1
|
Nasme F, Behera J, Tyagi P, Debnath N, Falcone JC, Tyagi N. The potential link between the development of Alzheimer's disease and osteoporosis. Biogerontology 2025; 26:43. [PMID: 39832071 DOI: 10.1007/s10522-024-10181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Alzheimer's disease (AD) and osteoporosis (OP) pose distinct but interconnected health challenges, both significantly impacting the aging population. AD, a neurodegenerative disorder characterized by memory impairment and cognitive decline, is primarily associated with the accumulation of abnormally folded amyloid beta (Aβ) peptides and neurofibrillary tangles in the brain. OP, a skeletal disorder marked by low bone mineral density, involves dysregulation of bone remodeling and is associated with an increased risk of fractures. Recent studies have revealed an intriguing link between AD and OP, highlighting shared pathological features indicative of common regulatory pathophysiological pathways. In this article, we elucidate the signaling mechanisms that regulate the pathology of AD and OP and offer insights into the intricate network of factors contributing to these conditions. We also examine the role of bone-derived factors in the progression of AD, underscoring the plausibility of bidirectional communication between the brain and the skeletal system. The presence of amyloid plaques in the brain of individuals with AD is akin to the accumulation of brain Aβ in vascular dementia, pointing towards the need for further investigation of shared molecular mechanisms. Moreover, we discuss the role of bone-derived microRNAs that may regulate the pathological progression of AD, providing a novel perspective on the role of skeletal factors in neurodegenerative diseases. The insights presented here should help researchers engaged in exploring innovative therapeutic approaches targeting both neurodegenerative and skeletal disorders in aging populations.
Collapse
Affiliation(s)
- Fariha Nasme
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jyotirmaya Behera
- Division of Immunology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Prisha Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Nabendu Debnath
- Centre for Molecular Biology, Central University of Jammu, Rahya-Suchani (Bagla) Samba, Jammu, Jammu & Kashmir, 181143, India
| | - Jeff C Falcone
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
2
|
Rajalekshmi R, Agrawal DK. Therapeutic Efficacy of Medicinal Plants with Allopathic Medicine in Musculoskeletal Diseases. INTERNATIONAL JOURNAL OF PLANT, ANIMAL AND ENVIRONMENTAL SCIENCES 2024; 14:104-129. [PMID: 39866300 PMCID: PMC11765655 DOI: 10.26502/ijpaes.4490170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Musculoskeletal diseases encompass a diverse array of disorders affecting the muscles, bones, joints, and connective tissues, leading to significant impairments in mobility, function, and quality of life. Affecting over 1.3 billion individuals globally, musculoskeletal diseases represent a major source of disability and economic burden. Conventional treatment modalities, including pharmacological interventions and surgical procedures, are frequently limited by adverse side effects, prolonged recovery periods, and patient dissatisfaction, particularly when focused solely on symptom management. In response, complementary and alternative medicine, particularly the use of medicinal plants, has garnered increasing interest to enhance the management of musculoskeletal diseases. Medicinal plants possess a wide spectrum of pharmacologically active compounds with anti-inflammatory, analgesic, and antioxidant properties, making them promising adjuncts to conventional therapies. This review critically evaluates the potential synergy between medicinal plants and allopathic medicine for the management of musculoskeletal diseases, with an emphasis on integrated therapy that combines both modalities. Specifically, a critical discussion is presented on how medicinal plants with scientifically supported pharmacological properties can augment the therapeutic efficacy of conventional medications, reduce their doses, and mitigate adverse effects. Furthermore, the challenges associated with incorporating herbal medicine into established healthcare systems are discussed, including the need for rigorous clinical validation, standardization, and regulatory frameworks. Overall, the article underscores the potential of integrated therapeutic approaches to improve clinical outcomes, enhance patient well-being, and establish a more sustainable model for the treatment of musculoskeletal diseases.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | - Devendra K Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| |
Collapse
|
3
|
Chang W, Tian B, Qin Q, Li D, Zhang Y, Zhou C, Wu B, Zhang M, Shan H, Ni Y, Dong Q, Wang C, Zhou XZ, Bai J. Receptor Activator of Nuclear Factor Kappa-B-Expressing Mesenchymal Stem Cells-Derived Extracellular Vesicles for Osteoporosis Therapy. ACS NANO 2024. [PMID: 39692894 DOI: 10.1021/acsnano.4c12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The dynamic balance between bone resorption and formation is critical for maintaining healthy bone homeostasis. However, the receptor activator of the nuclear factor B ligand (RANKL) primarily stimulates mature osteoclasts to resorb bone, and its upregulation leads to osteoporosis in patients. Here, we designed RANK-expressing extracellular vesicles (EVs) derived from mesenchymal stem cells to maintain bone homeostasis in mice. This engineered EV (EV@R) effectively neutralizes excess RANKL in bone tissue due to the RANK-RANKL interaction, thereby attenuating osteoclast differentiation. Additionally, we found that miRNA-21a-5p in EV@R contributes to restoring bone metabolic homeostasis. We demonstrate the protective and therapeutic efficacy of EV@R against osteoporosis in the ovariectomy-induced osteoporosis mouse model with a lasting effect and minimal side effects. Our study provides an alternative way to use engineered EVs for bone homeostasis treatment.
Collapse
Affiliation(s)
- Wenju Chang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical University), Bengbu, Anhui 233004, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Qin Qin
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Dongxiao Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chenmeng Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bingbing Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingchao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Huajian Shan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Yichao Ni
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Qirong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiao-Zhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
4
|
Ding X, Yang J, Wei Y, Wang M, Peng Z, He R, Li X, Zhao D, Leng X, Dong H. The Nexus Between Traditional Chinese Medicine and Immunoporosis: Implications in the Treatment and Management of Osteoporosis. Phytother Res 2024. [DOI: 10.1002/ptr.8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2024] [Indexed: 01/06/2025]
Abstract
ABSTRACTOsteoporosis (OP) is a globally prevalent bone disease characterized by reduced bone mass and heightened fracture risk, posing a significant health and economic challenge to aging societies worldwide. Osteoimmunology—an emerging field of study—investigates the intricate relationship between the skeletal and the immune systems, providing insights into the immune system's impact on bone health and disease progression. Recent research has demonstrated the essential roles played by various immune cells (T cells, B cells, macrophages, dendritic cells, mast cells, granulocytes, and innate lymphoid cells) in regulating bone metabolism, homeostasis, formation, and remodeling through interactions with osteoclasts (OC) and osteoblasts (OB). These findings underscore that osteoimmunology provides an essential theoretical framework for understanding the pathogenesis of various skeletal disorders, including OP. Traditional Chinese medicine (TCM) and its active ingredients have significant clinical value in OP treatment. Unfortunately, despite their striking multieffect pathways in the pharmacological field, current research has not yet summarized them in a comprehensive and detailed manner with respect to their interventional roles in immune bone diseases, especially OP. Consequently, this review addresses recent studies on the mechanisms by which immune cells and their communication molecules contribute to OP development. Additionally, it explores the potential therapeutic benefits of TCM and its active components in treating OP from the perspective of osteoimmunology. The objective is to provide a comprehensive framework that enhances the understanding of the therapeutic mechanisms of TCM in treating immune‐related bone diseases and to facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaolei Ding
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Jie Yang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Yuchi Wei
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Mingyue Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Zeyu Peng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Rong He
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyan Li
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Daqing Zhao
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Xiangyang Leng
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, College of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| | - Haisi Dong
- Northeast Asia Institute of Traditional Chinese Medicine Changchun University of Chinese Medicine Changchun China
| |
Collapse
|
5
|
Łuczak JW, Palusińska M, Matak D, Pietrzak D, Nakielski P, Lewicki S, Grodzik M, Szymański Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. Int J Mol Sci 2024; 25:12766. [PMID: 39684476 DOI: 10.3390/ijms252312766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors. These include the potential for donor site morbidity, the restricted availability of suitable donors, and the possibility of immune rejection. This has prompted extensive research in the field of bone tissue engineering to develop advanced synthetic and bio-derived materials that can support bone regeneration. The optimal bone substitute must achieve a balance between biocompatibility, bioresorbability, osteoconductivity, and osteoinductivity while simultaneously providing mechanical support during the healing process. Recent innovations include the utilization of three-dimensional printing, nanotechnology, and bioactive coatings to create scaffolds that mimic the structure of natural bone and enhance cell proliferation and differentiation. Notwithstanding the advancements above, challenges remain in optimizing the controlled release of growth factors and adapting materials to various clinical contexts. This review provides a comprehensive overview of the current advancements in bone substitute materials, focusing on their biological mechanisms, design considerations, and clinical applications. It explores the role of emerging technologies, such as additive manufacturing and stem cell-based therapies, in advancing the field. Future research highlights the need for multidisciplinary collaboration and rigorous testing to develop advanced bone graft substitutes, improving outcomes and quality of life for patients with complex defects.
Collapse
Affiliation(s)
- Julia Weronika Łuczak
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Damian Matak
- European Biomedical Institute, 05-410 Jozefów, Poland
| | - Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- European Biomedical Institute, 05-410 Jozefów, Poland
| |
Collapse
|
6
|
Szydłowski K, Puchalski M, Ołdziej S, Kasprzyk-Tryk A, Skorek A, Tretiakow D. The Impact of Inflammation on the Etiopathogenesis of Benign Salivary Gland Tumors: A Scoping Review. Int J Mol Sci 2024; 25:12558. [PMID: 39684268 PMCID: PMC11641644 DOI: 10.3390/ijms252312558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Salivary gland tumors are rare head and neck tumors constituting up to 6% of all head and neck neoplasms; despite being mostly benign, these tumors present in diverse histological subtypes, making them challenging to diagnose and treat. Our research aims to investigate the link between inflammation and tumorigenesis within the salivary glands based on the literature regarding the etiopathogenesis of benign salivary gland tumors. This scoping review was conducted following the PRISMA extension for scoping reviews and reporting guidelines. The search was conducted using the Pubmed and Embase databases. Articles published between 2004 and May 2024 were included in the review. A total of 1097 papers were collected and identified. After 271 duplicates were removed, 826 titles and abstracts were independently reviewed by two researchers. Based on the title and abstract, 735 citations were excluded, and 91 articles were assessed for eligibility. Data were extracted from 46 articles that met the inclusion criteria. The review highlights the significance of inflammation-related factors and its relations with benign salivary gland tumors (SGTs). Knowledge of the etiopathogenesis of these tumors remains insufficient, and their rich immunological background poses challenges in diagnosis. The findings also point to directions for further clinical research, which will be necessary to implement these molecules in clinical practice.
Collapse
Affiliation(s)
- Konrad Szydłowski
- Department of Otolaryngology, Academy of Applied Medical and Social Sciences, 82-300 Elblag, Poland; (A.K.-T.); (A.S.); (D.T.)
- The Nicolaus Copernicus Hospital in Gdansk, Copernicus Healthcare Entity, Powstańców Warszawskich 1/2, 80-152 Gdansk, Poland
| | - Michał Puchalski
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (M.P.); (S.O.)
| | - Stanisław Ołdziej
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (M.P.); (S.O.)
| | - Agnieszka Kasprzyk-Tryk
- Department of Otolaryngology, Academy of Applied Medical and Social Sciences, 82-300 Elblag, Poland; (A.K.-T.); (A.S.); (D.T.)
- The Nicolaus Copernicus Hospital in Gdansk, Copernicus Healthcare Entity, Powstańców Warszawskich 1/2, 80-152 Gdansk, Poland
| | - Andrzej Skorek
- Department of Otolaryngology, Academy of Applied Medical and Social Sciences, 82-300 Elblag, Poland; (A.K.-T.); (A.S.); (D.T.)
- The Nicolaus Copernicus Hospital in Gdansk, Copernicus Healthcare Entity, Powstańców Warszawskich 1/2, 80-152 Gdansk, Poland
| | - Dmitry Tretiakow
- Department of Otolaryngology, Academy of Applied Medical and Social Sciences, 82-300 Elblag, Poland; (A.K.-T.); (A.S.); (D.T.)
- The Nicolaus Copernicus Hospital in Gdansk, Copernicus Healthcare Entity, Powstańców Warszawskich 1/2, 80-152 Gdansk, Poland
| |
Collapse
|
7
|
García-Recio E, González-Acedo A, Manzano-Moreno FJ, De Luna-Bertos E, Ruiz C. Gene Expression Modulation of Markers Involved in Bone Formation and Resorption by Bisphenol A, Bisphenol F, Bisphenol S, and Bisphenol AF. Genes (Basel) 2024; 15:1453. [PMID: 39596653 PMCID: PMC11593564 DOI: 10.3390/genes15111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Bisphenol A (BPA) and its analogs (BPF, BPS, and BPAF) are recognized for inducing detrimental effects on various tissues, including bone. OBJECTIVES The aim of this study is to investigate their impact on information and repair processes, specifically focusing on vascular endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), and the receptors for transforming growth factor β (TGFR1, TGFR2, and TGFR3). METHODS Human osteoblasts isolated through primary culture from bone samples of healthy volunteers were subjected to cultivation in the presence of various dosage levels (10-5, 10-6, or 10-7 M) of BPA, BPF, BPS, or BPAF for 24 h. Gene expressions of RANKL, OPG, TGF-β1, TGFR1, TGFR2, TGFR3, and VEGF were analyzed by real-time polymerase chain reaction (RT-PCR). All experiments included untreated cells as controls. RESULTS Expressions of RANKL and OPG were dose-dependently downregulated by the presence of all tested bisphenols (BPs) except for BPAF, whose presence upregulated OPG expression at all three doses. TGF-β1 expression was downregulated by all BP treatments, and TGF-β1 receptor expression was also downregulated as a function of the BP and dose. VEGF expression was downregulated in the presence of BPF and BPAF at all three doses and in the presence of BPA at the two higher doses (10-5, and 10-6 M), but it was not changed by the presence of BPS at any dose. CONCLUSIONS The inhibition of both RANKL and OPG by the BPs, with a higher %inhibition of RANKL than of OPG, appears to rule out BP-induced activation of osteoclastogenesis via RANKL/RANK/OPG. Nevertheless, the effect of the BPs on the expression by osteoblasts of TGF-β1, TGF-β receptors, and VEGF indicates that these compounds can be responsible for major molecular changes in this cell population, contributing to their adverse effects on bone tissue.
Collapse
Affiliation(s)
- Enrique García-Recio
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
| | - Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
| | - Francisco Javier Manzano-Moreno
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Biomedical Group (BIO277), Department of Stomatology, School of Dentistry, University of Granada, 18016 Granada, Spain
| | - Elvira De Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (E.G.-R.); (A.G.-A.); (F.J.M.-M.); (C.R.)
- Institute of Biosanitary Research, ibs.Granada, Avda. de Madrid 15, Pabellón de Consultas Externas, 2ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, University of Granada, 18016 Granada, Spain
| |
Collapse
|
8
|
Indarwulan N, Savitri M, Ashariati A, Bintoro SUY, Diansyah MN, Amrita PNA, Romadhon PZ. Bone Mineral Density, C-Terminal Telopeptide of Type I Collagen, and Osteocalcin as Monitoring Parameters of Bone Remodeling in CML Patients Undergoing Imatinib Therapy: A Basic Science and Clinical Review. Diseases 2024; 12:275. [PMID: 39589949 PMCID: PMC11592756 DOI: 10.3390/diseases12110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Chronic myeloid leukemia (CML) is one of the most commonly found types of myeloproliferative neoplasms, characterized by increased proliferation of granulocytic cells without losing their differentiation ability. Imatinib, a tyrosine kinase inhibitor (TKI), can be effectively used as therapy for CML. However, Imatinib can affect bone turnover thus having clinical implications on the bones of CML patients undergoing long-term Imatinib therapy. However, parameters that can accurately describe the bone condition in CML patients receiving Imatinib still need further study. A combination of imaging techniques such as bone mineral density (BMD) and bone turnover activity markers such as C-terminal telopeptide of type I collagen (CTX-1) and osteocalcin has the potential to be used as monitoring parameters for bone density abnormalities in CML patients receiving Imatinib. OBJECTIVES This article explains the rationale for using BMD, CTX-1, and osteocalcin as monitoring parameters of bone remodeling in CML patients receiving Imatinib. RESULTS First, the physiological process of bone turnover will be explained. Then, we describe the role of tyrosine kinase in bone metabolism. Next, the impact of Imatinib on BMD, CTX-1, and osteocalcin will be explained. CONCLUSION The assessment of bone health of CML patients on Imatinib should include both BMD tests and bone turnover marker assays such as CTX-1 and osteocalcin.
Collapse
Affiliation(s)
- Nurita Indarwulan
- Subspeciality Program in Hematology and Medical Oncology Division, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia;
- Subspeciality Program in Hematology and Medical Oncology Division, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Merlyna Savitri
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia; (A.A.); (S.U.Y.B.); (M.N.D.); (P.N.A.A.); (P.Z.R.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Ami Ashariati
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia; (A.A.); (S.U.Y.B.); (M.N.D.); (P.N.A.A.); (P.Z.R.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Siprianus Ugroseno Yudho Bintoro
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia; (A.A.); (S.U.Y.B.); (M.N.D.); (P.N.A.A.); (P.Z.R.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Muhammad Noor Diansyah
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia; (A.A.); (S.U.Y.B.); (M.N.D.); (P.N.A.A.); (P.Z.R.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Putu Niken Ayu Amrita
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia; (A.A.); (S.U.Y.B.); (M.N.D.); (P.N.A.A.); (P.Z.R.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| | - Pradana Zaky Romadhon
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia; (A.A.); (S.U.Y.B.); (M.N.D.); (P.N.A.A.); (P.Z.R.)
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Airlangga University, Surabaya 60132, Indonesia
| |
Collapse
|
9
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
10
|
Cristiani CM, Calomino C, Scaramuzzino L, Murfuni MS, Parrotta EI, Bianco MG, Cuda G, Quattrone A, Quattrone A. Proximity Elongation Assay and ELISA for the Identification of Serum Diagnostic Biomarkers in Parkinson's Disease and Progressive Supranuclear Palsy. Int J Mol Sci 2024; 25:11663. [PMID: 39519214 PMCID: PMC11546529 DOI: 10.3390/ijms252111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Clinical differentiation of progressive supranuclear palsy (PSP) from Parkinson's disease (PD) is challenging due to overlapping phenotypes and late onset of PSP specific symptoms, highlighting the need for easily assessable biomarkers. We used proximity elongation assay (PEA) to analyze 460 proteins in serum samples from 46 PD, 30 PSP patients, and 24 healthy controls. ANCOVA was used to identify the most promising proteins and machine learning (ML) XGBoost and random forest algorithms to assess their classification performance. Promising proteins were also quantified by ELISA. Moreover, correlations between serum biomarkers and biological and clinical features were investigated. We identified five proteins (TFF3, CPB1, OPG, CNTN1, TIMP4) showing different levels between PSP and PD, which achieved good performance (AUC: 0.892) when combined by ML. On the other hand, when the three most significant biomarkers (TFF3, CPB1 and OPG) were analyzed by ELISA, there was no difference between groups. Serum levels of TFF3 positively correlated with age in all subjects' groups, while for OPG and CPB1 such a correlation occurred in PSP patients only. Moreover, CPB1 positively correlated with disease severity in PD, while no correlations were observed in the PSP group. Overall, we identified CPB1 correlating with PD severity, which may support clinical staging of PD. In addition, our results showing discrepancy between PEA and ELISA technology suggest that caution should be used when translating proteomic findings into clinical practice.
Collapse
Affiliation(s)
| | - Camilla Calomino
- Neuroscience Research Center, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Neuroscience Research Center, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Maria Stella Murfuni
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Institute of Molecular Biology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| | | | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Clinical and Experimental Medicine, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, University “Magna Graecia”, 88100 Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, University “Magna Graecia”, 88100 Catanzaro, Italy
- Institute of Neurology, Department of Medical and Surgical Sciences, University “Magna Graecia”, 88100 Catanzaro, Italy
| |
Collapse
|
11
|
Li Q, Wang J, Zhao C. From Genomics to Metabolomics: Molecular Insights into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches. Biomedicines 2024; 12:2389. [PMID: 39457701 PMCID: PMC11505085 DOI: 10.3390/biomedicines12102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies-genomics, transcriptomics, proteomics, and metabolomics-have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.
Collapse
Affiliation(s)
- Qingmei Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Congzhe Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
12
|
Mejía-Barradas CM, Amador-Martínez A, Lara-Padilla E, Cárdenas-Rodríguez N, Ignacio-Mejía I, Martínez-López V, Ibañez-Cervantes G, Picado-Garcia ODJ, Domínguez B, Bandala C. Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer. Cancers (Basel) 2024; 16:2891. [PMID: 39199661 PMCID: PMC11352457 DOI: 10.3390/cancers16162891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Breast cancer (BCa) is related to chronic stress and can reduce the bone mineral density (BMD) through neurochemicals related to beta-adrenergic receptor (ADRB) 1 and 2. Selective beta blockers (sBBs) and nonselective beta blockers (nsBBs) are used to treat systemic arterial hypertension (SAH) and may have osteoprotective effects, as they inhibit ADRBs. To evaluate the effects of sBBs and nsBBs on the BMD of Mexican patients with BCa. A retrospective study was conducted. We included 191 Mexican women with BCa without SAH and with SAH treated with nsBBs, sBBs, and diuretics. BMD was evaluated using a bone density scan (DEX scan). A greater average BMD (p < 0.05) was observed in patients with prior treatment with both nsBBs and sBBs (0.54 ± 0.94 and -0.44 ± 1.22, respectively) compared to patients treated with diuretics or without SAH (-1.73 ± 0.83 and -1.22 ± 0.98, respectively). Regarding the diagnosis of osteoporosis/osteopenia, no cases were observed in patients treated with nsBBs, whereas 5.6% of the patients treated with sBBs presented osteopenia. A total of 23.1% and 10.6% patients managed with diuretics or without treatment presented with osteoporosis and 61.5% and 48% patients managed with loop diuretics and without treatment presented with osteopenia, respectively (p < 0.05). Treatment with nsBBs is a promising option for the prevention and management of osteoporosis/osteopenia in Mexican patients with BCa; however, further prospective studies are needed.
Collapse
Affiliation(s)
- César Miguel Mejía-Barradas
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| | - Ana Amador-Martínez
- Departamento de Radiología e Imagen, Centro Médico ABC, Mexico City 01120, Mexico;
| | - Eleazar Lara-Padilla
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| | | | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados en Sanidad, Universidad Del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Valentín Martínez-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Gabriela Ibañez-Cervantes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | | | - Brayan Domínguez
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| | - Cindy Bandala
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.M.M.-B.); (E.L.-P.); (G.I.-C.), (B.D.)
| |
Collapse
|
13
|
Zhou L, Su P, Luo X, Zhong X, Liu Q, Su Y, Zeng C, Li G. Regorafenib Attenuates Osteoclasts Differentiation by Inhibiting the NF-κB, NFAT, ERK, and p38 Signaling Pathways. ACS OMEGA 2024; 9:33574-33593. [PMID: 39130575 PMCID: PMC11307286 DOI: 10.1021/acsomega.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Osteolytic diseases such as osteoporosis and neoplastic bone metastases are caused by the excessive activation of osteoclasts. Inhibiting the excessive activation of osteoclasts is a crucial strategy for treating osteolytic diseases. This study investigated the roles and mechanisms of regorafenib, a tyrosine kinase inhibitor, on osteoclasts and osteolytic diseases. We first identified the potential targets and mechanisms of regorafenib on osteoclast-related osteolytic diseases using network pharmacological analysis and molecular docking techniques. Then, we verified its role and mechanism on osteoclasts via cellular and animal experiments. Network pharmacology analysis identified 89 common targets shared by regorafenib and osteoclast-related osteolytic diseases. Enrichment analysis suggested that regorafenib may act on osteoclast-related osteolytic diseases by modulating targets such as AKT1, CASP3, MMP9, and MAPK3, regulating biological processes such as cell proliferation, apoptosis, and phosphorylation regulation, and influencing signaling pathways such as MAPK, PI3K/AKT, and osteoclast differentiation. The molecular docking results indicated that regorafenib and AKT1, CASP3, MMP9, MAPK3, and MAPK14 were stably docked. Cell experiments demonstrated that regorafenib significantly inhibited osteoclast differentiation and bone resorption in RAW 264.7 cells and bone marrow macrophages in a dose-dependent manner, with up to 50% reduction at 800 nM concentration without exhibiting cytotoxic effects. Furthermore, Western blot and RT-qPCR results demonstrated that regorafenib inhibited osteoclast differentiation by blocking the transduction of RANKL-induced NF-κB, p38, ERK, and NFAT signaling pathways. In vivo studies using an ovariectomized mouse model showed that regorafenib significantly improved bone volume fraction (BV/TV), bone surface to total volume (BS/TV), and number of trabeculae (TB.N), as well as reduced trabecular separation (Tb.Sp) compared to the OVX groups (P < 0.05). TRAcP staining results revealed a reduction in the number of osteoclasts with regorafenib treatment (P < 0.01). These results indicate that regorafenib exerts its protective effects against osteoclast-related osteolytic disease by inhibiting the RANKL-induced NF-κB, NFAT, ERK, and p38 signaling pathways. This study proves that regorafenib may serve as a potential therapeutic agent for osteoclast-related osteolytic diseases.
Collapse
Affiliation(s)
- Lin Zhou
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Peiru Su
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xiangya Luo
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Xuanli Zhong
- Department
of Endocrinology, The Affiliated Shunde
Hospital of Jinan University, Foshan 528305, Guangdong, China
| | - Qian Liu
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Yuangang Su
- Guangxi
Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Chunping Zeng
- Department
of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education
Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, Guangdong, China
| | - Ge Li
- Department
of Endocrinology, The Affiliated Shunde
Hospital of Jinan University, Foshan 528305, Guangdong, China
| |
Collapse
|
14
|
Yu Y, Lee S, Bock M, An SB, Shin HE, Rim JS, Kwon JO, Park KS, Han I. Promotion of Bone Formation in a Rat Osteoporotic Vertebral Body Defect Model via Suppression of Osteoclastogenesis by Ectopic Embryonic Calvaria Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:8174. [PMID: 39125746 PMCID: PMC11311643 DOI: 10.3390/ijms25158174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Osteoporotic vertebral compression fractures (OVCFs) are the most prevalent fractures among patients with osteoporosis, leading to severe pain, deformities, and even death. This study explored the use of ectopic embryonic calvaria derived mesenchymal stem cells (EE-cMSCs), which are known for their superior differentiation and proliferation capabilities, as a potential treatment for bone regeneration in OVCFs. We evaluated the impact of EE-cMSCs on osteoclastogenesis in a RAW264.7 cell environment, which was induced by the receptor activator of nuclear factor kappa-beta ligand (RANKL), using cytochemical staining and quantitative real-time PCR. The osteogenic potential of EE-cMSCs was evaluated under various hydrogel conditions. An osteoporotic vertebral body bone defect model was established by inducing osteoporosis in rats through bilateral ovariectomy and creating defects in their coccygeal vertebral bodies. The effects of EE-cMSCs were examined using micro-computed tomography (μCT) and histology, including immunohistochemical analyses. In vitro, EE-cMSCs inhibited osteoclast differentiation and promoted osteogenesis in a 3D cell culture environment using fibrin hydrogel. Moreover, μCT and histological staining demonstrated increased new bone formation in the group treated with EE-cMSCs and fibrin. Immunostaining showed reduced osteoclast activity and bone resorption, alongside increased angiogenesis. Thus, EE-cMSCs can effectively promote bone regeneration and may represent a promising therapeutic approach for treating OVCFs.
Collapse
Affiliation(s)
- Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Somin Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Seong Bae An
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| | - Hae Eun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
| | - Jong Seop Rim
- Fetal Stem Cell Research Center, CHA Advanced Research Institute, Seongnam-si 13488, Republic of Korea; (J.S.R.); (J.-o.K.)
| | - Jun-oh Kwon
- Fetal Stem Cell Research Center, CHA Advanced Research Institute, Seongnam-si 13488, Republic of Korea; (J.S.R.); (J.-o.K.)
| | - Kwang-Sook Park
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (Y.Y.); (S.L.); (M.B.); (S.B.A.); (H.E.S.); (K.-S.P.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| |
Collapse
|
15
|
Scarpa ES, Antonelli A, Balercia G, Sabatelli S, Maggi F, Caprioli G, Giacchetti G, Micucci M. Antioxidant, Anti-Inflammatory, Anti-Diabetic, and Pro-Osteogenic Activities of Polyphenols for the Treatment of Two Different Chronic Diseases: Type 2 Diabetes Mellitus and Osteoporosis. Biomolecules 2024; 14:836. [PMID: 39062550 PMCID: PMC11275061 DOI: 10.3390/biom14070836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Polyphenols are natural bioactives occurring in medicinal and aromatic plants and food and beverages of plant origin. Compared with conventional therapies, plant-derived phytochemicals are more affordable and accessible and have no toxic side effects. Thus, pharmaceutical research is increasingly inclined to discover and study new and innovative natural molecules for the treatment of several chronic human diseases, like type 2 diabetes mellitus (T2DM) and osteoporosis. These pathological conditions are characterized by a chronic inflammatory state and persistent oxidative stress, which are interconnected and lead to the development and worsening of these two health disorders. Oral nano delivery strategies have been used to improve the bioavailability of polyphenols and to allow these natural molecules to exert their antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic biological activities in in vivo experimental models and in patients. Polyphenols are commonly used in the formulations of nutraceuticals, which can counteract the detrimental effects of T2DM and osteoporosis pathologies. This review describes the polyphenols that can exert protective effects against T2DM and osteoporosis through the modulation of specific molecular markers and pathways. These bioactives could be used as adjuvants, in combination with synthetic drugs, in the future to develop innovative therapeutic strategies for the treatment of T2DM and osteoporosis.
Collapse
Affiliation(s)
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| | - Giancarlo Balercia
- Division of Endocrinology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Sofia Sabatelli
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (CHIP) Research Center, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (F.M.); (G.C.)
| | - Gilberta Giacchetti
- Clinic of Endocrinology and Metabolic Diseases, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, 60126 Ancona, Italy; (S.S.); (G.G.)
| | - Matteo Micucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.A.); (M.M.)
| |
Collapse
|
16
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
17
|
Shi S, Duan H, Ou X. Targeted delivery of anti-osteoporosis therapy: Bisphosphonate-modified nanosystems and composites. Biomed Pharmacother 2024; 175:116699. [PMID: 38705129 DOI: 10.1016/j.biopha.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoporosis (OP) constitutes a significant health concern that profoundly affects individuals' quality of life. Bisphosphonates, conventional pharmaceuticals widely employed in OP treatment, encounter limitations related to inadequate drug targeting and a short effective duration, thereby compromising their clinical efficacy. The burgeoning field of nanotechnology has witnessed the development and application of diverse functional nanosystems designed for OP treatment. Owing to the bone tissue affinity of bisphosphonates, these nanosystems are modified to address shortcomings associated with traditional drug delivery. In this review, we explore the potential of bisphosphonate-modified nanosystems as a promising strategy for addressing osteoporotic conditions. With functional modification, these nanosystems exhibit a targeted and reversible effect on osteoporotic remodeling, presenting a promising solution to enhance precision in drug delivery. The synthesis methods, physicochemical properties, and in vitro/in vivo performance of bisphosphonate-modified nanosystems are comprehensively examined in this review. Through a thorough analysis of recent advances and accomplishments in this field, we aim to provide insights into the potential applications and future directions of bisphosphonate-modified nanosystems for targeted and reversible osteoporotic remodeling.
Collapse
Affiliation(s)
- Shaoyan Shi
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Honghao Duan
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China
| | - Xuehai Ou
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an Honghui Hospital North District, Xi'an, Shaanxi 710000, China.
| |
Collapse
|
18
|
Feng Y, Dang X, Zheng P, Liu Y, Liu D, Che Z, Yao J, Lin Z, Liao Z, Nie X, Liu F, Zhang Y. Quercetin in Osteoporosis Treatment: A Comprehensive Review of Its Mechanisms and Therapeutic Potential. Curr Osteoporos Rep 2024; 22:353-365. [PMID: 38652430 DOI: 10.1007/s11914-024-00868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to provide a theoretical basis and insights for quercetin's clinical application in the prevention and treatment of osteoporosis (OP), analyzing its roles in bone formation promotion, bone resorption inhibition, anti-inflammation, antioxidant effects, and potential mechanisms. RECENT FINDINGS OP, a prevalent bone disorder, is marked by reduced bone mineral density and impaired bone architecture, elevating the risk of fractures in patients. The primary approach to OP management is pharmacotherapy, with quercetin, a phytochemical compound, emerging as a focus of recent interest. This natural flavonoid exerts regulatory effects on bone marrow mesenchymal stem cells, osteoblasts, and osteoclasts and promotes bone health and metabolic equilibrium via anti-inflammatory and antioxidative pathways. Although quercetin has demonstrated significant potential in regulating bone metabolism, there is a need for further high-quality clinical studies focused on medicinal quercetin.
Collapse
Affiliation(s)
- Yanchen Feng
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xue Dang
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Pan Zheng
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yali Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Diyan Liu
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhiying Che
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Jianping Yao
- Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zixuan Lin
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China
| | - Ziyun Liao
- College of Acupuncture, Moxibustion and Tuina, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xingyuan Nie
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feixiang Liu
- Hospital of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450099, China.
| | - Yunke Zhang
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, 450003, China.
| |
Collapse
|
19
|
Li J, Wu J, Xie Y, Yu X. Bone marrow adipocytes and lung cancer bone metastasis: unraveling the role of adipokines in the tumor microenvironment. Front Oncol 2024; 14:1360471. [PMID: 38571500 PMCID: PMC10987778 DOI: 10.3389/fonc.2024.1360471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Bone is a common site of metastasis for lung cancer. The "seed and soil" hypothesis suggests that the bone marrow microenvironment ("soil") may provide a conducive survival environment for metastasizing tumor cells ("seeds"). The bone marrow microenvironment, comprising a complex array of cells, includes bone marrow adipocytes (BMAs), which constitute about 70% of the adult bone marrow volume and may play a significant role in tumor bone metastasis. BMAs can directly provide energy for tumor cells, promoting their proliferation and migration. Furthermore, BMAs participate in the tumor microenvironment's osteogenesis regulation, osteoclast(OC) regulation, and immune response through the secretion of adipokines, cytokines, and inflammatory factors. However, the precise mechanisms of BMAs in lung cancer bone metastasis remain largely unclear. This review primarily explores the role of BMAs and their secreted adipokines (leptin, adiponectin, Nesfatin-1, Resistin, chemerin, visfatin) in lung cancer bone metastasis, aiming to provide new insights into the mechanisms and clinical treatment of lung cancer bone metastasis.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Shandong Second Provincial General Hospital, Jinan, China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanni Xie
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Bassan Marinho Maciel G, Marinho Maciel R, Linhares Ferrazzo K, Cademartori Danesi C. Etiopathogenesis of medication-related osteonecrosis of the jaws: a review. J Mol Med (Berl) 2024; 102:353-364. [PMID: 38302741 DOI: 10.1007/s00109-024-02425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
This study compiles the main hypotheses involved in the etiopathogenesis of medication-related osteonecrosis of the jaw (MRONJ). A narrative review of the literature was performed. The etiopathogenesis of MRONJ is multifactorial and not fully understood. The main hypothesis considers the disturbance of bone turnover caused by anti-resorptive drugs. Bisphosphonates and denosumab inhibit osteoclast activity through different action mechanisms, accumulating bone microfracture. Other hypotheses also consider oral infection and inflammation, the antiangiogenic effect and soft tissue toxicity of bisphosphonates, and the inhibition of lymphangiogenesis. Knowledge of the current theories for MRONJ is necessary to define future studies and protocols to minimize the incidence of this severe condition.
Collapse
Affiliation(s)
- Gabriel Bassan Marinho Maciel
- Postgraduate Program in Dental Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
- Department of Pathology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97015-900, Brazil.
| | - Roberto Marinho Maciel
- Department of Pathology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97015-900, Brazil
| | - Kívia Linhares Ferrazzo
- Department of Pathology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97015-900, Brazil
| | - Cristiane Cademartori Danesi
- Department of Pathology, Federal University of Santa Maria, Av. Roraima, 1000, Santa Maria, RS, 97015-900, Brazil
| |
Collapse
|
21
|
Su X, Zhou C, Chen S, Ma Q, Xiao H, Chen Q, Zou H. Prognosis value of circulating tumor cell PD‑L1 and baseline characteristics in patients with NSCLC treated with immune checkpoint inhibitors plus platinum‑containing drugs. Oncol Lett 2024; 27:131. [PMID: 38362233 PMCID: PMC10867731 DOI: 10.3892/ol.2024.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) combined with platinum-containing chemotherapy are recommended as the standard first-line treatment for non-small cell lung cancer (NSCLC). However, specific prognostic markers for this combination therapy are yet to be identified. Evaluation of circulating tumor cells (CTCs) and cell surface programmed death-ligand 1 (PD-L1) exhibits potential in predicting the efficacy of the aforementioned combination therapy. Thus, the present study aimed to evaluate the prognostic value of CTC PD-L1 testing and other clinical characteristics in patients with NSCLC treated with combination therapy as first-line treatment. In total, 40 patients with advanced NSCLC were included in the present study, and all patients underwent CTC PD-L1 testing at initial diagnosis to determine the association between CTC PD-L1 and tissue PD-L1. The prognostic value of CTC PD-L1 and the baseline characteristics of 26 patients with NSCLC were analyzed, and the prognostic values of changes in CTC PD-L1 and baseline characteristics during 6 months of treatment were further explored. Results of the present study demonstrated that there was no association between CTC PD-L1 and tissue PD-L1 levels. After 6 months of combination therapy, tumor shrinkage, CYFA19 levels and treatment maintenance were associated with progression-free survival (PFS) of patients. Notably, CTC PD-L1 and tissue PD-L1 levels, TNM stage, nutritional score, inflammation score and other blood indicators were not associated with PFS. In conclusion, the evaluation of CTCs and CTC PD-L1 suggested that undetectable CTCs at 6 months of NSCLC treatment are associated with a good prognosis. In addition, negative CTC PD-L1 expression may change to positive CTC PD-L1 expression in line with disease progression, and this may be indicative of poor prognosis.
Collapse
Affiliation(s)
- Xiaona Su
- Department of Oncology, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| | - Ci Zhou
- Institute of Surgery Research, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| | - Shu Chen
- Department of Oncology, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| | - Qiang Ma
- Department of Pathology, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| | - He Xiao
- Department of Oncology, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| | - Qian Chen
- Department of Oncology, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| | - Hua Zou
- Department of Oncology, Daping Hospital, Army Medical Center of People's Liberation Army (Chongqing Daping Hospital), Chongqing 400042, P.R. China
| |
Collapse
|
22
|
De Leon-Oliva D, Boaru DL, Perez-Exposito RE, Fraile-Martinez O, García-Montero C, Diaz R, Bujan J, García-Honduvilla N, Lopez-Gonzalez L, Álvarez-Mon M, Saz JV, de la Torre B, Ortega MA. Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review. Gels 2023; 9:885. [PMID: 37998975 PMCID: PMC10670584 DOI: 10.3390/gels9110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Roque Emilio Perez-Exposito
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Raul Diaz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| | - Laura Lopez-Gonzalez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Immune System Diseases-Rheumatology Service, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Basilio de la Torre
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
- Service of Traumatology of University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (D.D.L.-O.); (D.L.B.); (R.E.P.-E.); (O.F.-M.); (C.G.-M.); (J.B.); (N.G.-H.); (L.L.-G.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (R.D.); (J.V.S.); (B.d.l.T.)
| |
Collapse
|