1
|
Biglari L, Naghdi M, Poursamar SA, Nilforoushan MR, Bigham A, Rafienia M. A route toward fabrication of 3D printed bone scaffolds based on poly(vinyl alcohol)-chitosan/bioactive glass by sol-gel chemistry. Int J Biol Macromol 2024; 258:128716. [PMID: 38081483 DOI: 10.1016/j.ijbiomac.2023.128716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Among different methods for the fabrication of bone scaffolds, 3D printing has created great advances in tissue engineering and regenerative medicine owing to its ability to make objects mimicking native tissues. Thanks to its abundant availability, structural features, and favorable biological properties, chitosan (CS) hydrogel was selected to be used for preparation of the bone scaffolds. However, the 3D printing of CS-based hydrogels is still under early exploration. Knowing the fact that natural polymers are not so competent at holding large amounts of water, poly(vinyl alcohol) as the second polymer was employed. The novelty of the present research lies in the concept of employing sol-gel chemistry in order to attain proper viscosity and rheological behavior to give self-standing filaments of the polymer blends. Employing sol-gel reaction in the preparation of the hybrid hydrogels had the advantage of endowing shape fidelity to the polymer blend without any solidifying in the needle. The obtained organic-inorganic hybrids were directly printed and subsequently cross-linked. The best performance in terms of mechanical strength, cell viability, and bio-mineralization was observed for the 50:50 ratio. The in vitro cell culture and the bioactivity results showed that the printed scaffolds with this method have great potential in bone tissue engineering. Further, this method could be expandable to print other hydrogels with diverse applications such as implantable devices, soft robotics, etc.
Collapse
Affiliation(s)
- Leila Biglari
- Department of Material Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, Iran
| | - Mina Naghdi
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J. F. Kennedy 54-Mostra d'Oltremare pad. 20, Naples 80125, Italy; Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, Naples 80125, Italy
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Ren Y, Song X, Chen Y, Xin W, Zhu C, Huang Y, Tian N, Huang Y. Self-Healing of Poly(vinyl Alcohol)/Poly(acrylic Acid)-Polytetrahydrofuran-Poly(acrylic Acid) Blend Boosted via Shape Memory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14811-14821. [PMID: 37791913 DOI: 10.1021/acs.langmuir.3c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The self-healable polymers that can repair physical damage autonomously to extend their lifetime and reduce maintenance costs are promising intelligent materials. However, utilizing shape memory to facilitate self-repair is unusual at present. In this work, a series of poly(acrylic acid)-polytetrahydrofuran-poly(acrylic acid) polymers (PAA-PTMG-PAA, diPAA-PTMG) are synthesized as a switching phase and healing accelerator to blend into poly(vinyl alcohol) (PVA). The water swelling rate of the blend is up to 400.0% at 1/1 molecular weight ratio of PTMG/PAA and 20.0 wt % blend ratio of diPAA-PTMG to PVA, and its crystallization is changed significantly under wet conditions. The blend membrane exhibits not only a good hydrothermal-response shape memory effect but also a favorable self-healing behavior. The tensile strength and elongation at break are 12.4 MPa and 320.0% after healing at 25 °C, respectively. In particular, the wound membrane can achieve a better self-healing effect with the assistance of shape memory at 37 °C, and the elongation at the break increased to 515.9% after healing. The membrane is not cytotoxic, so it will be a promising biomedical material.
Collapse
Affiliation(s)
- Yajun Ren
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Wen Xin
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Chuanming Zhu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yuan Huang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Na Tian
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Yuling Huang
- School of Engineering, Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Rani MSA, Norrrahim MNF, Knight VF, Nurazzi NM, Abdan K, Lee SH. A Review of Solid-State Proton-Polymer Batteries: Materials and Characterizations. Polymers (Basel) 2023; 15:4032. [PMID: 37836081 PMCID: PMC10575122 DOI: 10.3390/polym15194032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 10/15/2023] Open
Abstract
The ever-increasing global population necessitates a secure and ample energy supply, the majority of which is derived from fossil fuels. However, due to the immense energy demand, the exponential depletion of these non-renewable energy sources is both unavoidable and inevitable in the approaching century. Therefore, exploring the use of polymer electrolytes as alternatives in proton-conducting batteries opens an intriguing research field, as demonstrated by the growing number of publications on the subject. Significant progress has been made in the production of new and more complex polymer-electrolyte materials. Specific characterizations are necessary to optimize these novel materials. This paper provides a detailed overview of these characterizations, as well as recent advancements in characterization methods for proton-conducting polymer electrolytes in solid-state batteries. Each characterization is evaluated based on its objectives, experimental design, a summary of significant results, and a few noteworthy case studies. Finally, we discuss future characterizations and advances.
Collapse
Affiliation(s)
- M. S. A. Rani
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Institute of Tropical and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - M. N. F. Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - V. F. Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia;
| | - N. M. Nurazzi
- Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia;
| | - K. Abdan
- Institute of Tropical and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - S. H. Lee
- Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Cawangan Pahang, Bandar Tun Razak 26400, Malaysia;
| |
Collapse
|
4
|
Li X, Yu Q, Chen K, Cai L, Liu L, Zhang M, Liu Y, Gu Y, Yin JF, Yin P. Gelation of a metal oxide cluster for a proton exchange membrane operated under low humidity. JOURNAL OF MATERIALS CHEMISTRY C 2023; 11:16010-16016. [DOI: 10.1039/d3tc02913a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Metal oxide clusters are complexed with polyvinyl alcohol and glycerol into gel electrolytes, which serve as proton exchange membrane in fuel cell with maximum power density of 141 mW cm−2 under dry gas condition.
Collapse
Affiliation(s)
- Xinpei Li
- School of Machinery and Automation, Weifang University, Weifang 261000, China
| | - Qiang Yu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Kun Chen
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Linkun Cai
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Lu Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Mingxin Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yuan Liu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Yijie Gu
- School of Machinery and Automation, Weifang University, Weifang 261000, China
| | - Jia-Fu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Aziz SB, Dannoun EMA, Abdullah SN, Ghareeb HO, Abdullah RM, Abdalrahman AA, Nofal MM, Kakroo S. The EDLC Energy Storage Device Based on a Natural Gelatin (NG) Biopolymer: Tuning the Capacitance through Plasticizer Variation. Polymers (Basel) 2022; 14:polym14225044. [PMID: 36433172 PMCID: PMC9697460 DOI: 10.3390/polym14225044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
A solution casting method has been utilisedto fabricate plasticisednatural gelatin (NG)-based polymer electrolyte films. The NG electrolyte with 50 wt.% glycerol and 13 wt.% sodium nitrate (NaNO3) attained the highest ionic conductivity of 1.67 × 10-4 S cm-1. Numerous techniques were used to characterisethe NG films to assess their electrochemical performance. The data obtained from impedance spectroscopy for the plasticisedsystem, such as bulk resistance (Rb), arerelatively low. Thiscomprehensive study has been focused on dielectric characteristics and electric modulus parameters. The plasticisedsystem has shown eligibility for practice in energy storage devices with electrochemical strength up to 2.85 V. The TNM data based on ion transference number (tion) and electron transference number (te) determine the identity of the main charge carrier, ion. The redox peaks in the cyclic voltammograms have not been observed as evidence of charge accumulation other than the Faradaic process at the electrode-electrolyte interface. The GCD plot reveals a triangle shape and records arelatively low drop voltage. The high average efficiency of 90% with low ESR has been achieved over 500 cycles, indicating compatibility between electrolyte and electrode. The average power density and energy density of the plasticisedare 700 W/kg and 8 Wh/kg, respectively.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- The Development Center for Research and Training (DCRT), University of Human Development, Kurdistan Region of Iraq, Sulaymaniyah 46001, Iraq
- Correspondence:
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Sozan N. Abdullah
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Hewa O. Ghareeb
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Ari A. Abdalrahman
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
| | - Sunanda Kakroo
- Physics Department, Faculty of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Ahmed MB, Nofal MM, Aziz SB, Al-Saeedi SI, Brza MA, Dannoun EM, Murad AR. The study of ion transport parameters associated with dissociated cation using EIS model in solid polymer electrolytes (SPEs) based on PVA host polymer: XRD, FTIR, and dielectric properties. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Fabrication and Characterization of Flexible Solid Polymers Electrolytes for Supercapacitor Application. Polymers (Basel) 2022; 14:polym14183837. [PMID: 36145980 PMCID: PMC9504414 DOI: 10.3390/polym14183837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, solid flexible polymer blend electrolytes (PBE) composed of polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) with different amounts of sodium thiocyanate (NaSCN) salt mixed in double-distilled water (solvent) are prepared via solution casting method. The obtained films are characterized using several techniques. The study of the surface morphology of the polymer blend salt complex films via the POM technique reveals the presence of amorphous regions due to the NaSCN effect. FTIR spectra studies confirm the complex formation between PVA, PVP, and NaSCN. The addition of 20 wt% NaSCN salt in the composition PVA: PVP (50:50 wt%) polymer blend matrix leads to an increase in the number of charge carriers and thus improves the ionic conductivity. The ionic conductivity of each polymer blend electrolyte was studied using the electrochemical impedance spectroscopy (EIS) method. The highest room temperature ionic conductivity of 8.1 × 10−5 S/cm S cm−1 is obtained for the composition of PVA: PVP (50:50 wt%) with 20 wt% NaSCN. LSV test shows the optimized ion-conducting polymer blend electrolyte is electrochemically stable up to 1.5 V. TNM analysis reveals that 99% of ions contribute for the conductivity against 1% of electrons only in the highly conductive polymer electrolyte PVA: PVP (50:50 wt%) + 20 wt% NaSCN. A supercapacitor device was fabricated using the optimized ion-conducting polymer blend film and graphene oxide (GO) coated electrodes. The GCD curve clearly reveals the behavior of an ideal capacitor with less Faradic process and low ESR value. The columbic efficiency of the GO-based system is found to be 100%, the GO-based electrode exhibits a specific capacitance of 12.15 F/g and the system delivers the charge for a long duration. The specific capacitance of the solid-state supercapacitor cell was found to be 13.28 F/g via the CV approach close to 14.25 F/g obtained with EIS data at low frequency.
Collapse
|
8
|
Optical, thermal and temperature dependent electrical properties of chlorinated natural rubber/copper alumina nanocomposites for flexible electrochemical devices. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04790-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Parvathi K, Bahuleyan BK, Ramesan MT. Enhanced optical, thermal and electrical properties of chlorinated natural rubber/zinc ferrite nanocomposites for flexible electrochemical devices. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2080076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- K. Parvathi
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut, Kerala, India
| | - B. K. Bahuleyan
- Department of General Studies, Yanbu Industrial College, Yanbu, Kingdom of Saudi Arabia
| | - M. T. Ramesan
- Centre for Polymer Science and Technology, Department of Chemistry, University of Calicut, Calicut, Kerala, India
| |
Collapse
|
10
|
Yang SB, Jeong DW, Lee J, Yeasmin S, Kim CK, Yeum JH. Preparation of the Heterogeneous Saponified Poly(Vinyl Alcohol)/Poly(Methyl Methacrylate-Methallyl Alcohol) Blend Film. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2439. [PMID: 35407770 PMCID: PMC9000200 DOI: 10.3390/ma15072439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
For the first time, poly(vinyl alcohol) (PVA)/poly(methyl methacrylate-methallyl alcohol) (P(MMA-MAA)) (9:1, 7:3, 5:5) blend films were made simultaneously using the saponification method in a heterogeneous medium from poly(vinyl acetate) (PVAc)/poly(methyl methacrylate) (PMMA) (9:1, 7:3, 5:5) blend films, respectively. The surface morphology and characteristics of the films were investigated using optical microscopy (OM), atomic force microscopy (AFM), X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Moreover, the effect of the PVAc content on the degree of saponification (DS) of the PVAc/PMMA films were evaluated and revealed that the obtained DS value increased with the increase in PVAc content in the PVAc/PMMA blend films. According to the OM results, the saponified films demonstrated increased surface roughness compared with the unsaponified films. The AFM images revealed morphological variation among the saponified PVAc/PMMA blend films with different mass ratios of 9:1, 7:3, and 5:5. According to the DSC and TGA results, all blend film types exhibited higher thermal property after the saponification treatment. The XRD and FTIR results confirmed the conversion of the PVAc/PMMA into PVA/P(MMA-MAA) films. Thus, our present work may give a new idea for making blend film as promising medical material with significant surface properties based on hydrophilic/hydrophobic strategy.
Collapse
Affiliation(s)
- Seong Baek Yang
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea; (S.B.Y.); (D.W.J.); (J.L.); (S.Y.)
| | - Dae Won Jeong
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea; (S.B.Y.); (D.W.J.); (J.L.); (S.Y.)
| | - Jungeon Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea; (S.B.Y.); (D.W.J.); (J.L.); (S.Y.)
| | - Sabina Yeasmin
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea; (S.B.Y.); (D.W.J.); (J.L.); (S.Y.)
| | - Chang-Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| | - Jeong Hyun Yeum
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea; (S.B.Y.); (D.W.J.); (J.L.); (S.Y.)
- Department of Horticultural Science, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
11
|
Fathi M, El Yacoubi A, El Youbi MS, Chafik El Idrissi B. New silver loaded calcium phosphate bone cement: Characterization and phase composition. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2022676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Majda Fathi
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Ahmed El Yacoubi
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
- Laboratory of Applied Chemistry and Environment, Mineral Solid Chemistry, Mohamed First University, Oujda, Morocco
| | - Mohamed Salaheddine El Youbi
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Brahim Chafik El Idrissi
- Laboratory of Advanced Materials and Process Engineering, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
12
|
Faris BK, Hassan AA, Aziz SB, Brza MA, Abdullah AM, Abdalrahman AA, Abu Ali OA, Saleh DI. Impedance, Electrical Equivalent Circuit (EEC) Modeling, Structural (FTIR and XRD), Dielectric, and Electric Modulus Study of MC-Based Ion-Conducting Solid Polymer Electrolytes. MATERIALS 2021; 15:ma15010170. [PMID: 35009315 PMCID: PMC8746227 DOI: 10.3390/ma15010170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022]
Abstract
The polymer electrolyte system of methylcellulose (MC) doped with various sodium bromide (NaBr) salt concentrations is prepared in this study using the solution cast technique. FTIR and XRD were used to identify the structural changes in solid films. Sharp crystalline peaks appeared at the XRD pattern at 40 and 50 wt.% of NaBr salt. The electrical impedance spectroscopy (EIS) study illustrates that the loading of NaBr increases the electrolyte conductivity at room temperature. The DC conductivity of 6.71 × 10−6 S/cm is obtained for the highest conducting electrolyte. The EIS data are fitted with the electrical equivalent circuit (EEC) to determine the impedance parameters of each film. The EEC modeling helps determine the circuit elements, which is decisive from the engineering perspective. The DC conductivity tendency is further established by dielectric analysis. The EIS spectra analysis shows a decrease in bulk resistance, demonstrating free ion carriers and conductivity boost. The dielectric property and relaxation time confirmed the non-Debye behavior of the electrolyte system. An incomplete semicircle further confirms this behavior model in the Argand plot. The distribution of relaxation times is related to the presence of conducting ions in an amorphous structure. Dielectric properties are improved with the addition of NaBr salt. A high value of a dielectric constant is seen at the low frequency region.
Collapse
Affiliation(s)
- Balen K. Faris
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
| | - Ary A. Hassan
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence:
| | - Mohamad A. Brza
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal 46023, Sulaimani, Iraq; (M.A.B.); (A.M.A.)
| | - Aziz M. Abdullah
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal 46023, Sulaimani, Iraq; (M.A.B.); (A.M.A.)
| | - Ari A. Abdalrahman
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (B.K.F.); (A.A.H.); (A.A.A.)
| | - Ola A. Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (O.A.A.A.); (D.I.S.)
| | - Dalia I. Saleh
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (O.A.A.A.); (D.I.S.)
| |
Collapse
|
13
|
Abdullah AM, Aziz SB, Saeed SR. Structural and electrical properties of polyvinyl alcohol (PVA):Methyl cellulose (MC) based solid polymer blend electrolytes inserted with sodium iodide (NaI) salt. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
14
|
Electrochemical characteristics of solid state double-layer capacitor constructed from proton conducting chitosan-based polymer blend electrolytes. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03278-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Aziz SB, Nofal MM, Abdulwahid RT, O. Ghareeb H, Dannoun EMA, M. Abdullah R, Hamsan MH, Kadir MFZ. Plasticized Sodium-Ion Conducting PVA Based Polymer Electrolyte for Electrochemical Energy Storage-EEC Modeling, Transport Properties, and Charge-Discharge Characteristics. Polymers (Basel) 2021; 13:803. [PMID: 33807956 PMCID: PMC7962018 DOI: 10.3390/polym13050803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 02/02/2023] Open
Abstract
This report presents the preparation of plasticized sodium ion-conducting polymer electrolytes based on polyvinyl alcohol (PVA)via solution cast technique. The prepared plasticized polymer electrolytes were utilized in the device fabrication of electrical double-layer capacitors (EDLCs). On an assembly EDLC system, cyclic voltammetry (CV), electrical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), transfer number measurement (TNM) and charge-discharging responses were performed. The influence of plasticization on polymer electrolytes was investigated in terms of electrochemical properties applying EIS and TNM. The EIS was fitted with electrical equivalent circuit (EEC) models and ion transport parameters were estimated with the highest conductivity of 1.17 × 10-3 S cm-1 was recorded. The CV and charge-discharging responses were used to evaluate the capacitance and the equivalent series resistance (ESR), respectively. The ESR of the highest conductive sample was found to be 91.2 Ω at the first cycle, with the decomposition voltage of 2.12 V. The TNM measurement has shown the dominancy of ions with tion = 0.982 for the highest conducting sample. The absence of redox peaks was proved via CV, indicating the charge storing process that comprised ion accumulation at the interfacial region. The fabricated EDLC device is stable for up to 400 cycles. At the first cycle, a high specific capacitance of 169 F/g, an energy density of 19 Wh/kg, and a power density of 600 W/kg were obtained.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (R.T.A.); (R.M.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (R.T.A.); (R.M.A.)
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Iraq
| | - Hewa O. Ghareeb
- Chemistry Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (R.T.A.); (R.M.A.)
| | - M. H. Hamsan
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - M. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| |
Collapse
|
16
|
Ionic Conductive Membranes for Fuel Cells. MEMBRANES 2021; 11:membranes11030159. [PMID: 33669138 PMCID: PMC7996502 DOI: 10.3390/membranes11030159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022]
|
17
|
Asnawi AS, Aziz SB, Brevik I, Brza MA, Yusof YM, Alshehri SM, Ahamad T, Kadir MFZ. The Study of Plasticized Sodium Ion Conducting Polymer Blend Electrolyte Membranes Based on Chitosan/Dextran Biopolymers: Ion Transport, Structural, Morphological and Potential Stability. Polymers (Basel) 2021; 13:polym13030383. [PMID: 33530553 PMCID: PMC7865308 DOI: 10.3390/polym13030383] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/07/2023] Open
Abstract
The polymer electrolyte system of chitosan/dextran-NaTf with various glycerol concentrations is prepared in this study. The electrical impedance spectroscopy (EIS) study shows that the addition of glycerol increases the ionic conductivity of the electrolyte at room temperature. The highest conducting plasticized electrolyte shows the maximum DC ionic conductivity of 6.10 × 10−5 S/cm. Field emission scanning electron microscopy (FESEM) is used to investigate the effect of plasticizer on film morphology. The interaction between the electrolyte components is confirmed from the existence of the O–H, C–H, carboxamide, and amine groups. The XRD study is used to determine the degree of crystallinity. The transport parameters of number density (n), ionic mobility (µ), and diffusion coefficient (D) of ions are determined using the percentage of free ions, due to the asymmetric vibration (υas(SO3)) and symmetric vibration (υs(SO3)) bands. The dielectric property and relaxation time are proved the non-Debye behavior of the electrolyte system. This behavior model is further verified by the existence of the incomplete semicircle arc from the Argand plot. Transference numbers of ion (tion) and electron (te) for the highest conducting plasticized electrolyte are identified to be 0.988 and 0.012, respectively, confirming that the ions are the dominant charge carriers. The tion value are used to further examine the contribution of ions in the values of the diffusion coefficient and mobility of ions. Linear sweep voltammetry (LSV) shows the potential window for the electrolyte is 2.55 V, indicating it to be a promising electrolyte for application in electrochemical energy storage devices.
Collapse
Affiliation(s)
- Ahmad S.F.M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah, Malacca 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Shujahadeen B. Aziz
- Hameedmajid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
- Department of Civil engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
- Correspondence: (S.B.A.); (I.B.)
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Correspondence: (S.B.A.); (I.B.)
| | - Mohamad A. Brza
- Hameedmajid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Yuhanees M. Yusof
- Chemical Engineering Section, Universiti Kuala Lumpur Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah, Malacca 78000, Malaysia; (A.S.F.M.A.); (Y.M.Y.)
| | - Saad M. Alshehri
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - Tansir Ahamad
- Department of Chemistry, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (S.M.A.); (T.A.)
| | - M. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
18
|
Brza M, Aziz SB, Raza Saeed S, Hamsan MH, Majid SR, Abdulwahid RT, Kadir MFZ, Abdullah RM. Energy Storage Behavior of Lithium-Ion Conducting poly(vinyl alcohol) (PVA): Chitosan(CS)-Based Polymer Blend Electrolyte Membranes: Preparation, Equivalent Circuit Modeling, Ion Transport Parameters, and Dielectric Properties. MEMBRANES 2020; 10:E381. [PMID: 33266006 PMCID: PMC7760691 DOI: 10.3390/membranes10120381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 01/23/2023]
Abstract
Plasticized lithium-ion-based-conducting polymer blend electrolytes based on poly(vinyl alcohol) (PVA):chitosan (CS) polymer was prepared using a solution cast technique. The conductivity of the polymer electrolyte system was found to be 8.457 × 10-4 S/cm, a critical factor for electrochemical device applications. It is indicated that the number density (n), diffusion coefficient (D), and mobility (μ) of ions are increased with the concentration of glycerol. High values of dielectric constant and dielectric loss were observed at low frequency region. A correlation was found between the dielectric constant and DC conductivity. The achieved transference number of ions (tion) and electrons (te) for the highest conducting plasticized sample were determined to be 0.989 and 0.011, respectively. The electrochemical stability for the highest conducting sample was 1.94 V, indicated by linear sweep voltammetry (LSV). The cyclic voltammetry (CV) response displayed no redox reaction peaks through its entire potential range. Through the constructing electric double-layer capacitor, the energy storage capacity of the highest conducting sample was investigated. All decisive parameters of the EDLC were determined. At the first cycle, the specific capacitance, internal resistance, energy density, and power density were found to be 130 F/g, 80 Ω, 14.5 Wh/kg, and 1100 W/kg, respectively.
Collapse
Affiliation(s)
- Mohamad Brza
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (R.T.A.); (R.M.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Salah Raza Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal 46023, Iraq;
| | - Muhamad H. Hamsan
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - Siti Rohana Majid
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (R.T.A.); (R.M.A.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (R.T.A.); (R.M.A.)
| |
Collapse
|
19
|
Hadi JM, Aziz SB, R. Saeed S, Brza MA, Abdulwahid RT, Hamsan MH, M. Abdullah R, Kadir MFZ, Muzakir SK. Investigation of Ion Transport Parameters and Electrochemical Performance of Plasticized Biocompatible Chitosan-Based Proton Conducting Polymer Composite Electrolytes. MEMBRANES 2020; 10:E363. [PMID: 33233480 PMCID: PMC7700473 DOI: 10.3390/membranes10110363] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023]
Abstract
In this study, biopolymer composite electrolytes based on chitosan:ammonium iodide:Zn(II)-complex plasticized with glycerol were successfully prepared using the solution casting technique. Various electrical and electrochemical parameters of the biopolymer composite electrolytes' films were evaluated prior to device application. The highest conducting plasticized membrane was found to have a conductivity of 1.17 × 10-4 S/cm. It is shown that the number density, mobility, and diffusion coefficient of cations and anions fractions are increased with the glycerol amount. Field emission scanning electron microscope and Fourier transform infrared spectroscopy techniques are used to study the morphology and structure of the films. The non-Debye type of relaxation process was confirmed from the peak appearance of the dielectric relaxation study. The obtained transference number of ions (cations and anions) and electrons for the highest conducting sample were identified to be 0.98 and 0.02, respectively. Linear sweep voltammetry shows that the electrochemical stability of the highest conducting plasticized system is 1.37 V. The cyclic voltammetry response displayed no redox reaction peaks over its entire potential range. It was discovered that the addition of Zn(II)-complex and glycerol plasticizer improved the electric double-layer capacitor device performances. Numerous crucial parameters of the electric double-layer capacitor device were obtained from the charge-discharge profile. The prepared electric double-layer capacitor device showed that the initial values of specific capacitance, equivalence series resistance, energy density, and power density are 36 F/g, 177 Ω, 4.1 Wh/kg, and 480 W/kg, respectively.
Collapse
Affiliation(s)
- Jihad M. Hadi
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - Salah R. Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46023, Iraq;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 53100, Malaysia
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Muhamad H. Hamsan
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - Ranjdar M. Abdullah
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.); (R.M.A.)
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (M.H.H.); (M.F.Z.K.)
| | - S. K. Muzakir
- Material Technology Program, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 43600, Malaysia;
| |
Collapse
|
20
|
Characteristics of Glycerolized Chitosan: NH 4NO 3-Based Polymer Electrolyte for Energy Storage Devices with Extremely High Specific Capacitance and Energy Density Over 1000 Cycles. Polymers (Basel) 2020; 12:polym12112718. [PMID: 33212879 PMCID: PMC7698417 DOI: 10.3390/polym12112718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
In this work, plasticized polymer electrolyte films consisting of chitosan, ammonium nitrate (NH4NO3) and glycerol for utilization in energy storage devices was presented. Various microscopic, spectroscopic and electrochemical techniques were used to characterize the concerned electrolyte and the electrical double-layer capacitor (EDLC) assembly. The nature of complexation between the polymer electrolyte components was examined via X-ray diffraction analysis. In the morphological study, field emission scanning electron microscopy (FESEM) was used to investigate the impact of glycerol as a plasticizer on the morphology of films. The polymer electrolyte (conducting membrane) was found to have a conductivity of 3.21 × 10-3 S/cm. It is indicated that the number density (n), mobility (μ) and diffusion coefficient (D) of ions are increased with the glycerol amount. The mechanism of charge storing was clarified, which implies a non-Faradaic process. The voltage window of the polymer electrolyte is 2.32 V. It was proved that the ion is responsible for charge-carrying via measuring the transference number (TNM). It was also determined that the internal resistance of the EDLC assembly lay between 39 and 50 Ω. The parameters associated with the EDLC assembly are of great importance and the specific capacitance (Cspe) was determined to be almost constant over 1 to 1000 cycles with an average of 124 F/g. Other decisive parameters were found: energy density (18 Wh/kg) and power density (2700 W/kg).
Collapse
|
21
|
The Study of Structural, Impedance and Energy Storage Behavior of Plasticized PVA:MC Based Proton Conducting Polymer Blend Electrolytes. MATERIALS 2020; 13:ma13215030. [PMID: 33171877 PMCID: PMC7664675 DOI: 10.3390/ma13215030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In this study, structural characterization, electrical properties and energy storage performance of plasticized polymer electrolytes based on polyvinyl alcohol/methylcellulose/ammonium thiocyanate (PVA/MC-NH4SCN) were carried out. An X-ray diffraction (XRD) study displayed that the plasticized electrolyte system with the uppermost value of direct current (DC) ionic conductivity was the most amorphous system. The electrolyte in the present work realized an ionic conductivity of 2.903 × 10−3 Scm−1 at room temperature. The main charge carrier in the electrolyte was found to be the ions with the ionic transference number (tion) of 0.912, compared to only 0.088 for the electronic transference number (telec). The electrochemical stability potential window of the electrolyte is 2.1 V. The specific capacitance was found to reduce from 102.88 F/g to 28.58 F/g as the scan rate increased in cyclic voltammetry (CV) analysis. The fabricated electrochemical double layer capacitor (EDLC) was stable up to 200 cycles with high efficiency. The specific capacitance obtained for the EDLC by using charge–discharge analysis was 132.7 F/g at the first cycle, which is slightly higher compared to the CV plot. The equivalent series resistance (ESR) increased from 58 to 171 Ω throughout the cycles, which indicates a good electrolyte/electrode contact. Ions in the electrolyte were considered to have almost the same amount of energy during the conduction process as the energy density is approximately at 14.0 Wh/kg throughout the 200 cycles. The power density is stabilized at the range of 1444.3 to 467.6 W/kg as the EDLC completed the cycles.
Collapse
|
22
|
Aziz SB, Brza MA, Dannoun EMA, Hamsan MH, Hadi JM, Kadir MFZ, Abdulwahid RT. The Study of Electrical and Electrochemical Properties of Magnesium Ion Conducting CS: PVA Based Polymer Blend Electrolytes: Role of Lattice Energy of Magnesium Salts on EDLC Performance. Molecules 2020; 25:E4503. [PMID: 33019618 PMCID: PMC7583792 DOI: 10.3390/molecules25194503] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plasticized magnesium ion conducting polymer blend electrolytes based on chitosan (CS): polyvinyl alcohol (PVA) was synthesized with a casting technique. The source of ions is magnesium triflate Mg(CF3SO3)2, and glycerol was used as a plasticizer. The electrical and electrochemical characteristics were examined. The outcome from X-ray diffraction (XRD) examination illustrates that the electrolyte with highest conductivity exhibits the minimum degree of crystallinity. The study of the dielectric relaxation has shown that the peak appearance obeys the non-Debye type of relaxation process. An enhancement in conductivity of ions of the electrolyte system was achieved by insertion of glycerol. The total conductivity is essentially ascribed to ions instead of electrons. The maximum DC ionic conductivity was measured to be 1.016 × 10-5 S cm-1 when 42 wt.% of plasticizer was added. Potential stability of the highest conducting electrolyte was found to be 2.4 V. The cyclic voltammetry (CV) response shows the behavior of the capacitor is non-Faradaic where no redox peaks appear. The shape of the CV response and EDLC specific capacitance are influenced by the scan rate. The specific capacitance values were 7.41 F/g and 32.69 F/g at 100 mV/s and 10 mV/s, respectively. Finally, the electrolyte with maximum conductivity value is obtained and used as electrodes separator in the electrochemical double-layer capacitor (EDLC) applications. The role of lattice energy of magnesium salts in energy storage performance is discussed in detail.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government-Iraq, Sulaimani 46001, Iraq
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Mohamad A. Brza
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Jihad M. Hadi
- College of Engineering, Tishk International University, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Rebar T. Abdulwahid
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Kurdistan Regional Government-Iraq, Sulaimani 46001, Iraq;
| |
Collapse
|
23
|
B. Aziz S, S. Marf A, Dannoun EMA, Brza MA, Abdullah RM. The Study of the Degree of Crystallinity, Electrical Equivalent Circuit, and Dielectric Properties of Polyvinyl Alcohol (PVA)-Based Biopolymer Electrolytes. Polymers (Basel) 2020; 12:E2184. [PMID: 32987807 PMCID: PMC7598695 DOI: 10.3390/polym12102184] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
This report presents a facile and efficient methodology for the fabrication of plasticized polyvinyl alcohol (PVA):chitosan (CS) polymer electrolytes using a solution cast technique. Regarding characterizations of electrical properties and structural behavior, the electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) are used, respectively. Crystalline peaks appear in the XRD pattern of the PVA:CS:NH4I while no peaks can be seen in the XRD pattern of plasticized systems. The degree of crystallinity is calculated for all the samples from the deconvoluted area of crystalline and amorphous phases. Considering the EIS measurements, the most conductive plasticized system shows a relatively high conductivity of (1.37 × 10-4) S/cm, which is eligible for applications in energy storage devices. The analysis of the EIS spectra reveals a decrease in bulk resistance which indicates an increase in free ion carriers. The electrical equivalent circuit (EEC) model is used in the analysis of EIS plots. Dielectric properties are modified with the addition of glycerol as a plasticizer. It is proved that the addition of glycerol as a plasticizer lowers ion association. It also shows, at the low-frequency region, a large value of a dielectric constant which is correlated with electrode polarization (EP). The distribution of relaxation times is associated with conducting ions.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (A.S.M.); (R.M.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Ayub S. Marf
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (A.S.M.); (R.M.A.)
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Mohamad A. Brza
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Gombak, Malaysia;
| | - Ranjdar M. Abdullah
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (A.S.M.); (R.M.A.)
| |
Collapse
|
24
|
Muthuvinayagam M, Sundaramahalingam K. Characterization of proton conducting poly[ethylene oxide]: Poly[vinyl pyrrolidone] based polymer blend electrolytes for electrochemical devices. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320953467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Highlights Highly amorphous PEO/PVP/xwt% NH4NO3 polymer electrolytes are prepared by simple solution casting technique The XRD analysis confirms the amorphous nature of PEO/PVP films and the FTIR and SEM confirm the blending of polymers. Transference number analysis confirms that the prepared polymer electrolytes are mostly ionic conductors. The prepared polymer electrolyte shows potential window between −1.7 to 1.7V. The specific capacitance of the polymer electrolyte decreases with higher scan rate. The proton electrochemical cell was fabricated and the maximum OCV is 0.82V.
Collapse
Affiliation(s)
- M Muthuvinayagam
- Multi-functional Materials Laboratory/International Research Center, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| | - K Sundaramahalingam
- Department of Physics, School of Advanced Sciences, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India
| |
Collapse
|
25
|
Aziz SB, M. Hadi J, Dannoun EMA, Abdulwahid RT, R. Saeed S, Shahab Marf A, Karim WO, Kadir MF. The Study of Plasticized Amorphous Biopolymer Blend Electrolytes Based on Polyvinyl Alcohol (PVA): Chitosan with High Ion Conductivity for Energy Storage Electrical Double-Layer Capacitors (EDLC) Device Application. Polymers (Basel) 2020; 12:E1938. [PMID: 32867191 PMCID: PMC7565711 DOI: 10.3390/polym12091938] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, plasticized films of polyvinyl alcohol (PVA): chitosan (CS) based electrolyte impregnated with ammonium thiocyanate (NH4SCN) were successfully prepared using a solution-casting technique. The structural features of the electrolyte films were investigated through the X-ray diffraction (XRD) pattern. The enrichment of the amorphous phase with increasing glycerol concentration was confirmed by observing broad humps. The electrical impedance spectroscopy (EIS) portrays the improvement of ionic conductivity from 10-5 S/cm to 10-3 S/cm upon the addition of plasticizer. The electrolytes incorporated with 28 wt.% and 42 wt.% of glycerol were observed to be mainly ionic conductor as the ionic transference number measurement (TNM) was found to be 0.97 and 0.989, respectively. The linear sweep voltammetry (LSV) investigation indicates that the maximum conducting sample is stable up to 2 V. An electrolyte with the highest conductivity was used to make an energy storage electrical double-layer capacitor (EDLC) device. The cyclic voltammetry (CV) plot depicts no distinguishable peaks in the polarization curve, which means no redox reaction has occurred at the electrode/electrolyte interface. The fabricated EDLC displays the initial specific capacitance, equivalent series resistance, energy density, and power density of 35.5 F/g, 65 Ω, 4.9 Wh/kg, and 399 W/kg, respectively.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq; (R.T.A.); (A.S.M.)
| | - Jihad M. Hadi
- College of Engineering, Tishk International University, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Elham M. A. Dannoun
- Associate Director of General Science Department, Woman Campus, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Rebar T. Abdulwahid
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq; (R.T.A.); (A.S.M.)
- Department of Physics, College of Education, Old Campus, University of Sulaimani, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Salah R. Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Kurdistan Region, Sulaimani 46001, Iraq;
| | - Ayub Shahab Marf
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq; (R.T.A.); (A.S.M.)
| | - Wrya O. Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government-Iraq, Sulaimani 46001, Iraq;
| | - Mohd F.Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
26
|
Brza MA, Aziz SB, Nofal MM, Saeed SR, Al-Zangana S, Karim WO, Hussen SA, Abdulwahid RT, Kadir MFZ. Drawbacks of Low Lattice Energy Ammonium Salts for Ion-Conducting Polymer Electrolyte Preparation: Structural, Morphological and Electrical Characteristics of CS:PEO:NH 4BF 4-Based Polymer Blend Electrolytes. Polymers (Basel) 2020; 12:E1885. [PMID: 32825679 PMCID: PMC7564181 DOI: 10.3390/polym12091885] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022] Open
Abstract
In the present work it was shown that low lattice energy ammonium salts are not favorable for polymer electrolyte preparation for electrochemical device applications. Polymer blend electrolytes based on chitosan:poly(ethylene oxide) (CS:PEO) incorporated with various amounts of low lattice energy NH4BF4ammonium salt have been prepared using the solution cast technique. Both structural and morphological studies were carried out to understand the phenomenon of ion association. Sharp peaks appeared in X-ray diffraction (XRD) spectra of the samples with high salt concentration. The degree of crystallinity increased from 8.52 to 65.84 as the salt concentration increased up to 40 wt.%. These are correlated to the leakage of the associated anions and cations of the salt to the surface of the polymer. The structural behaviors were further confirmed by morphological study. The morphological results revealed the large-sized protruded salts at high salt concentration. Based on lattice energy of salts, the phenomena of salt leakage were interpreted. Ammonium salts with lattice energy lower than 600 kJ/mol are not preferred for polymer electrolyte preparation due to the significant tendency of ion association among cations and anions. Electrical impedance spectroscopy was used to estimate the conductivity of the samples. It was found that the bulk resistance increased from 1.1 × 104 ohm to 0.7 × 105 ohm when the salt concentration raised from 20 wt.% to 40 wt.%, respectively; due to the association of cations and anions. The low value of direct current (DC) conductivity (7.93 × 10-7 S/cm) addressed the non-suitability of the electrolytes for electrochemical device applications. The calculated values of the capacitance over the interfaces of electrodes-electrolytes (C2) were found to drop from 1.32 × 10-6 F to 3.13 × 10-7 F with increasing salt concentration. The large values of dielectric constant at low frequencies are correlated to the electrode polarization phenomena while their decrements with rising frequency are attributed to the lag of ion polarization in respect of the fast orientation of the applied alternating current (AC) field. The imaginary part of the electric modulus shows obvious peaks known as conduction relaxation peaks.
Collapse
Affiliation(s)
- Mohamad A. Brza
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Gombak, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Regional Government, Iraq; (S.A.H.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Salah R. Saeed
- Charmo Research Center, Charmo University, Peshawa Street, Chamchamal, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Kurdistan Regional Government, Iraq;
| | - Wrya O. Karim
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Sarkawt A. Hussen
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Regional Government, Iraq; (S.A.H.); (R.T.A.)
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Sulaimani 46001, Kurdistan Regional Government, Iraq; (S.A.H.); (R.T.A.)
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
27
|
Electrical, Dielectric Property and Electrochemical Performances of Plasticized Silver Ion-Conducting Chitosan-Based Polymer Nanocomposites. MEMBRANES 2020; 10:membranes10070151. [PMID: 32668644 PMCID: PMC7408488 DOI: 10.3390/membranes10070151] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 12/02/2022]
Abstract
In the present work, chitosan (CS) as a natural biopolymer was used to prepare nanocomposite polymer electrolytes (NCPEs) in order to reduce plastic waste pollution. The plasticized CS-based NCSPE has been prepared via the solution casting technique. The electrical properties of the films were investigated using AC conductivity, dielectric properties, electric modulus, and electrical impedance spectroscopy (EIS). The obtained results from the dielectric properties and electric modulus study confirm the non-Debye behavior of ion dynamics. The effect of glycerol plasticizer on ionic conductivity of the CS:AgNO3:Al2O3 system was investigated via AC conductivity and impedance studies. The conductivity of the samples was explained based on electrical equivalent circuits and Bode plots. The electrochemical properties such as transfer number measurement (TNM), linear sweep voltammetry (LSV), and cyclic voltammetry (CV) were carried out to inspect the sample suitability for electrochemical double-layer capacitor (EDLC) application. The highest conductivity was 3.7 × 10−4 S cm−1 with the electrochemical stability window up to 2.1 V at room temperature. Through the TNM study, the ionic conductivity of plasticized CS-based NCSPE was confirmed, and ion transport (tion) of the highest conducting sample was found to be 0.985. The activated carbon electrode with the highest conducting sample was employed in the EDLC device fabrication. Accordingly, it can be said that the highest conducting sample had capable performance to be applied in electrochemical device application.
Collapse
|
28
|
Asnawi ASFM, B. Aziz S, M. Nofal M, Hamsan MH, Brza MA, Yusof YM, Abdilwahid RT, Muzakir SK, Kadir MFZ. Glycerolized Li + Ion Conducting Chitosan-Based Polymer Electrolyte for Energy Storage EDLC Device Applications with Relatively High Energy Density. Polymers (Basel) 2020; 12:polym12061433. [PMID: 32604910 PMCID: PMC7361679 DOI: 10.3390/polym12061433] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/03/2022] Open
Abstract
In this study, the solution casting method was employed to prepare plasticized polymer electrolytes of chitosan (CS):LiCO2CH3:Glycerol with electrochemical stability (1.8 V). The electrolyte studied in this current work could be established as new materials in the fabrication of EDLC with high specific capacitance and energy density. The system with high dielectric constant was also associated with high DC conductivity (5.19 × 10−4 S/cm). The increase of the amorphous phase upon the addition of glycerol was observed from XRD results. The main charge carrier in the polymer electrolyte was ion as tel (0.044) < tion (0.956). Cyclic voltammetry presented an almost rectangular plot with the absence of a Faradaic peak. Specific capacitance was found to be dependent on the scan rate used. The efficiency of the EDLC was observed to remain constant at 98.8% to 99.5% up to 700 cycles, portraying an excellent cyclability. High values of specific capacitance, energy density, and power density were achieved, such as 132.8 F/g, 18.4 Wh/kg, and 2591 W/kg, respectively. The low equivalent series resistance (ESR) indicated that the EDLC possessed good electrolyte/electrode contact. It was discovered that the power density of the EDLC was affected by ESR.
Collapse
Affiliation(s)
- Ahmed S. F. M. Asnawi
- Chemical Engineering Section, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Universiti Kuala Lumpur, Alor Gajah 78000, Malacca, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
- Correspondence: or
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur, Gombak 53100, Malaysia
| | - Yuhanees M. Yusof
- Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Rebar T. Abdilwahid
- Hameed Majid Advanced Polymeric Materials Research Laboratory, Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq; (M.A.B.); (R.T.A.)
| | - Saifful K. Muzakir
- Material Technology Program, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
29
|
Asnawi ASFM, Aziz SB, Nofal MM, Yusof YM, Brevik I, Hamsan MH, Brza MA, Abdulwahid RT, Kadir MFZ. Metal Complex as a Novel Approach to Enhance the Amorphous Phase and Improve the EDLC Performance of Plasticized Proton Conducting Chitosan-Based Polymer Electrolyte. MEMBRANES 2020; 10:membranes10060132. [PMID: 32630546 PMCID: PMC7344776 DOI: 10.3390/membranes10060132] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
This work indicates that glycerolized chitosan-NH4F polymer electrolytes incorporated with zinc metal complexes are crucial for EDLC application. The ionic conductivity of the plasticized system was improved drastically from 9.52 × 10−4 S/cm to 1.71 × 10−3 S/cm with the addition of a zinc metal complex. The XRD results demonstrated that the amorphous phase was enhanced for the system containing the zinc metal complex. The transference number of ions (tion) and electrons (te) were measured for two of the highest conducting electrolyte systems. It confirmed that the ions were the dominant charge carriers in both systems as tion values for CSNHG4 and CSNHG5 electrolytes were 0.976 and 0.966, respectively. From the examination of LSV, zinc improved the electrolyte electrochemical stability to 2.25 V. The achieved specific capacitance from the CV plot reveals the role of the metal complex on storage properties. The charge–discharge profile was obtained for the system incorporated with the metal complex. The obtained specific capacitance ranged from 69.7 to 77.6 F/g. The energy and power densities became stable from 7.8 to 8.5 Wh/kg and 1041.7 to 248.2 W/kg, respectively, as the EDLC finalized the cycles.
Collapse
Affiliation(s)
- Ahmad S. F. M. Asnawi
- Chemical Engineering Section, Universiti Kuala Lumpur, Malaysian Institute of Chemical & Bioengineering Technology (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
- Correspondence:
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Yuhanees M. Yusof
- Malaysian Institute of Chemical and Bio-Engineering Technology, Universiti Kuala Lumpur (UniKL MICET), Alor Gajah 78000, Malacca, Malaysia;
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Gombak, Malaysia;
| | - Mohamad A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Manufacturing and Materials Engineering, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Gombak, Malaysia
| | - Rebar T. Abdulwahid
- Hameed Majid Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
30
|
B. Aziz S, Hamsan MH, M. Nofal M, Karim WO, Brevik I, Brza MA, Abdulwahid RT, Al-Zangana S, Kadir MFZ. Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes. Polymers (Basel) 2020; 12:E1411. [PMID: 32599794 PMCID: PMC7362077 DOI: 10.3390/polym12061411] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
This report presents the preparation and characterizations of solid biopolymer blend electrolyte films of chitosan as cationic polysaccharide and anionic dextran (CS: Dextran) doped with ammonium iodide (NH4I) to be utilized as electrolyte and electrode separator in electrical double-layer capacitor (EDLC) devices. FTIR and XRD techniques were used to study the structural behavior of the films. From the FTIR band analysis, shifting and broadening of the bands were observed with increasing salt concentration. The XRD analysis indicates amorphousness of the blended electrolyte samples whereby the peaks underwent broadening. The analysis of the impedance spectra emphasized that incorporation of 40 wt.% of NH4I salt into polymer electrolyte exhibited a relatively high conductivity (5.16 × 10-3 S/cm). The transference number measurement (TNM) confirmed that ion (tion = 0.928) is the main charge carriers in the conduction process. The linear sweep voltammetry (LSV) revealed the extent of durability of the relatively high conducting film which was 1.8 V. The mechanism of charge storage within the fabricated EDLC has been explained to be fully capacitive behavior with no redox peaks appearance in the cyclic voltammogram (CV). From this findings, four important parameters of the EDLC; specific capacitance, equivalent series resistance, energy density and power density were calculated as 67.5 F/g, 160 ohm, 7.59 Wh/kg and 520.8 W/kg, respectively.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Wrya O. Karim
- Department of Chemistry, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Mohamad. A. Brza
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Gombak, Malaysia
| | - Rebar T. Abdulwahid
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Iraq;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
31
|
Mustafa MS, Ghareeb HO, Aziz SB, Brza MA, Al-Zangana S, Hadi JM, Kadir MFZ. Electrochemical Characteristics of Glycerolized PEO-Based Polymer Electrolytes. MEMBRANES 2020; 10:E116. [PMID: 32517014 PMCID: PMC7344729 DOI: 10.3390/membranes10060116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
In this article, poly(ethylene oxide)-based polymer electrolyte films doped with ammonium iodide (NH4I) and plasticized with glycerol were provided by a solution casting method. In the unplasticized system, the maximum ionic conductivity of 3.96 × 10-5 S cm-1 was achieved by the electrolyte comprised of 70 wt. % PEO:30 wt. % NH4I. The conductivity was further enhanced up to (1.77×10-4 S cm-1) for the plasticized system when 10 wt. % glycerol was added to the highest conducting unplasticized one at ambient temperature. The films were characterized by various techniques to evaluate their electrochemical performance. The results of impedance spectroscopy revealed that bulk resistance (Rb) considerably decreased for the highest plasticized polymer electrolyte. The dielectric properties and electric modulus parameters were studied in detail. The LSV analysis verified that the plasticized system can be used in energy storage devices with electrochemical stability up to 1.09 V and the TNM data elucidated that the ions were the main charge carrier. The values of the ion transference number (tion) and electron transfer number (tel) were calculated. The nonappearance of any redox peaks in the cyclic voltammograms indicated that the chemical reaction had not occurred at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Muhammad S. Mustafa
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.S.M.); (H.O.G.)
| | - Hewa O. Ghareeb
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.S.M.); (H.O.G.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - M. A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Malaysia
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Iraq;
| | - Jihad M. Hadi
- Kurdistan Technical Institute, Sulaimani 46001, Iraq;
- College of Engineering, Tishk International University, Sulaimani 46001, Iraq
| | - M. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|