1
|
Farrell G, Chapple C, Kennedy E, Reily-Bell M, Sampath K, Gisselman AS, Cook C, Katare R, Tumilty S. Autonomic nervous system and endocrine system response to upper or lower cervical spine mobilization in males with persistent post-concussion symptoms: a proof-of-concept trial. J Man Manip Ther 2024:1-17. [PMID: 38904298 DOI: 10.1080/10669817.2024.2363018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The peripheral stress response, consisting of the autonomic nervous system (ANS) and hypothalamic pituitary adrenal-axis (HPA-axis), functions to maintain homeostasis in response to stressors. Cervical spine manual therapy has been shown to differentially modulate the stress response in healthy populations. No study has investigated whether cervical spine mobilizations can differentially modulate the stress response in individuals with persistent post-concussion symptoms (PPCS), a population characterized by a dysfunctional stress response. METHODS A randomized, controlled, parallel design trial was performed to investigate whether upper or lower cervical spine mobilization can differentially modulate components of the stress response in individuals with PPCS. The outcomes were salivary cortisol (sCOR) concentration (primary) and the HRV metric, rMSSD, measured with a smartphone application (secondary). Nineteen males diagnosed with PPCS, aged 19-35, were included. Participants were randomly assigned into either intervention group, upper (n = 10) or lower (n = 9) cervical spine mobilization. Each outcome was collected at different time points, pre- and post-intervention. Statistical analyses were performed using the Friedman's Two-Way ANOVA, Mann-Whitney U test, and Wilcoxon Signed Rank Test. RESULTS There was a statistically significant within-group reduction in sCOR concentration 30 minutes following lower cervical spine mobilizations and statistically significant within-group increase in rMSSD 30 minutes following upper cervical spine mobilizations. CONCLUSION The results of this trial provide preliminary evidence for cervical spine mobilizations to differentially modulate components of the stress response at specific time points. Understanding the mechanisms of the effect of cervical spine mobilizations on the stress response provides a novel rationale for selecting cervical spine mobilizations to rehabilitate individuals with PPCS.
Collapse
Affiliation(s)
- Gerard Farrell
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Cathy Chapple
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Ewan Kennedy
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| | - Matthew Reily-Bell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Chad Cook
- Doctor of Physical Therapy Program, Duke University, Durham, NC, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, Dunedin, New Zealand
| |
Collapse
|
2
|
Cook CE, Keter D, Cade WT, Winkelstein BA, Reed WR. Manual therapy and exercise effects on inflammatory cytokines: a narrative overview. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1305925. [PMID: 38745971 PMCID: PMC11091266 DOI: 10.3389/fresc.2024.1305925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Background Matching disease and treatment mechanisms is a goal of the Precision Medicine Initiative. Pro- and anti-inflammatory cytokines (e.g., Tumor Necrosis Factor-alpha, Transforming Growth Factor-beta, and Interleukin-2, 10, and 12) have gained a significant amount of interest in their potential role in persistent pain for musculoskeletal (MSK) conditions. Manual therapy (MT) and exercise are two guideline-recommended approaches for treating MSK conditions. The objective of this narrative overview was to investigate of the effects of MT and exercise on pro- and anti-inflammatory cytokines and determine the factors that lead to variability in results. Methods Two reviewers evaluated the direction and variabilities of MT and exercise literature. A red, yellow, and green light scoring system was used to define consistencies. Results Consistencies in responses were seen with acute and chronic exercise and both pro- and anti-inflammatory cytokines. Chronic exercise is associated with a consistent shift towards a more anti-inflammatory cytokine profile (Transforming Growth Factor-beta, and Interleukin-2 and 13, whereas acute bouts of intense exercise can transiently increase pro-inflammatory cytokine levels. The influence of MT on cytokines was less commonly studied and yielded more variable results. Conclusion Variability in findings is likely related to the subject and their baseline condition or disease, when measurement occurs, and the exercise intensity, duration, and an individual's overall health and fitness.
Collapse
Affiliation(s)
- Chad E. Cook
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
- Department of Population Health Sciences, Duke University, Durham, NC, United States
- Duke Clinical Research Institute, Duke University, Durham, NC, United States
| | - Damian Keter
- Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - William Todd Cade
- Doctor of Physical Therapy Division, Department of Orthopaedics, Duke University, Durham, NC, United States
| | - Beth A. Winkelstein
- Departments of Bioengineering & Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - William R. Reed
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Haas A, Chung J, Kent C, Mills B, McCoy M. Vertebral Subluxation and Systems Biology: An Integrative Review Exploring the Salutogenic Influence of Chiropractic Care on the Neuroendocrine-Immune System. Cureus 2024; 16:e56223. [PMID: 38618450 PMCID: PMC11016242 DOI: 10.7759/cureus.56223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/16/2024] Open
Abstract
In this paper we synthesize an expansive body of literature examining the multifaceted influence of chiropractic care on processes within and modulators of the neuroendocrine-immune (NEI) system, for the purpose of generating an inductive hypothesis regarding the potential impacts of chiropractic care on integrated physiology. Taking a broad, interdisciplinary, and integrative view of two decades of research-documented outcomes of chiropractic care, inclusive of reports ranging from systematic and meta-analysis and randomized and observational trials to case and cohort studies, this review encapsulates a rigorous analysis of research and suggests the appropriateness of a more integrative perspective on the impact of chiropractic care on systemic physiology. A novel perspective on the salutogenic, health-promoting effects of chiropractic adjustment is presented, focused on the improvement of physical indicators of well-being and adaptability such as blood pressure, heart rate variability, and sleep, potential benefits that may be facilitated through multiple neurologically mediated pathways. Our findings support the biological plausibility of complex benefits from chiropractic intervention that is not limited to simple neuromusculoskeletal outcomes and open new avenues for future research, specifically the exploration and mapping of the precise neural pathways and networks influenced by chiropractic adjustment.
Collapse
Affiliation(s)
- Amy Haas
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Jonathan Chung
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Christopher Kent
- Research, Sherman College, Spartanburg, USA
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Brooke Mills
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| | - Matthew McCoy
- Research, Foundation for Vertebral Subluxation, Kennesaw, USA
| |
Collapse
|
4
|
Keter DL, Bent JA, Bialosky JE, Courtney CA, Esteves JE, Funabashi M, Howarth SJ, Injeyan HS, Mazzieri AM, Glissmann Nim C, Cook CE. An international consensus on gaps in mechanisms of forced-based manipulation research: findings from a nominal group technique. J Man Manip Ther 2024; 32:111-117. [PMID: 37840477 PMCID: PMC10795550 DOI: 10.1080/10669817.2023.2262336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Force-Based Manipulation (FBM) including light touch, pressure, massage, mobilization, thrust manipulation, and needling techniques are utilized across several disciplines to provide clinical analgesia. These commonly used techniques demonstrate the ability to improve pain-related outcomes; however, mechanisms behind why analgesia occurs with these hands-on interventions has been understudied. Neurological, neuroimmune, biomechanical, neurovascular, neurotransmitter, and contextual factor interactions have been proposed to influence response; however, the specific relationships to clinical pain outcomes has not been well established. The purpose of this study was to identify gaps present within mechanism-based research as it relates to FBM. An international multidisciplinary nominal group technique (NGT) was performed and identified 37 proposed gaps across eight domains. Twenty-three of these gaps met consensus across domains supporting the complex multisystem mechanistic response to FBM. The strength of support for gaps within the biomechanical domain had less overall support than the others. Gaps assessing the influence of contextual factors had strong support as did those associating mechanisms with clinical outcomes (translational studies). The importance of literature investigating how FBM differs with individuals of different pain phenotypes (pain mechanism phenotypes and clinical phenotypes) was also presented aligning with other analgesic techniques trending toward patient-specific pain management (precision medicine) through the use of pain phenotyping.
Collapse
Affiliation(s)
- Damian L. Keter
- Physical Medine and Rehabilitation Service, Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Graduate Studies in Health and Rehabilitation Sciences, Youngstown State University, Youngstown, OH, USA
| | - Jennifer A. Bent
- Department of Physical and Occupational Therapy, Duke University Hospital System, Durham, NC, USA
| | - Joel E. Bialosky
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
- Brooks-PHHP Research Collaboration, Gainesville, FL, USA
| | - Carol A. Courtney
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Evanston, IL, USA
| | - Jorge E. Esteves
- Clinical-Based Human Research Department, Foundation COME Collaboration, Pescara, Italy
- Malta ICOM Educational, Santa Venera, Malta
- Research Department, University College of Osteopathy, London, UK
| | - Martha Funabashi
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Canada
- Department of Chiropractic, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
| | - Samuel J. Howarth
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Canada
| | - H. Stephen Injeyan
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, Canada
| | - Anna Maria Mazzieri
- Institute of Sports and Remedial Massage, London, UK
- The School of Soft Tissue Therapy, Exmouth, Devon, UK
| | - Casper Glissmann Nim
- Spine Center of Southern Denmark, University Hospital of Southern Denmark, Middelfart, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Sports Science and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Chad E. Cook
- Department of Orthopaedics, Duke University, Durham, NC, USA
- Department of Population Health Sciences, Duke University, Durham, NC, USA
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Farrell G, Reily-Bell M, Chapple C, Kennedy E, Sampath K, Gisselman AS, Cook C, Katare R, Tumilty S. Autonomic nervous system and endocrine system response to upper and lower cervical spine mobilization in healthy male adults: a randomized crossover trial. J Man Manip Ther 2023; 31:421-434. [PMID: 36794952 PMCID: PMC10642313 DOI: 10.1080/10669817.2023.2177071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Cervical spine mobilizations may differentially modulate both components of the stress response, consisting of the autonomic nervous system and hypothalamic pituitary adrenal-axis, depending on whether the target location is the upper or lower cervical spine. To date, no study has investigated this. METHODS A randomized, crossover trial investigated the effects of upper versus lower cervical mobilization on both components of the stress response simultaneously. The primary outcome was salivary cortisol (sCOR) concentration. The secondary outcome was heart rate variability measured with a smartphone application. Twenty healthy males, aged 21-35, were included. Participants were randomly assigned to block-AB (upper then lower cervical mobilization, n = 10) or block-BA (lower than upper cervical mobilization, n = 10), separated by a one-week washout period. All interventions were performed in the same room (University clinic) under controlled conditions. Statistical analyses were performed with a Friedman's Two-Way ANOVA and Wilcoxon Signed Rank Test. RESULTS Within groups, sCOR concentration reduced thirty-minutes following lower cervical mobilization (p = 0.049). Between groups, sCOR concentration was different at thirty-minutes following the intervention (p = 0.018). CONCLUSION There was a statistically significant reduction in sCOR concentration following lower cervical spine mobilization, and between-group difference, 30 min following the intervention. This indicates that mobilizations applied to separate target locations within the cervical spine can differentially modulate the stress response.
Collapse
Affiliation(s)
- Gerard Farrell
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Matthew Reily-Bell
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Cathy Chapple
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Ewan Kennedy
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| | - Kesava Sampath
- Centre for Health and Social Practice, Waikato Institute of Technology-Rotokauri Campus, Hamilton, Waikato, New Zealand
| | | | - Chad Cook
- Doctor of Physical Therapy Program, Duke University, Durham, North Carolina, USA
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Steve Tumilty
- Centre for Health, Activity, and Rehabilitation Research, School of Physiotherapy, North Dunedin, New Zealand
| |
Collapse
|
6
|
Kushnir A, Fedchyshyn B, Kachmar O. Review of effects of spinal manipulative therapy on neurological symptoms. J Bodyw Mov Ther 2023; 34:66-73. [PMID: 37301560 DOI: 10.1016/j.jbmt.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/21/2022] [Accepted: 04/11/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Neurological disorders are the leading cause of disability in the world. Neurological symptoms significantly affect the well-being of the individual. Spinal manipulative therapy (SMT) is a complementary method often used for people with neurological disorders. OBJECTIVE This study aimed to review the existing literature on the effects of SMT on common clinical symptoms of neurologic disorders and the quality of life. METHODS Narrative review was conducted through the literature published between January 2000 and April 2020 in English. The search was performed across four databases: PubMed, Google Scholar, PEDro, and Index to Chiropractic Literature. We used combinations of keywords related to SMT, neurological symptoms, and quality of life. Studies on both symptomatic and asymptomatic populations of different ages were included. RESULTS 35 articles were selected. Evidence for the administration of SMT for neurological symptoms is insufficient and sparse. Most studies focused on the effects of SMT on pain, revealing its benefits for spinal pain. SMT may increase strength in asymptomatic people and populations with spinal pain and stroke. SMT was reported to affect spasticity, muscle stiffness, motor function, autonomic function, and balance problems, but these studies were limited in number to make conclusions. An important finding was the positive influence of SMT on the quality of life in people with spinal pain, balance impairments, and cerebral palsy. CONCLUSION SMT may be beneficial for the symptomatic treatment of neurological disorders. SMT can positively affect the quality of life. However, limited evidence is available, and further high-quality research is required.
Collapse
Affiliation(s)
- A Kushnir
- Elita Rehabilitation Center, Kozyavkin Medical Group, Ukraine
| | - B Fedchyshyn
- Elita Rehabilitation Center, Kozyavkin Medical Group, Ukraine
| | - O Kachmar
- Elita Rehabilitation Center, Kozyavkin Medical Group, Ukraine.
| |
Collapse
|
7
|
Schalow PR, Kimball KA, Schurger FT, Sooley GR, Bales SP, Rochester RP, Brooks RT, Hunt JM. Secretory Immunoglobulin A and Upper Cervical Chiropractic: A Preliminary Prospective, Multicenter, Observational Study. J Chiropr Med 2021; 20:121-127. [PMID: 35463842 PMCID: PMC9023133 DOI: 10.1016/j.jcm.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Kelly A. Kimball
- International Chiropractors Association, Falls Church, Virginia
- Corresponding author: Kelly A. Kimball
| | | | | | | | | | | | | |
Collapse
|
8
|
The contemporary model of vertebral column joint dysfunction and impact of high-velocity, low-amplitude controlled vertebral thrusts on neuromuscular function. Eur J Appl Physiol 2021; 121:2675-2720. [PMID: 34164712 PMCID: PMC8416873 DOI: 10.1007/s00421-021-04727-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 02/08/2023]
Abstract
Purpose There is growing evidence that vertebral column function and dysfunction play a vital role in neuromuscular control. This invited review summarises the evidence about how vertebral column dysfunction, known as a central segmental motor control (CSMC) problem, alters neuromuscular function and how spinal adjustments (high-velocity, low-amplitude or HVLA thrusts directed at a CSMC problem) and spinal manipulation (HVLA thrusts directed at segments of the vertebral column that may not have clinical indicators of a CSMC problem) alters neuromuscular function.
Methods The current review elucidates the peripheral mechanisms by which CSMC problems, the spinal adjustment or spinal manipulation alter the afferent input from the paravertebral tissues. It summarises the contemporary model that provides a biologically plausible explanation for CSMC problems, the manipulable spinal lesion. This review also summarises the contemporary, biologically plausible understanding about how spinal adjustments enable more efficient production of muscular force. The evidence showing how spinal dysfunction, spinal manipulation and spinal adjustments alter central multimodal integration and motor control centres will be covered in a second invited review. Results Many studies have shown spinal adjustments increase voluntary force and prevent fatigue, which mainly occurs due to altered supraspinal excitability and multimodal integration. The literature suggests physical injury, pain, inflammation, and acute or chronic physiological or psychological stress can alter the vertebral column’s central neural motor control, leading to a CSMC problem. The many gaps in the literature have been identified, along with suggestions for future studies. Conclusion Spinal adjustments of CSMC problems impact motor control in a variety of ways. These include increasing muscle force and preventing fatigue. These changes in neuromuscular function most likely occur due to changes in supraspinal excitability. The current contemporary model of the CSMC problem, and our understanding of the mechanisms of spinal adjustments, provide a biologically plausible explanation for how the vertebral column’s central neural motor control can dysfunction, can lead to a self-perpetuating central segmental motor control problem, and how HVLA spinal adjustments can improve neuromuscular function.
Collapse
|
9
|
Lutke Schipholt IJ, Coppieters MW, Meijer OG, Tompra N, de Vries RBM, Scholten-Peeters GGM. Effects of joint and nerve mobilisation on neuroimmune responses in animals and humans with neuromusculoskeletal conditions: a systematic review and meta-analysis. Pain Rep 2021; 6:e927. [PMID: 34104836 PMCID: PMC8177878 DOI: 10.1097/pr9.0000000000000927] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. There is evidence that joint and nerve mobilisations compared with sham or no intervention positively influence various neuroimmune responses in animal and human neuromusculoskeletal conditions. Several animal and human studies revealed that joint and nerve mobilisations positively influence neuroimmune responses in neuromusculoskeletal conditions. However, no systematic review and meta-analysis has been performed. Therefore, this study aimed to synthesize the effects of joint and nerve mobilisation compared with sham or no intervention on neuroimmune responses in animals and humans with neuromusculoskeletal conditions. Four electronic databases were searched for controlled trials. Two reviewers independently selected studies, extracted data, assessed the risk of bias, and graded the certainty of the evidence. Where possible, meta-analyses using random effects models were used to pool the results. Preliminary evidence from 13 animal studies report neuroimmune responses after joint and nerve mobilisations. In neuropathic pain models, meta-analysis revealed decreased spinal cord levels of glial fibrillary acidic protein, dorsal root ganglion levels of interleukin-1β, number of dorsal root ganglion nonneuronal cells, and increased spinal cord interleukin-10 levels. The 5 included human studies showed mixed effects of spinal manipulation on salivary/serum cortisol levels in people with spinal pain, and no significant effects on serum β-endorphin or interleukin-1β levels in people with spinal pain. There is evidence that joint and nerve mobilisations positively influence various neuroimmune responses. However, as most findings are based on single studies, the certainty of the evidence is low to very low. Further studies are needed.
Collapse
Affiliation(s)
- Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam UMC, Location VU Medical Centre, Amsterdam, the Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Menzies Health Institute Queensland, Griffith University, Brisbane & Gold Coast, Australia
| | - Onno G Meijer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Orthopaedic Biomechanics Laboratory, Fujian Medical University, Quanzhou, Fujian, PR China
| | - Nefeli Tompra
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Rob B M de Vries
- SYRCLE, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Haavik H, Niazi IK, Kumari N, Amjad I, Duehr J, Holt K. The Potential Mechanisms of High-Velocity, Low-Amplitude, Controlled Vertebral Thrusts on Neuroimmune Function: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:536. [PMID: 34071880 PMCID: PMC8226758 DOI: 10.3390/medicina57060536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
The current COVID-19 pandemic has necessitated the need to find healthcare solutions that boost or support immunity. There is some evidence that high-velocity, low-amplitude (HVLA) controlled vertebral thrusts have the potential to modulate immune mediators. However, the mechanisms of the link between HVLA controlled vertebral thrusts and neuroimmune function and the associated potential clinical implications are less clear. This review aims to elucidate the underlying mechanisms that can explain the HVLA controlled vertebral thrust--neuroimmune link and discuss what this link implies for clinical practice and future research needs. A search for relevant articles published up until April 2021 was undertaken. Twenty-three published papers were found that explored the impact of HVLA controlled vertebral thrusts on neuroimmune markers, of which eighteen found a significant effect. These basic science studies show that HVLA controlled vertebral thrust influence the levels of immune mediators in the body, including neuropeptides, inflammatory markers, and endocrine markers. This narravtive review discusses the most likely mechanisms for how HVLA controlled vertebral thrusts could impact these immune markers. The mechanisms are most likely due to the known changes in proprioceptive processing that occur within the central nervous system (CNS), in particular within the prefrontal cortex, following HVLA spinal thrusts. The prefrontal cortex is involved in the regulation of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis and the immune system. Bi-directional neuro-immune interactions are affected by emotional or pain-related stress. Stress-induced sympathetic nervous system activity also alters vertebral motor control. Therefore, there are biologically plausible direct and indirect mechanisms that link HVLA controlled vertebral thrusts to the immune system, suggesting HVLA controlled vertebral thrusts have the potential to modulate immune function. However, it is not yet known whether HVLA controlled vertebral thrusts have a clinically relevant impact on immunity. Further research is needed to explore the clinical impact of HVLA controlled vertebral thrusts on immune function.
Collapse
Affiliation(s)
- Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Health & Environmental Sciences, Health & Rehabilitation Research Institute, AUT University, Auckland 0627, New Zealand
| | - Imran Amjad
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad 46000, Pakistan
| | - Jenna Duehr
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1060, New Zealand; (H.H.); (N.K.); (I.A.); (J.D.)
| |
Collapse
|