1
|
Papakonstantinou I, Tsioufis K, Katsi V. Spotlight on the Mechanism of Action of Semaglutide. Curr Issues Mol Biol 2024; 46:14514-14541. [PMID: 39728000 DOI: 10.3390/cimb46120872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024] Open
Abstract
Initially intended to control blood glucose levels in patients with type 2 diabetes, semaglutide, a potent glucagon-like peptide 1 analogue, has been established as an effective weight loss treatment by controlling appetite. Integrating the latest clinical trials, semaglutide in patients with or without diabetes presents significant therapeutic efficacy in ameliorating cardiometabolic risk factors and physical functioning, independent of body weight reduction. Semaglutide may modulate adipose tissue browning, which enhances human metabolism and exhibits possible benefits in skeletal muscle degeneration, accelerated by obesity and ageing. This may be attributed to anti-inflammatory, mitochondrial biogenesis, antioxidant and autophagy-regulating effects. However, most of the supporting evidence on the mechanistic actions of semaglutide is preclinical, demonstrated in rodents and not actually confirmed in humans, therefore warranting caution in the interpretation. This article aims to explore potential innovative molecular mechanisms of semaglutide action in restoring the balance of several interlinking aspects of metabolism, pointing to distinct functions in inflammation and oxidative stress in insulin-sensitive musculoskeletal and adipose tissues. Moreover, possible applications in protection from infections and anti-aging properties are discussed. Semaglutide enhancement of the core molecular mechanisms involved in the progress of obesity and diabetes, although mostly preclinical, may provide a framework for future research applications in human diseases overall.
Collapse
Affiliation(s)
- Ilias Papakonstantinou
- 4th Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| |
Collapse
|
2
|
Abdul-Ghani M, Maffei P, DeFronzo RA. Managing insulin resistance: the forgotten pathophysiological component of type 2 diabetes. Lancet Diabetes Endocrinol 2024; 12:674-680. [PMID: 39098317 DOI: 10.1016/s2213-8587(24)00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 08/06/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists have gained widespread use in the treatment of individuals with type 2 diabetes because of their potent weight loss promoting effect, ability to augment β-cell function, and cardiovascular protective effects. However, despite causing impressive weight loss, GLP-1 receptor agonists do not normalise insulin sensitivity in people with type 2 diabetes and obesity, and the long-term effects of this class of antidiabetic medication on muscle mass, frailty, and bone density have been poorly studied. Although GLP-1 receptor agonists improve insulin sensitivity secondary to weight loss, the only true direct insulin-sensitising drugs are thiazolidinediones. Because of side-effects associated with type 2 diabetes therapy, these drugs have not gained widespread use. In lieu of the important role of insulin resistance in the cause of type 2 diabetes and in the pathogenesis of atherosclerotic cardiovascular disease in type 2 diabetes, development of potent insulin-sensitising drugs that can be used in combination with GLP-1 receptor agonists remains a large unmet need in the management of individuals with type 2 diabetes.
Collapse
|
3
|
de Luis Román D, Gómez JC, García-Almeida JM, Vallo FG, Rolo GG, Gómez JJL, Tarazona-Santabalbina FJ, Sanz-Paris A. Diabetic Sarcopenia. A proposed muscle screening protocol in people with diabetes : Expert document. Rev Endocr Metab Disord 2024; 25:651-661. [PMID: 38315411 PMCID: PMC11294263 DOI: 10.1007/s11154-023-09871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
OBJECTIVES To propose the grounds for "diabetic sarcopenia" as a new comorbidity of diabetes, and to establish a muscle screening algorithm proposal to facilitate its diagnosis and staging in clinical practice. METHOD A qualitative expert opinion study was carried out using the nominal technique. A literature search was performed with the terms "screening" or "diagnostic criteria" and "muscle loss" or "sarcopenia" and "diabetes" that was sent to a multidisciplinary group of 7 experts who, in a face-to-face meeting, discussed various aspects of the screening algorithm. RESULTS The hallmark of diabetic sarcopenia (DS) is muscle mass atrophy characteristic of people with diabetes mellitus (DM) in contrast to the histological and physiological normality of muscle mass. The target population to be screened was defined as patients with DM with a SARC-F questionnaire > 4, glycosylated haemoglobin (HbA1C) ≥ 8.0%, more than 5 years since onset of DM, taking sulfonylureas, glinides and sodium/glucose cotransporter inhibitors (SGLT2), as well as presence of chronic complications of diabetes or clinical suspicion of sarcopenia. Diagnosis was based on the presence of criteria of low muscle strength (probable sarcopenia) and low muscle mass (confirmed sarcopenia) using methods available in any clinical consultation room, such as dynamometry, the chair stand test, and Body Mass Index (BMI)-adjusted calf circumference. DS was classified into 4 stages: Stage I corresponds to sarcopenic patients with no other diabetes complication, and Stage II corresponds to patients with some type of involvement. Within Stage II are three sublevels (a, b and c). Stage IIa refers to individuals with sarcopenic diabetes and some diabetes-specific impairment, IIb to sarcopenia with functional impairment, and IIc to sarcopenia with diabetes complications and changes in function measured using standard tests Conclusion: Diabetic sarcopenia has a significant impact on function and quality of life in people with type 2 diabetes mellitus (T2DM), and it is important to give it the same attention as all other traditionally described complications of T2DM. This document aims to establish the foundation for protocolising the screening and diagnosis of diabetic sarcopenia in a manner that is simple and accessible for all levels of healthcare.
Collapse
Affiliation(s)
- Daniel de Luis Román
- Center Investigación of Endocrinology and Nutrition, University of Valladolid, Valladolid, Spain.
| | | | - José Manuel García-Almeida
- Clinical Management Unit of Endocrinology and Nutrition, Virgen de la Victoria Clinical Hospital, Málaga, Spain
| | | | | | - Juan José López Gómez
- Endocrinology and Nutrition Department, University Clinical Hospital of Valladolid, Valladolid, Spain
| | | | | |
Collapse
|
4
|
Szekeres Z, Nagy A, Jahner K, Szabados E. Impact of Selected Glucagon-like Peptide-1 Receptor Agonists on Serum Lipids, Adipose Tissue, and Muscle Metabolism-A Narrative Review. Int J Mol Sci 2024; 25:8214. [PMID: 39125786 PMCID: PMC11311305 DOI: 10.3390/ijms25158214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are novel antihyperglycemic agents. By acting through the central nervous system, they increase satiety and reduce food intake, thus lowering body weight. Furthermore, they increase the secretion of insulin while decreasing the production of glucagon. However, recent studies suggest a more complex metabolic impact through the interaction with various other tissues. In our present review, we aim to provide a summary of the effects of GLP-1 RA on serum lipids, adipose tissue, and muscle metabolism. It has been found that GLP-1 RA therapy is associated with decreased serum cholesterol levels. Epicardial adipose tissue thickness, hepatic lipid droplets, and visceral fat volume were reduced in obese patients with cardiovascular disease. GLP-1 RA therapy decreased the level of proinflammatory adipokines and reduced the expression of inflammatory genes. They have been found to reduce endoplasmic reticulum stress in adipocytes, leading to better adipocyte function and metabolism. Furthermore, GLP-1 RA therapy increased microvascular blood flow in muscle tissue, resulting in increased myocyte metabolism. They inhibited muscle atrophy and increased muscle mass and function. It was also observed that the levels of muscle-derived inflammatory cytokines decreased, and insulin sensitivity increased, resulting in improved metabolism. However, some clinical trials have been conducted on a very small number of patients, which limits the strength of these observations.
Collapse
Affiliation(s)
- Zsolt Szekeres
- Department of Laboratory Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Andras Nagy
- Faculty of Pharmacy, University of Pecs, 7624 Pecs, Hungary;
| | - Kamilla Jahner
- Department of Medical Imaging, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Eszter Szabados
- 1st Department of Medicine, Division of Preventive Cardiology and Rehabilitation, Medical School, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
5
|
Argyrakopoulou G, Gitsi E, Konstantinidou SK, Kokkinos A. The effect of obesity pharmacotherapy on body composition, including muscle mass. Int J Obes (Lond) 2024:10.1038/s41366-024-01533-3. [PMID: 38745020 DOI: 10.1038/s41366-024-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Obesity pharmacotherapy represents a promising approach to treating obesity and may provide benefits beyond weight loss alone. Maintaining or even increasing muscle mass during weight loss is important to overall health, metabolic function and weight loss maintenance. Drugs such as liraglutide, semaglutide, tirzepatide, and naltrexone/bupropion have shown significant weight loss effects, and emerging evidence suggests they may also have effects on body composition, particularly a positive influence on muscle mass. However, further research is needed to fully understand the mechanism of action of these drugs and their effects on muscle mass. Clinicians should consider these factors when developing an obesity treatment plan for an individual patient.
Collapse
Affiliation(s)
| | - Evdoxia Gitsi
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
| | - Sofia K Konstantinidou
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
6
|
Stafeev I, Agareva M, Michurina S, Tomilova A, Shestakova E, Zubkova E, Sineokaya M, Ratner E, Menshikov M, Parfyonova Y, Shestakova M. Semaglutide 6-months therapy of type 2 diabetes mellitus restores adipose progenitors potential to develop metabolically active adipocytes. Eur J Pharmacol 2024; 970:176476. [PMID: 38493915 DOI: 10.1016/j.ejphar.2024.176476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Nowadays type 2 diabetes mellitus (T2DM) leads to population mortality growth. Today glucagon-like peptide type 1 receptor agonists (GLP-1 RA) are one of the most promising glucose-lowered drugs with anorexigenic and cardioprotective effects. The present study aims to determine the effects of GLP-1 RA semaglutide 6-month therapy on T2DM patient metabolic parameters and adipose progenitor cell health. METHODS T2DM patients (N = 8) underwent clinical characterization and subcutaneous fat biopsy at start point and after semaglutide 6-month therapy. Adipose-derived stem cells (ADSC) were isolated by enzymatic method. Cell proliferation analysis was performed by MTT and immunocytochemistry. White and beige adipogenesis was analyzed by BODIPY493/503 staining and confocal microscopy. Adipocyte's metabolic properties were estimated by 3H- and 14C-based metabolic assays. Thermogenesis analysis was performed by ERthermAC staining and confocal microscopy. Protein markers were assessed by Western blotting. RESULTS Semaglutide 6-month therapy demonstrated significant anorexigenic and glucose-lowering effects. However, insulin sensitivity (HOMA-IR and M-index) was unchanged after therapy. Semaglutide 6-month therapy increased ADSC proliferation and white and beige adipogenesis. Moreover, lipid droplets fragmentation was observed in beige adipocytes. Both white and beige adipocytes after semaglutide therapy demonstrated 2-3 fold growth of glucose uptake without changes in insulin sensitivity. Newly formed white adipocytes demonstrated glucose utilization for active ATP synthesis, whereas beige adipocytes for canonical thermogenesis. CONCLUSIONS Our study has revealed that semaglutide 6-month therapy has not only systemic anorexigenic effects, but can markedly improve adipose tissue health. We have demonstrated critical restoration of ADSC renewal functions, which potentially can be involved in semaglutide based weight loss.
Collapse
Affiliation(s)
- I Stafeev
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia.
| | - M Agareva
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia; Lomonosov Moscow State University, 119991, Moscow, Russia
| | - S Michurina
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia; Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A Tomilova
- Endocrinology Research Centre, 117292, Moscow, Russia
| | - E Shestakova
- Endocrinology Research Centre, 117292, Moscow, Russia
| | - E Zubkova
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia
| | - M Sineokaya
- Endocrinology Research Centre, 117292, Moscow, Russia
| | - E Ratner
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia
| | - M Menshikov
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia
| | - Ye Parfyonova
- National Medical Research Centre of Cardiology Named After Academician E.I.Chazov, 121552, Moscow, Russia; Lomonosov Moscow State University, 119991, Moscow, Russia
| | - M Shestakova
- Lomonosov Moscow State University, 119991, Moscow, Russia; Endocrinology Research Centre, 117292, Moscow, Russia
| |
Collapse
|
7
|
Rajagopal S, Alruwaili F, Mavratsas V, Serna MK, Murthy VL, Raji M. Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Idiopathic Inflammatory Myopathy: From Mechanisms of Action to Clinical Applications. Cureus 2023; 15:e51352. [PMID: 38292961 PMCID: PMC10824603 DOI: 10.7759/cureus.51352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2023] [Indexed: 02/01/2024] Open
Abstract
Idiopathic inflammatory myopathies (IIMs) result in proximal muscle weakness and other intramuscular and extramuscular manifestations. Pharmacologic treatments in use for IIMs are limited to corticosteroids and immunosuppressants in addition to supportive physical and occupational therapy. Glucagon-like peptide-1 receptor (GLP-1R) agonists are currently utilized in the treatment of type II diabetes and obesity but may play a role in the treatment of IIMs. The current scoping review of extant literature aims to synthesize findings from studies assessing the therapeutic effects of GLP-1R agonists in the management of inflammatory myopathy and muscle atrophy. A literature search was conducted through PubMed, resulting in a total of 19 research-based articles included in this review. Mice and human studies showed, with varying levels of significance, that GLP-1R agonists led to decreases in muscle atrophy, inflammation, adiposity, and weakness; improvement in muscle microvasculature and endurance; and promotion of muscle mitochondria biogenesis. The potential for GLP-1R agonists to improve muscle function and architecture underscores the need for large randomized controlled, clinically comparative trials of GLP-1R agonists in patients with IIM.
Collapse
Affiliation(s)
- Shilpa Rajagopal
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, USA
| | | | - Vasilis Mavratsas
- Department of Internal Medicine and Aerospace Medicine, University of Texas Medical Branch, Galveston, USA
| | - Myrna K Serna
- Division of General Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Vijaya L Murthy
- Division of Rheumatology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, USA
| | - Mukaila Raji
- Division of Geriatrics and Palliative Medicine, Department of Internal Medicine; Department of Preventive Medicine and Population Health, University of Texas Medical Branch, Galveston, USA
| |
Collapse
|
8
|
Katsarou A, Kouvari M, Hill MA, Mantzoros CS. Metabolically unhealthy obesity, sarcopenia and their interactions in obesity pathophysiology and therapeutics: Room for improvement in pharmacotherapy. Metabolism 2023; 149:155714. [PMID: 39491165 DOI: 10.1016/j.metabol.2023.155714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Affiliation(s)
- Angeliki Katsarou
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matina Kouvari
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Michael A Hill
- Dalton Cardiovascular Research Center and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| |
Collapse
|
9
|
Volpe S, Lisco G, Fanelli M, Racaniello D, Colaianni V, Lavarra V, Triggiani D, Crudele L, Triggiani V, Sabbà C, De Pergola G, Piazzolla G. Oral semaglutide improves body composition and preserves lean mass in patients with type 2 diabetes: a 26-week prospective real-life study. Front Endocrinol (Lausanne) 2023; 14:1240263. [PMID: 37780624 PMCID: PMC10534984 DOI: 10.3389/fendo.2023.1240263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Background Oral semaglutide is the first glucagon-like peptide-1 receptor agonist (GLP-1RA) designed for oral administration; it offers a promising opportunity to facilitate an early approach to Type 2 Diabetes (T2D). The study aimed to evaluate, in a real-life setting, the effects of oral semaglutide on the body composition of patients with T2D after 26 weeks of therapy. Methods Thirty-two patients with T2D were evaluated at baseline (T0) and after three (T3) and six (T6) months of therapy with oral semaglutide. At each time point, body composition was assessed using a phase sensitive bioimpedance analyzer. Clinical, anthropometric and laboratory parameters, and the main biometric surrogates of liver steatosis and fibrosis, were also analyzed and compared. Results A significant and early reduction in anthropometric and glucometabolic parameters, alanine aminotransferase, Fatty Liver Index, and Fat Mass was observed. Visceral Adipose Tissue (VAT) decreased, while Fat Free Mass and Skeletal Muscle Mass (SMM) were preserved during therapy, resulting in a beneficial increase in the SMM/VAT ratio. Finally, an overall improvement in body fluid distribution was observed. Conclusion Our real-world data confirm the clinical efficacy of oral semaglutide and highlight its ability to improve the nutritional status of patients with T2D.
Collapse
Affiliation(s)
- Sara Volpe
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Giuseppe Lisco
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Margherita Fanelli
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Davide Racaniello
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Valentina Colaianni
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Valentina Lavarra
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Domenico Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Lucilla Crudele
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Vincenzo Triggiani
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Carlo Sabbà
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| | - Giovanni De Pergola
- Unit of Geriatrics and Internal Medicine, National Institute of Gastroenterology—IRCCS “Saverio de Bellis”, Bari, Italy
| | - Giuseppina Piazzolla
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
10
|
Xiang J, Qin L, Zhong J, Xia N, Liang Y. GLP-1RA Liraglutide and Semaglutide Improves Obesity-Induced Muscle Atrophy via SIRT1 Pathway. Diabetes Metab Syndr Obes 2023; 16:2433-2446. [PMID: 37602204 PMCID: PMC10439806 DOI: 10.2147/dmso.s425642] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023] Open
Abstract
Background Obesity is related to the loss of skeletal muscle mass and function (sarcopenia). The co-existence of obesity and sarcopenia is called sarcopenic obesity (SO). Glucagon like peptide-1 receptor agonists (GLP-1RA) are widely used in the treatment of diabetes and obesity. However, the protective effects of GLP-1RA on skeletal muscle in obesity and SO are not clear. This study investigated the effects of GLP-1RA liraglutide and semaglutide on obesity-induced muscle atrophy and explored the underlying mechanisms. Methods Thirty-six male C57BL/6J mice were randomly divided into two groups and fed a regular diet and a high-fat diet for 18 weeks, respectively. After establishing an obesity model, mice were further divided into six groups: control group, liraglutide (LIRA) group, semaglutide (SEMA) group, high-fat diet (HFD) group, HFD + LIRA group, HFD + SEMA group, and subcutaneous injection for 4 weeks. The body weight, muscle mass, muscle strength, glycolipid metabolism, muscle atrophy markers, myogenic differentiation markers, GLUT4 and SIRT1 were analyzed. C2C12 myotube cells treated with palmitic acid (PA) were divided into four groups: control group, PA group, PA + LIRA group, PA + SEMA group. The changes in glucose uptake, myotube diameter, lipid droplet infiltration, markers of muscle atrophy, myogenic differentiation markers, GLUT4 and SIRT1 were analyzed, and the changes in related indicators were observed after the addition of SIRT1 inhibitor EX527. Results Liraglutide and semaglutide reduced HFD-induced body weight gain, excessive lipid accumulation and improved muscle atrophy. Liraglutide and semaglutide eliminated the increase of muscle atrophy markers in skeletal muscle and C2C12 myotubes. Liraglutide and semaglutide restored impaired glucose tolerance and insulin resistance. However, these beneficial effects were attenuated by inhibiting SIRT1 expression. Conclusion Liraglutide and semaglutide protects skeletal muscle against obesity-induced muscle atrophy via the SIRT1 pathway.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Liyan Qin
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Jinling Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Ning Xia
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuzhen Liang
- Department of Endocrinology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
11
|
Alabadi B, Civera M, De la Rosa A, Martinez-Hervas S, Gomez-Cabrera MC, Real JT. Low Muscle Mass Is Associated with Poorer Glycemic Control and Higher Oxidative Stress in Older Patients with Type 2 Diabetes. Nutrients 2023; 15:3167. [PMID: 37513585 PMCID: PMC10383462 DOI: 10.3390/nu15143167] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Body composition changes that occur during aging, such as loss of lean mass, are unfavorable at metabolic level and they can explain, in part, the appearance of certain age-associated diseases such as type 2 diabetes (T2D). Separately, T2D is associated with an increase in oxidative stress (OS) which negatively affects skeletal muscle. Our aim was to study the differences in clinical and nutritional parameters, disease control, and OS in a cohort of older patients with T2D classified according to the amount of lean mass they had. We included 100 adults older than 65 years with T2D. We found that women with low fat-free mass and muscle mass have worse T2D metabolic control. Moreover, the patients with a low percentile of muscle mass present a high value of OS. The study shows that the presence of low lean mass (LM) in the geriatric population diagnosed with T2D is associated with poorer glycemic control and greater OS.
Collapse
Affiliation(s)
- Blanca Alabadi
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario of Valencia, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
| | - Miguel Civera
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario of Valencia, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Adrián De la Rosa
- Laboratory of Applied Sciences of Sport and Innovation Research Group (GICED), Unidades Tecnológicas de Santander (UTS), Bucaramanga 680006, Colombia
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Sergio Martinez-Hervas
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario of Valencia, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, 28029 Madrid, Spain
| | - José T Real
- Service of Endocrinology and Nutrition, Hospital Clínico Universitario of Valencia, 46010 Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), ISCIII, 28029 Madrid, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
12
|
Pan R, Liu J, Chen Y. Treatment of obesity-related diabetes: significance of thermogenic adipose tissue and targetable receptors. Front Pharmacol 2023; 14:1144918. [PMID: 37435495 PMCID: PMC10332465 DOI: 10.3389/fphar.2023.1144918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Diabetes mellitus is mainly classified into four types according to its pathogenesis, of which type 2 diabetes mellitus (T2DM) has the highest incidence rate and is most relevant to obesity. It is characterized by high blood glucose, which is primarily due to insulin resistance in tissues that are responsible for glucose homeostasis (such as the liver, skeletal muscle, and white adipose tissue (WAT)) combined with insufficiency of insulin secretion from pancreatic β-cells. Treatment of diabetes, especially treatment of diabetic complications (such as diabetic nephropathy), remains problematic. Obesity is one of the main causes of insulin resistance, which, however, could potentially be treated by activating thermogenic adipose tissues, like brown and beige adipose tissues, because they convert energy into heat through non-shivering thermogenesis and contribute to metabolic homeostasis. In this review, we summarize the function of certain anti-diabetic medications with known thermogenic mechanisms and focus on various receptor signaling pathways, such as previously well-known and recently discovered ones that are involved in adipose tissue-mediated thermogenesis and could be potentially targeted to combat obesity and its associated diabetes, for a better understanding of the molecular mechanisms of non-shivering thermogenesis and the development of novel therapeutic interventions for obesity-related diabetes and potentially diabetic complications.
Collapse
Affiliation(s)
- Ruping Pan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiadai Liu
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Endocrinology and Metabolism, Ministry of Education, Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Chen
- Department of Endocrinology, Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Laboratory of Endocrinology and Metabolism, Ministry of Education, Key Laboratory of Vascular Aging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| |
Collapse
|