1
|
Al-Shaeli M, Benkhaya S, Al-Juboori RA, Koyuncu I, Vatanpour V. pH-responsive membranes: Mechanisms, fabrications, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173865. [PMID: 38880142 DOI: 10.1016/j.scitotenv.2024.173865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Understanding the mechanisms of pH-responsiveness allows researchers to design and fabricate membranes with specific functionalities for various applications. The pH-responsive membranes (PRMs) are particular categories of membranes that have an amazing aptitude to change their properties such as permeability, selectivity and surface charge in response to changes in pH levels. This review provides a brief introduction to mechanisms of pH-responsiveness in polymers and categorizes the applied polymers and functional groups. After that, different techniques for fabricating pH-responsive membranes such as grafting, the blending of pH-responsive polymers/microgels/nanomaterials, novel polymers and graphene-layered PRMs are discussed. The application of PRMs in different processes such as filtration membranes, reverse osmosis, drug delivery, gas separation, pervaporation and self-cleaning/antifouling properties with perspective to the challenges and future progress are reviewed. Lastly, the development and limitations of PRM fabrications and applications are compared to provide inclusive information for the advancement of next-generation PRMs with improved separation and filtration performance.
Collapse
Affiliation(s)
- Muayad Al-Shaeli
- Paul Wurth Chair, Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue de l'Universit'e, L-4365 Esch-sur-Alzette, Luxembourg
| | - Said Benkhaya
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran.
| |
Collapse
|
2
|
Hazarika G, Ingole PG. Nano-enabled gas separation membranes: Advancing sustainability in the energy-environment Nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173264. [PMID: 38772493 DOI: 10.1016/j.scitotenv.2024.173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Gas separation membranes serve as crucial to numerous industrial processes, including gas purification, energy production, and environmental protection. Recent advancements in nanomaterials have drastically revolutionized the process of developing tailored gas separation membranes, providing unreachable levels of control over the performance and characteristics of the membrane. The incorporation of cutting-edge nanomaterials into the composition of traditional polymer-based membranes has provided novel opportunities. This review critically analyses recent advancements, exploring the diverse types of nanomaterials employed, their synthesis techniques, and their integration into membrane matrices. The impact of nanomaterial incorporation on separation efficiency, selectivity, and structural integrity is evaluated across various gas separation scenarios. Furthermore, the underlying mechanisms behind nanomaterial-enhanced gas transport are examined, shedding light on the intricate interactions between nanoscale components and gas molecules. The review also discusses potential drawbacks and considerations associated with nanomaterial utilization in membrane development, including scalability and long-term stability. This review article highlights nanomaterials' significant impact in revolutionizing the field of selective gas separation membranes, offering the potential for innovation and future directions in this ever-evolving sector.
Collapse
Affiliation(s)
- Gauri Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Rizvi NB, Sarwar A, Waheed S, Iqbal ZF, Imran M, Javaid A, Kim TH, Khan MS. Nano-based remediation strategies for micro and nanoplastic pollution. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 265:104380. [PMID: 38875891 DOI: 10.1016/j.jconhyd.2024.104380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Due to rapid urbanization, there have been continuous environmental threats from different pollutants, especially from microplastics. Plastic products rapidly proliferate significantly contributing to the occurrence of micro-plastics, which poses a significant environmental risk. These microplastics originated from diverse sources and are characterized by their persistent and widespread occurrence; human health and the entire ecosystem are adversely affected by them. The removal of microplastics not only requires innovative technologies but also efficient materials capable of effectively eliminating them from our environment. The progress made so far has highlighted the advantages of utilizing the dimensional and structural properties of nanomaterials to increase the effectiveness of existing methods for micro-plastic treatment, aiming for a more sustainable approach to their removal. In the current review, we demonstrate a thorough overview of the sources, occurrences, and potential harmful effects of microplastics, followed by a further discussion of promising technologies used for their removal. An in-depth examination of both advantages and a few limitations of all these given technologies, including physical, chemical, and biological approaches, has been discussed. Additionally, the review explores the use of nanomaterials as an effective means to overcome obstacles and improve the efficiency of microplastic elimination methods. n conclusion, this review addresses, current challenges in this field and outlines the future perspectives for further research in this domain.
Collapse
Affiliation(s)
- Nayab Batool Rizvi
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Adnan Sarwar
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Saba Waheed
- Centre for Clinical and Nutritional Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Zeenat Fatima Iqbal
- Department of Chemistry, University of Engineering and Technology, Lahore-54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Muhammad Shahzeb Khan
- Sulaiman Bin Abdullah Aba Al-Khail Centre for Interdisciplinary Research in Basic Sciences (SA-CIRBS), Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad, Pakistan.
| |
Collapse
|
4
|
Mustafa K, Iqbal N, Ahmad S, Iqbal S, Rezakazemi M, Verpoort F, Kanwal J, Musaddiq S. Highly efficient aramid fiber supported polypropylene membranes modified with reduced graphene oxide based metallic nanocomposites: antimicrobial and antiviral capabilities. RSC Adv 2024; 14:16421-16431. [PMID: 38769958 PMCID: PMC11104733 DOI: 10.1039/d4ra00724g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Polypropylene hybrid polymeric membranes with aramid support have been fabricated using Thermally Induced Phase Separation (TIPS). Different modifying materials, such as metallic nanoparticles and reduced graphene oxide (rGO), improve the properties of these membranes. The nanomaterials and the fabricated membranes have been characterized with FTIR spectrometer, SEM and UV-Vis Spectrophotometer. Following that, the disinfection capabilities of the fabricated hybrid membranes were investigated. The antibacterial capability of the membranes is established through the testing of the membranes against bacterial strains S. aureus and E. coli, whereas the antiviral evaluation of the membranes was made against H9N2 and IBV strains. This research aims to develop advanced hybrid membranes that effectively disinfect water by incorporating novel nanomaterials and optimizing fabrication techniques.
Collapse
Affiliation(s)
- Kiran Mustafa
- Department of Chemistry, The Women University Multan 66000 Pakistan
- Govt. Graduate College (W), Higher Education Department Khanewal Punjab Pakistan
| | - Nadeem Iqbal
- Director Microtech Chemicals and Minerals Kasur 55050 Punjab Pakistan
| | - Sajjad Ahmad
- Pakistan Council of Research in Water Resources, Ministry of Water Resources Islamabad Pakistan
| | - Sadia Iqbal
- Department of Chemistry, The Women University Multan 66000 Pakistan
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology Shahrood 9WVR+757 Iran
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
- National Research Tomsk Polytechnic University Lenin Avenue 30 634050 Tomsk the Russian Federation
| | - Javaria Kanwal
- Department of Chemistry, The Women University Multan 66000 Pakistan
| | - Sara Musaddiq
- Department of Chemistry, The Women University Multan 66000 Pakistan
| |
Collapse
|
5
|
Lin YL, Zheng NY, Hsu YJ. Enhancing membrane separation performance in the conditions of different water electrical conductivity and fouling types via surface grafting modification of a nanofiltration membrane, NF90. ENVIRONMENTAL RESEARCH 2023; 239:117346. [PMID: 37821069 DOI: 10.1016/j.envres.2023.117346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/02/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
A commercialized and widely applied nanofiltration membrane, NF90, was in-situ modified through a surface grafting modification method by using 3-sulfopropyl methacrylate potassium salt and initiators. The effects of water electrical conductivity (EC) and fouling types on membrane separation efficiency were examined before and after membrane modification. Results reveal that both the pristine membrane (PTM) and surface grafting modification membrane (SGMM) had a declining permeate flux and salt (NaCl) removal efficiency but an increasing trend of pharmaceuticals and personal care products (PPCPs) removal with increasing water EC from 250 to 10,000 μs cm-1. However, SGMM exhibited a slightly declining permeate flux but 13%-17% and 1%-42% higher rejection of salt and PPCPs, respectively, compared with PTM, due to electrostatic repulsion and size exclusion provided by the grafted polymer. After sodium alginate (SA) and humic acid (HA) fouling, SGMM had 17%-26% and 16%-32% higher salt rejection and 1%-12% and 1%-51% greater PPCP removal, respectively, compared with PTM due to the additional steric barrier layer contributed by the foulants. The successful grafting and increasing hydrophilicity of the SGMM were confirmed by contact angle analysis, which was beneficial for mitigating membrane fouling. Overall, the proposed in-situ surface grafting modification of NF90 can considerably mitigate organic and biological fouling while raising the rejection of salt and PPCPs at different background water EC, which is beneficial for practical applications in producing clean and high quality water for consumers.
Collapse
Affiliation(s)
- Yi-Li Lin
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC.
| | - Nai-Yun Zheng
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| | - Yu-Jhen Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 824, Taiwan, ROC
| |
Collapse
|
6
|
Mahmoud AED, Mostafa E. Nanofiltration Membranes for the Removal of Heavy Metals from Aqueous Solutions: Preparations and Applications. MEMBRANES 2023; 13:789. [PMID: 37755211 PMCID: PMC10538012 DOI: 10.3390/membranes13090789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Water shortages are one of the problems caused by global industrialization, with most wastewater discharged without proper treatment, leading to contamination and limited clean water supply. Therefore, it is important to identify alternative water sources because many concerns are directed toward sustainable water treatment processes. Nanofiltration membrane technology is a membrane integrated with nanoscale particle size and is a superior technique for heavy metal removal in the treatment of polluted water. The fabrication of nanofiltration membranes involves phase inversion and interfacial polymerization. This review provides a comprehensive outline of how nanoparticles can effectively enhance the fabrication, separation potential, and efficiency of NF membranes. Nanoparticles take the form of nanofillers, nanoembedded membranes, and nanocomposites to give multiple approaches to the enhancement of the NF membrane's performance. This could significantly improve selectivity, fouling resistance, water flux, porosity, roughness, and rejection. Nanofillers can form nanoembedded membranes and thin films through various processes such as in situ polymerization, layer-by-layer assembly, blending, coating, and embedding. We discussed the operational conditions, such as pH, temperature, concentration of the feed solution, and pressure. The mitigation strategies for fouling resistance are also highlighted. Recent developments in commercial nanofiltration membranes have also been highlighted.
Collapse
Affiliation(s)
- Alaa El Din Mahmoud
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
- Green Technology Group, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Esraa Mostafa
- Environmental Sciences Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
7
|
Fan W, Zhu S, Nie J, Du B. Thermo-Sensitive Microgel/Poly(ether sulfone) Composited Ultrafiltration Membranes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5149. [PMID: 37512423 PMCID: PMC10385273 DOI: 10.3390/ma16145149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Thermo-sensitive microgels known as PMO-MGs were synthesized via surfactant free emulsion polymerization, with poly(ethylene glycol) methacrylate (OEGMA475) and 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) used as the monomers and N, N-methylene-bis-acrylamide used as the crosslinker. PMO-MGs are spherical in shape and have an average diameter of 323 ± 12 nm, as determined via transmission electron microscopy. PMO-MGs/poly (ether sulfone) (PES) composited ultrafiltration membranes were then successfully prepared via the non-solvent-induced phase separation (NIPS) method using a PMO-MG and PES mixed solution as the casting solution. The obtained membranes were systematically characterized via combined X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and contact angle goniometer techniques. It was found that the presence of PMO-MGs significantly improved the surface hydrophilicity and antifouling performance of the obtained membranes and the PMO-MGs mainly located on the channel surface of the membranes. At 20 °C, the pure water flux increased from 217.6 L·m-2·h-1 for pure PES membrane (M00) to 369.7 L·m-2·h-1 for PMO-MGs/PES composited membrane (M20) fabricated using the casting solution with 20-weight by percentage microgels. The incorporation of PMO-MGs also gave the composited membranes a thermo-sensitive character. When the temperature increased from 20 to 45 °C, the pure water flux of M20 membrane was enhanced from 369.7 to 618.7 L·m-2·h-1.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaoxiong Zhu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jingjing Nie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Binyang Du
- State Key Laboratory of Motor Vehicle Biofuel Technology, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
8
|
Acuña-Nicolás J, Montesinos-Vázquez T, Pérez-Silva I, Galán-Vidal CA, Ibarra IS, Páez-Hernández ME. Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions. Polymers (Basel) 2023; 15:3086. [PMID: 37514475 PMCID: PMC10384298 DOI: 10.3390/polym15143086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Since lead is a highly toxic metal, it is necessary to detect its presence in different samples; unfortunately, analysis can be complicated if the samples contain concentrations below the detection limit of conventional analytical techniques. Solid phase extraction is a technique that allows the carrying out of a pre-concentration process and thus makes it easy to quantify analytes. This work studied the efficiency of sorption and preconcentration of lead utilizing polysulfone (PSf) fibers grafted with acrylic acid (AA). The best conditions for Pb(II) extraction were: pH 5, 0.1 mol L-1 of ionic strength, and 40 mg of sorbent (70% of removal). The sorbed Pb(II) was pre-concentrated by using an HNO3 solution and quantified using flame atomic absorption spectrometry. The described procedure was used to obtain a correlation curve between initial concentrations and those obtained after the preconcentration process. This curve and the developed methodology were applied to the determination of Pb(II) concentration in a water sample contained in a handmade glazed clay vessel. With the implementation of the developed method, it was possible to pre-concentrate and determine a leached Pb(II) concentration of 258 µg L-1.
Collapse
Affiliation(s)
- Jessica Acuña-Nicolás
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Tanese Montesinos-Vázquez
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Irma Pérez-Silva
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Carlos A Galán-Vidal
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Israel S Ibarra
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - M Elena Páez-Hernández
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| |
Collapse
|
9
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Hu Q, Yuan Y, Wu Z, Lu H, Li N, Zhang H. The effect of surficial function groups on the anti-fouling and anti-scaling performance of thin-film composite reverse osmosis membranes. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
12
|
Samavati Z, Samavati A, Goh PS, Ismail AF, Abdullah MS. A comprehensive review of recent advances in nanofiltration membranes for heavy metal removal from wastewater. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
13
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
14
|
Optimization of Polyacrylic Acid Coating on Graphene Oxide-Functionalized Reverse-Osmosis Membrane Using UV Radiation through Response Surface Methodology. Polymers (Basel) 2022; 14:polym14183711. [PMID: 36145856 PMCID: PMC9505122 DOI: 10.3390/polym14183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Reverse osmosis (RO) is affected by multiple types of fouling such as biofouling, scaling, and organic fouling. Therefore, a multi-functional membrane capable of reducing more than one type of fouling is a need of the hour. The polyacrylic acid and graphene oxide (PAA-GO) nanocomposite functionalization of the RO membrane has shown its effectiveness against both mineral scaling and biofouling. In this research, the polyacrylic acid concentration and irradiation times were optimized for the PAA-GO-coated RO membrane using the response surface methodology (RSM) approach. The effect of these parameters on pure water permeability and salt rejection was investigated. The models were developed through the design of the experiment (DoE), which were further validated through the analysis of variance (ANOVA). The optimum conditions were found to be: 11.41 mg·L−1 (acrylic acid concentration) and 28.08 min (UV activation times) with the predicted results of 2.12 LMH·bar−1 and 98.5% NaCl rejection. The optimized membrane was prepared as per the model conditions, which showed an increase in both pure water permeability and salt rejection as compared to the control. The improvement in membrane surface smoothness and hydrophilicity for the optimized membrane also helped to inhibit mineral scaling by 98%.
Collapse
|
15
|
Goh PS, Kang HS, Ismail AF, Khor WH, Quen LK, Higgins D. Nanomaterials for microplastic remediation from aquatic environment: Why nano matters? CHEMOSPHERE 2022; 299:134418. [PMID: 35351478 DOI: 10.1016/j.chemosphere.2022.134418] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
The contamination of microplastics in aquatic environment is regarded as a serious threat to ecosystem especially to aquatic environment. Microplastic pollution associated problems including their bioaccumulation and ecological risks have become a major concern of the public and scientific community. The removal of microplastics from their discharge points is an effective way to mitigate the adverse effects of microplastic pollution, hence has been the central of the research in this realm. Presently, most of the commonly used water or wastewater treatment technologies are capable of removing microplastic to certain extent, although they are not intentionally installed for this reason. Nevertheless, recognizing the adverse effects posed by microplastic pollution, more efforts are still desired to enhance the current microplastic removal technologies. With their structural multifunctionalities and flexibility, nanomaterials have been increasingly used for water and wastewater treatment to improve the treatment efficiency. Particularly, the unique features of nanomaterials have been harnessed in synthesizing high performance adsorbent and photocatalyst for microplastic removal from aqueous environment. This review looks into the potentials of nanomaterials in offering constructive solutions to resolve the bottlenecks and enhance the efficiencies of the existing materials used for microplastic removal. The current efforts and research direction of which studies can dedicate to improve microplastic removal from water environment with the augmentation of nanomaterial-enabled strategies are discussed. The progresses made to date have witnessed the benefits of harnessing the structural and dimensional advantages of nanomaterials to enhance the efficiency of existing microplastic treatment processes to achieve a more sustainable microplastic cleanup.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - H S Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - W H Khor
- Marine Technology Centre, Institute for Vehicle System & Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L K Quen
- Mechanical Precision Engineering Department, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100, Kuala Lumpur, Malaysia
| | - D Higgins
- The Ocean Cleanup Interception B.V., 3014, JH Rotterdam, the Netherlands
| |
Collapse
|
16
|
Azmi FI, Goh PS, Ismail AF, Hilal N, Wong TW, Misson M. Biomolecule-Enabled Liquid Separation Membranes: Potential and Recent Progress. MEMBRANES 2022; 12:148. [PMID: 35207070 PMCID: PMC8874482 DOI: 10.3390/membranes12020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
The implementation of membrane surface modification to enhance the performance of membrane-based separation has become a favored strategy due to its promise to address the trade-off between water permeability and salt rejection as well as to improve the durability of the membranes. Tremendous work has been committed to modifying polymeric membranes through physical approaches such as surface coating and ontology doping, as well as chemical approaches such as surface grafting to introduce various functional groups to the membrane. In the context of liquid separation membranes applied for desalination and water and wastewater treatment, biomolecules have gained increasing attention as membrane-modifying agents due to their intriguing structural properties and chemical functionalities. Biomolecules, especially carbohydrates and proteins, exhibit attractive features, including high surface hydrophilicity and zwitterionic and antimicrobial properties that are desired for liquid separation membranes. In this review, we provide an overview of the recent developments in biomolecule-enabled liquid separation membranes. The roles and potentials of some commonly explored biomolecules in heightening the performance of polymeric membranes are discussed. With the advancements in material synthesis and the need to answer the call for more sustainable materials, biomolecules could serve as attractive alternatives for the development of high-performance composite membranes.
Collapse
Affiliation(s)
- Faiz Izzuddin Azmi
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, 129188 Abu Dhabi, United Arab Emirates
| | - Tuck Whye Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (F.I.A.); (A.F.I.); (T.W.W.)
| | - Mailin Misson
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| |
Collapse
|