with the Irving-Williams series, it increases Mnx activation at low concentrations, suggesting that weakly bound Cu, in addition to the four canonical MCO-Cu, may support enzyme activity, perhaps as an electron transfer agent.
Collapse
Affiliation(s)
- Alexandra V Soldatova
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - Wen Fu
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christine A Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Lizhi Tao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - William H Casey
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States; Earth and Planetary Sciences Department, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - R David Britt
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Bradley M Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G Spiro
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States.
| |
Collapse
|
5
|
Zerfaß C, Christie-Oleza JA, Soyer OS. Manganese Oxide Biomineralization Provides Protection against Nitrite Toxicity in a Cell-Density-Dependent Manner. Appl Environ Microbiol 2019; 85:e02129-18. [PMID: 30413475 PMCID: PMC6328764 DOI: 10.1128/aem.02129-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Manganese biomineralization is a widespread process among bacteria and fungi. To date, there is no conclusive experimental evidence for how and if this process impacts microbial fitness in the environment. Here, we show how a model organism for manganese oxidation is growth inhibited by nitrite, and that this inhibition is mitigated in the presence of manganese. We show that such manganese-mediated mitigation of nitrite inhibition is dependent on the culture inoculum size, and that manganese oxide (MnOX) forms granular precipitates in the culture, rather than sheaths around individual cells. We provide evidence that MnOX protection involves both its ability to catalyze nitrite oxidation into (nontoxic) nitrate under physiological conditions and its potential role in influencing processes involving reactive oxygen species (ROS). Taken together, these results demonstrate improved microbial fitness through MnOX deposition in an ecological setting, i.e., mitigation of nitrite toxicity, and point to a key role of MnOX in handling stresses arising from ROS.IMPORTANCE We present here a direct fitness benefit (i.e., growth advantage) for manganese oxide biomineralization activity in Roseobacter sp. strain AzwK-3b, a model organism used to study this process. We find that strain AzwK-3b in a laboratory culture experiment is growth inhibited by nitrite in manganese-free cultures, while the inhibition is considerably relieved by manganese supplementation and manganese oxide (MnOX) formation. We show that biogenic MnOX interacts directly with nitrite and possibly with reactive oxygen species and find that its beneficial effects are established through formation of dispersed MnOX granules in a manner dependent on the population size. These experiments raise the possibility that manganese biomineralization could confer protection against nitrite toxicity to a population of cells. They open up new avenues of interrogating this process in other species and provide possible routes to their biotechnological applications, including in metal recovery, biomaterials production, and synthetic community engineering.
Collapse
Affiliation(s)
- Christian Zerfaß
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, United Kingdom
| |
Collapse
|
6
|
Queiroz PS, Barboza NR, Cordeiro MM, Leão VA, Guerra-Sá R. Rich growth medium promotes an increased on Mn(II) removal and manganese oxide production by Serratia marcescens strains isolates from wastewater. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Production of Manganese Oxide Nanoparticles by Shewanella Species. Appl Environ Microbiol 2016; 82:5402-9. [PMID: 27342559 DOI: 10.1128/aem.00663-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/21/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Several species of the bacterial genus Shewanella are well-known dissimilatory reducers of manganese under anaerobic conditions. In fact, Shewanella oneidensis is one of the most well studied of all metal-reducing bacteria. In the current study, a number of Shewanella strains were tested for manganese-oxidizing capacity under aerobic conditions. All were able to oxidize Mn(II) and to produce solid dark brown manganese oxides. Shewanella loihica strain PV-4 was the strongest oxidizer, producing oxides at a rate of 20.3 mg/liter/day and oxidizing Mn(II) concentrations of up to 9 mM. In contrast, S. oneidensis MR-1 was the weakest oxidizer tested, producing oxides at 4.4 mg/liter/day and oxidizing up to 4 mM Mn(II). Analysis of products from the strongest oxidizers, i.e., S loihica PV-4 and Shewanella putrefaciens CN-32, revealed finely grained, nanosize, poorly crystalline oxide particles with identical Mn oxidation states of 3.86. The biogenic manganese oxide products could be subsequently reduced within 2 days by all of the Shewanella strains when culture conditions were made anoxic and an appropriate nutrient (lactate) was added. While Shewanella species were detected previously as part of manganese-oxidizing consortia in natural environments, the current study has clearly shown manganese-reducing Shewanella species bacteria that are able to oxidize manganese in aerobic cultures. IMPORTANCE Members of the genus Shewanella are well known as dissimilatory manganese-reducing bacteria. This study shows that a number of species from Shewanella are also capable of manganese oxidation under aerobic conditions. Characterization of the products of the two most efficient oxidizers, S. loihica and S. putrefaciens, revealed finely grained, nanosize oxide particles. With a change in culture conditions, the manganese oxide products could be subsequently reduced by the same bacteria. The ability of Shewanella species both to oxidize and to reduce manganese indicates that the genus plays a significant role in the geochemical cycling of manganese. Due to the high affinity of manganese oxides for binding other metals, these bacteria may also contribute to the immobilization and release of other metals in the environment.
Collapse
|
8
|
Palermo C, Dittrich M. Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:179-186. [PMID: 26636960 DOI: 10.1111/1758-2229.12364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/28/2015] [Indexed: 06/05/2023]
Abstract
Manganese (Mn) and iron (Fe)-enriched sediment layers were discovered in Lake Superior within, above and below the oxic-anoxic interface. While the role of bacteria in redox reactions with Mn is known to be significant, little information exists about indigenous microbial communities in many freshwater environments. This study examined the bacterial communities of Mn-enriched layers in Lake Superior to identify the potential Mn(II) oxidizers responsible for the formation of Mn oxides. Anaerobic Mn(II) oxidation occurring in the Mn-enriched layers at the oxic-anoxic interface was investigated using Mn(II)-enriched cultures. High-resolution microscopic and spectroscopic investigations provided evidence of the biogenic formation of Mn oxides on cell surfaces. Spectroscopic mapping confirmed high levels of Mn in structures resembling biogenic Mn oxides. These structures were observed in enrichment cultures and in Mn-enriched layer sediment samples, indicating the significance of biogenic Mn oxidation occurring in situ. 16S ribosomal DNA pyrosequencing was used to identify the bacteria potentially responsible for Mnoxide formation in the enrichment cultures and Mn-enriched layers, revealing that the Mn-enriched layer contains classes with known Mn(II)-oxidizing members. Pyrosequencing of bacterial cultures suggested that these bacteria may be Bacillus strains, and that anaerobic microbial-mediated Mn(II) oxidation contributes to the formation of the layers.
Collapse
Affiliation(s)
- Christine Palermo
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Maria Dittrich
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| |
Collapse
|
9
|
Su J, Bao P, Bai T, Deng L, Wu H, Liu F, He J. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 2013; 8:e60573. [PMID: 23577125 PMCID: PMC3618234 DOI: 10.1371/journal.pone.0060573] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal.
Collapse
Affiliation(s)
- Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Peng Bao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Tenglong Bai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Lin Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Hui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
10
|
Müller WEG, Wang X, Jochum KP, Schröder HC. Self-healing, an intrinsic property of biomineralization processes. IUBMB Life 2013; 65:382-96. [PMID: 23509013 DOI: 10.1002/iub.1155] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/31/2013] [Indexed: 12/31/2022]
Abstract
The sponge siliceous spicules are formed enzymatically via silicatein, in contrast to other siliceous biominerals. Originally, silicatein had been described as a major structural protein of the spicules that has the property to allow a specific deposition of silica onto their surface. More recently, it had been unequivocally demonstrated that silicatein displays a genuine enzyme activity, initiating and maintaining silica biopolycondensation at low precursor concentrations (<2 mM). Even more, as silicatein becomes embedded into the biosilica polymer, formed by the enzyme, it retains its functionality to enable a controlled biosilica deposition. The protection of silicatein through the biosilica mantel is so strong that it conserves the functionality of the enzyme for thousands of years. The implication of this finding, the preservation of the enzyme function over such long time periods, is that the intrinsic property of silicatein to display its enzymatic activity remains in the biosilica deposits. This self-healing property of sponge biosilica can be utilized to engineer novel hybrid materials, with silicatein as a functional template, which are more resistant toward physical stress and fracture. Those hybrid materials can even be used for the fabrication of silica dielectrics coupled to optical nanowires.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | | | | | | |
Collapse
|
11
|
Wang X, Gan L, Wiens M, Schlossmacher U, Schröder HC, Müller WEG. Distribution of microfossils within polymetallic nodules: biogenic clusters within manganese layers. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:96-105. [PMID: 21626367 DOI: 10.1007/s10126-011-9393-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/15/2011] [Indexed: 05/30/2023]
Abstract
Biomineralization is the process by which living organisms or organic matrices produced by them initiate and structure deposition of inorganic polymers/minerals. Deep-sea polymetallic nodules and crusts have recently been recognized as biominerals that are formed around bio-seeds; these deposits are of economic value. A detailed understanding of their formation will contribute to their sustainable exploitation in the future. Polymetallic nodules grow concentrically around discrete nuclei that have recently been described as bio-seeds formed from microorganisms, diatoms, or coccoliths. In the present study, polymetallic nodules from the Clarion-Clipperton Zone have been analyzed. It is described that the approximately 5-cm large polymetallic nodules are composed of micronodules (size of 100-450 μm) that aggregated to nests (2-3 mm). High-resolution scanning electron microscopy (HR-SEM) and high-resolution energy dispersive X-ray (HR-EDX) spectroscopic analyses revealed that the micronodules are composed of discrete layers of Mn and Fe. Imprints of microorganisms/microbe-like assemblies are found in the Mn-rich regions of the micronodules. HR-SEM/EDX analyses confirmed that these microorganisms are surrounded by a Mn-rich environment. These findings strongly suggest that those organisms acted as bio-seeds that allowed the deposition of Mn(IV) minerals which in turn helped Fe minerals to associate. Hence, these data support the concept that the growth of the polymetallic nodules starts as a biomineral and is completed by genuine mineralic depositions. It is expected that these data will contribute to the development of strategies for a sustainable exploitation of the polymetallic nodules.
Collapse
Affiliation(s)
- Xiaohong Wang
- National Research Center for Geoanalysis, 26 Baiwanzhuang Dajie, Beijing 100037, China.
| | | | | | | | | | | |
Collapse
|
12
|
Müller WEG, Binder M, von Lintig J, Guo YW, Wang X, Kaandorp JA, Wiens M, Schröder HC. Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphogenetic protein-1. Biochim Biophys Acta Gen Subj 2011; 1810:1178-94. [PMID: 21952113 DOI: 10.1016/j.bbagen.2011.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 09/05/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND The formation of the spicules in siliceous sponges involves the formation of cylinder-like structures in the extraspicular space, composed of the enzyme silicatein and the calcium-dependent lectin. SCOPE OF REVIEW Molecular cloning of the cDNAs (carotene dioxygenase, retinal dehydrogenase, and BMB-1 [bone morphogenic protein-1]) from the demosponge Suberites domuncula was performed. These tools were used to understand the retinoid metabolism in the animal by qRT-PCR, immunoblotting and TEM. MAJOR CONCLUSIONS We demonstrate that silintaphin-2, a silicatein-interacting protein, is processed from a longer-sized 15-kDa precursor to a truncated, shorter-sized 13kDa calcium-binding protein via proteolytic cleavage at the dipeptide Ala↓Asp, mediated by BMP-1. The expression of this protease as well as the expression of two key enzymes of the carotinoid metabolism, the β,β-carotene-15,15'-dioxygenase and the retinal dehydrogenase/reductase, were found to be strongly up-regulated by retinoic acid. Hence retinoic acid turned out to be a key factor in skeletogenesis in the most ancient still existing metazoans, the sponges. GENERAL SIGNIFICANCE It is shown that retinoic acid regulates the formation of the organic cylinder that surrounds the axis of the spicules and enables, as a scaffold, the radial apposition of new silica layers and hence the growth of the spicules.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Grant Research Group, Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Molecular biomineralization: toward an understanding of the biogenic origin of polymetallic nodules, seamount crusts, and hydrothermal vents. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 52:77-110. [PMID: 21877264 DOI: 10.1007/978-3-642-21230-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Polymetallic nodules and crusts, hydrothermal vents from the Deep Sea are economically interesting, since they contain alloying components, e.g., manganese or cobalt, that are used in the production of special steels; in addition, they contain rare metals applied for plasma screens, for magnets in hard disks, or in hybrid car motors. While hydrothermal vents can regenerate in weeks, polymetallic nodules and seamount crusts grow slowly. Even though the geochemical basis for the growth of the nodules and crusts has been well studied, the contribution of microorganisms to the formation of these minerals remained obscure. Recent HR-SEM (high-resolution scanning electron microscopy) analyses of nodules and crusts support their biogenic origin. Within the nodules, bacteria with surface S-layers are arranged on biofilm-like structures, around which Mn deposition starts. In crusts, coccoliths represent the dominant biologically formed structures that act as bio-seeds for an initial Mn deposition. In contrast, hydrothermal vents have apparently an abiogenic origin; however, their minerals are biogenically transformed by bacteria. In turn, strategies can now be developed for biotechnological enrichment as well as selective dissolution of metals from such concretions. We are convinced that the recent discoveries will considerably contribute to our understanding of the participation of organic matrices in the enrichment of those metals and will provide the basis for feasibility studies for biotechnological applications.
Collapse
|
14
|
Müller WEG, Wang X, Wiens M, Schlossmacher U, Jochum KP, Schröder HC. Hardening of bio-silica in sponge spicules involves an aging process after its enzymatic polycondensation: evidence for an aquaporin-mediated water absorption. Biochim Biophys Acta Gen Subj 2011; 1810:713-26. [PMID: 21565255 DOI: 10.1016/j.bbagen.2011.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Spicules, the siliceous skeletal elements of the siliceous sponges, are synthesized enzymatically via silicatein. The product formed, bio-silica, constitutes their inorganic matrix. It remained unexplored which reactions are involved in molding of the amorphous bio-silica and formation of a solid and rigid biomaterial. METHODS Cell and molecular biological techniques have been applied to analyze processes resulting in the hardening of the enzymatically synthesized bio-silica. The demosponge Suberites domuncula has been used for the studies. RESULTS Cell aggregates (primmorphs) from the sponge S. domuncula, grown in the presence of Mn-sulfate, form spicules that comprise, instead of a smooth, a rough and porous surface which is decorated with irregular bio-silica deposits. During this process, the expression of the aquaporin-8 gene becomes down-regulated. Further in vitro studies showed that aquaporin is required for dehydration, and hardening of bio-silica following its enzymatic formation. The data show that in cell aggregates grown in the presence of Mn-sulfate, aquaporin-8 is down-regulated. We conclude that in cell aggregates grown in the presence of Mn-sulfate, the removal of reaction water, produced during the bio-silica polycondensation reaction, is inhibited. GENERAL SIGNIFICANCE This study highlights that besides the silicatein-driven polycondensation reaction, the spicule formation also requires a phase of syneresis that results in a hardening of the material.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, D-55128 Mainz, Germany.
| | | | | | | | | | | |
Collapse
|