1
|
Zhu S, Zha M, Xia Y. Complex Probiotics Suppress Inflammation by Regulating Intestinal Metabolites in Kittens. Animals (Basel) 2025; 15:272. [PMID: 39858271 PMCID: PMC11758643 DOI: 10.3390/ani15020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Cats are popular companions for humans, and their health is of importance to a growing number of pet owners. The juvenile period is a critical stage of cat growth; in particular, the metabolic activity of the intestinal microbiome of kittens is critical for processing nutrients and supporting overall health. In this study, the effect of complex probiotics on the intestinal health of kittens was explored through a metabolomics analysis. Twenty-four healthy kittens were randomly assigned to two groups (n = 12): the control group was provided a basal diet and the probiotics group was provided the basal diet supplemented with complex probiotics (given at the same time daily). The kittens were acclimatized for 5 days, and the experiment was conducted for 14 days. We collected feces from each kitten on days 1 and 14 for metabolomic analyses. Compared to the control, the probiotics group had significantly higher (p < 0.05) methylmalonylcarnitine, lysyl-hydroxyproline, phenylpropionylglycine, and vitamin K3 levels, and significantly lower (p < 0.05) gamma-glutamyl-L-putrescine, cis-gondoic acid, myristic acid, 12,13-DiHOME, and glycodeoxycholic acid levels. The results of this study suggest that complex probiotics promote intestinal health in kittens by regulating changes in various metabolites in the intestine and may have a mitigating effect on intestinal inflammation.
Collapse
Affiliation(s)
- Shimin Zhu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Musu Zha
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Xia
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot 010018, China;
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Rowe JC, Summers SC, Quimby JM, Winston JA. Fecal bile acid dysmetabolism and reduced ursodeoxycholic acid correlate with novel microbial signatures in feline chronic kidney disease. Front Microbiol 2024; 15:1458090. [PMID: 39498133 PMCID: PMC11532117 DOI: 10.3389/fmicb.2024.1458090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Background Microbial-derived secondary bile acids (SBAs) are reabsorbed and sensed via host receptors modulating cellular inflammation and fibrosis. Feline chronic kidney disease (CKD) occurs with progressive renal inflammation and fibrosis, mirroring the disease pathophysiology of human CKD patients. Methods Prospective cross-sectional study compared healthy cats (n = 6) with CKD (IRIS Stage 2 n = 17, Stage 3 or 4 n = 11). Single timepoint fecal samples from all cats underwent targeted bile acid metabolomics. 16S rRNA gene amplicon sequencing using DADA2 with SILVA taxonomy characterized the fecal microbiota. Results CKD cats had significantly reduced fecal concentrations (median 12.8 ng/mg, Mann-Whitney p = 0.0127) of the SBA ursodeoxycholic acid (UDCA) compared to healthy cats (median 39.4 ng/mg). Bile acid dysmetabolism characterized by <50% SBAs was present in 8/28 CKD and 0/6 healthy cats. Beta diversity significantly differed between cats with <50% SBAs and > 50% SBAs (PERMANOVA p < 0.0001). Twenty-six amplicon sequence variants (ASVs) with >97% nucleotide identity to Peptacetobacter hiranonis were identified. P. hiranonis combined relative abundance was significantly reduced (median 2.1%) in CKD cats with <50% SBAs compared to CKD cats with >50% SBAs (median 13.9%, adjusted p = 0.0002) and healthy cats with >50% SBAs (median 15.5%, adjusted p = 0.0112). P. hiranonis combined relative abundance was significantly positively correlated with the SBAs deoxycholic acid (Spearman r = 0.5218, adjusted p = 0.0407) and lithocholic acid (Spearman r = 0.5615, adjusted p = 0.0156). Three Oscillospirales ASVs and a Roseburia ASV were also identified as significantly correlated with fecal SBAs. Clinical and translational importance The gut-kidney axis mediated through microbial-derived SBAs appears relevant to the spontaneous animal CKD model of domestic cats. This includes reduced fecal concentrations of the microbial-derived SBA UDCA, known to regulate inflammation and fibrosis and be reno-protective. Microbes correlated with fecal SBAs include bai operon containing P. hiranonis, as well as members of Oscillospirales, which also harbor a functional bai operon. Ultimately, CKD cats represent a translational opportunity to study the role of SBAs in the gut-kidney axis, including the potential to identify novel microbial-directed therapeutics to mitigate CKD pathogenesis in veterinary patients and humans alike.
Collapse
Affiliation(s)
- John C. Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Stacie C. Summers
- Department of Clinical Sciences, Oregon State University Carlson College of Veterinary Medicine, Corvallis, OR, United States
| | - Jessica M. Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| |
Collapse
|
3
|
Nealon NJ, Summers S, Quimby J, Winston JA. Untargeted metabolomic profiling of serum from client-owned cats with early and late-stage chronic kidney disease. Sci Rep 2024; 14:4755. [PMID: 38413739 PMCID: PMC10899575 DOI: 10.1038/s41598-024-55249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024] Open
Abstract
Evaluation of the metabolome could discover novel biomarkers of disease. To date, characterization of the serum metabolome of client-owned cats with chronic kidney disease (CKD), which shares numerous pathophysiological similarities to human CKD, has not been reported. CKD is a leading cause of feline morbidity and mortality, which can be lessened with early detection and appropriate treatment. Consequently, there is an urgent need for early-CKD biomarkers. The goal of this cross-sectional, prospective study was to characterize the global, non-targeted serum metabolome of cats with early versus late-stage CKD compared to healthy cats. Analysis revealed distinct separation of the serum metabolome between healthy cats, early-stage and late-stage CKD. Differentially abundant lipid and amino acid metabolites were the primary contributors to these differences and included metabolites central to the metabolism of fatty acids, essential amino acids and uremic toxins. Correlation of multiple lipid and amino acid metabolites with clinical metadata important to CKD monitoring and patient treatment (e.g. creatinine, muscle condition score) further illustrates the relevance of exploring these metabolite classes further for their capacity to serve as biomarkers of early CKD detection in both feline and human populations.
Collapse
Affiliation(s)
- Nora Jean Nealon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stacie Summers
- Department of Clinical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Jessica Quimby
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jenessa A Winston
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
4
|
Rowe JC, Winston JA. Collaborative Metabolism: Gut Microbes Play a Key Role in Canine and Feline Bile Acid Metabolism. Vet Sci 2024; 11:94. [PMID: 38393112 PMCID: PMC10892723 DOI: 10.3390/vetsci11020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Bile acids, produced by the liver and secreted into the gastrointestinal tract, are dynamic molecules capable of impacting the overall health of dogs and cats in many contexts. Importantly, the gut microbiota metabolizes host primary bile acids into chemically distinct secondary bile acids. This review explores the emergence of new literature connecting microbial-derived bile acid metabolism to canine and feline health and disease. Moreover, this review highlights multi-omic methodologies for translational research as an area for continued growth in veterinary medicine aimed at accelerating microbiome science and medicine as it pertains to bile acid metabolism in dogs and cats.
Collapse
Affiliation(s)
- John C. Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Balderas C, de Ancos B, Sánchez-Moreno C. Bile Acids and Short-Chain Fatty Acids Are Modulated after Onion and Apple Consumption in Obese Zucker Rats. Nutrients 2023; 15:3035. [PMID: 37447361 PMCID: PMC10347221 DOI: 10.3390/nu15133035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Gut microorganisms are involved in the development and severity of different cardiovascular diseases, and increasing evidence has indicated that dietary fibre and polyphenols can interact with the intestinal microbiota. The study objective was to investigate the effect of onion and apple intake on the major types of microbial-derived molecules, such as short-chain fatty acids (SCFAs) and bile acids (BAs). Obese Zucker rats were randomly assigned (n = eight rats/group) to a standard diet (OC), a standard diet/10% onion (OO), or a standard diet/10% apple (OA). Lean Zucker rats fed a standard diet served as a lean control (LC) group. Faecal samples were collected at baseline, and 8 weeks later, the composition of the microbial community was measured, and BA and SCFA levels were determined using high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS), respectively. Rats fed onion- and apple-enriched diets had increased abundance of beneficial bacteria, such as Bifidobacterium spp. and Lactobacillus spp., enhanced SCFAs (acetic, propionic, isobutyric, and valeric acids), decreased excretion of some BAs, mainly of the primary (CA, α-MCA, and β-MCA) and secondary type (ω-MCA, HDCA, NCA, DCA, and LCA), and increased amount of taurine- and glycine-conjugated BAs compared to the OC group. The contribution of specific bioactive compounds and their metabolites in the regulation of the microbiome and the pathways linked to SCFA and BA formation and their relationship with some diseases needs further research.
Collapse
Affiliation(s)
| | | | - Concepción Sánchez-Moreno
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), ES-28040 Madrid, Spain (B.d.A.)
| |
Collapse
|
6
|
Lee AH, Jha AR, Do S, Scarsella E, Shmalberg J, Schauwecker A, Steelman AJ, Honaker RW, Swanson KS. Dietary enrichment of resistant starches or fibers differentially alter the feline fecal microbiome and metabolite profile. Anim Microbiome 2022; 4:61. [PMID: 36471455 PMCID: PMC9720964 DOI: 10.1186/s42523-022-00213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Cats are strict carnivores but possess a complex gastrointestinal (GI) microbial community that actively ferments dietary substrates that are not digested and reach the colon. The GI microbiota responses to dietary inclusion of resistant starches versus fibers have not been tested in cats. Thus, our objective was to evaluate the effects of diets enriched in resistant starch or fibers on the fecal characteristics, microbiome, and metabolite profiles of cats. Twelve healthy adult domestic shorthair cats (age = 9.6 ± 4.0 year; body weight = 3.9 ± 1.0 kg) were used in a replicated 3 × 3 Latin square design to test diets that were enriched with: (1) resistant starch (ERS), (2) a fiber-prebiotic-probiotic blend (FPPB), or (3) a fiber-prebiotic-probiotic blend + immune-modulating ingredients (iFPPB). In each 28-day period, 22 days of diet adaptation was followed by fecal and blood sample collection. Fecal samples were used for shotgun metagenomic sequencing. In addition, fecal and blood metabolite measurements and white blood cell stimulation was performed to assess immune function. RESULTS A total of 1690 bacterial species were identified, with 259 species differing between fiber-rich and ERS treatments. In comparison with fiber-rich treatments that increased diversity and promoted Firmicutes and Bacteroidetes populations, resistant starch reduced microbial diversity and fecal pH, led to a bloom in Actinobacteria, and modified Kyoto Encyclopedia of Genes and Genomes orthology (KO) terms pertaining to starch and sucrose metabolism, fatty acid biosynthesis and metabolism, epithelial cell signaling, among others. Resistant starch also differentially modified fecal metabolite concentrations with relevance to GI and overall host health (increased butyrate; decreased propionate and protein catabolites - branched-chain fatty acids; phenols and indoles; ammonia) and reduced blood cholesterol, which correlated strongly with microbial taxa and KO terms, and allowed for a high predictive efficiency of diet groups by random forest analysis. CONCLUSION Even though domestic cats and other carnivores evolved by eating low-carbohydrate diets rich in protein and fat, our results demonstrate that the feline microbiome and metabolite profiles are highly responsive to dietary change and in directions that are predictable.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- NomNomNow, Inc., Oakland, CA, 94607, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisa Scarsella
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin Shmalberg
- NomNomNow, Inc., Oakland, CA, 94607, USA
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Amy Schauwecker
- PetSmart Proprietary Brand Product Development, Phoenix, AZ, 85080, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- 162 Animal Sciences Laboratory, 1207 West Gregory Drive, M/C 630, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Feeding Fiber-Bound Polyphenol Ingredients at Different Levels Modulates Colonic Postbiotics to Improve Gut Health in Cats. Animals (Basel) 2022; 12:ani12131654. [PMID: 35804553 PMCID: PMC9265048 DOI: 10.3390/ani12131654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Food eaten by humans or companion animals is broken down by enzymes produced by the host and also by bacteria present in the large intestine of the host. Many of the compounds produced can have beneficial effects on the host’s health. Previous studies in dogs evaluated changes after they ate food containing a fiber bundle made of pecan shells, flax seed, and powders from cranberry, citrus, and beet. These studies showed that bacteria in the large intestine switched from digesting mainly protein to digesting mainly carbohydrates resulting in production of compounds with beneficial properties. The study presented here tested this fiber bundle in cats to see which compounds and/or bacteria in the feces changed. After cats consumed food containing the fiber bundle, several compounds associated with beneficial health effects increased, and some compounds that indicate the breakdown of protein decreased. In contrast, little change in fecal bacteria was observed following consumption of food with the fiber bundle. Overall, these findings indicate that, similar to the dog studies, bacteria in the large intestine of cats were able to digest the fiber bundle to make compounds that may contribute to host health and also shifted to digestion of carbohydrates instead of protein. Abstract Consumption of fiber in its different forms can result in positive health effects. Prior studies in dogs found that addition of a fiber bundle (composed of pecan shells, flax seed, and powders of cranberry, citrus, and beet) to food resulted in a shift in fecal bacterial metabolism from proteolysis to saccharolysis. The present study evaluated the changes in fecal metabolites and microbiota in healthy cats following the consumption of this fiber bundle. Following a 28-day pre-feed period, 56 healthy adult cats received food with none or one of three concentrations (0%, 1%, 2%, and 4%) of the fiber bundle for a 31-day period. In cats that consumed the 4% fiber bundle, levels of ammonium and fecal branched-chain fatty acids (BCFAs) decreased from baseline and compared with the other groups. Addition of any level of the fiber bundle resulted in increases in beneficial metabolites: polyphenols hesperidin, hesperetin, ponciretin, secoisolariciresinol diglucoside, secoisolariciresinol, and enterodiol. Little change in fecal microbiota was observed. Since higher levels of ammonia and BCFAs indicate putrefactive metabolism, the decreases in these with the 4% fiber bundle indicate a shift toward saccharolytic metabolism despite little change in the microbiota composition.
Collapse
|
8
|
The Serum and Fecal Metabolomic Profiles of Growing Kittens Treated with Amoxicillin/Clavulanic Acid or Doxycycline. Animals (Basel) 2022; 12:ani12030330. [PMID: 35158655 PMCID: PMC8833518 DOI: 10.3390/ani12030330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This study investigated the impact of antibiotic treatment οn the serum and fecal metabolome (the collection of all small molecules produced by the gut bacteria and the host) of young cats. Thirty 2-month-old cats with an upper respiratory tract infection were treated with either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days. In addition, another 15 control cats that did not receive antibiotics were included. Blood was collected on days 0 (before treatment), 20/28 (last day of treatment), and 300 (10 months after the end of treatment), while feces were collected on days 0, 20/28, 60, 120, and 300. Seven serum and fecal metabolites differed between cats treated with antibiotics and control cats at the end of treatment period. Ten months after treatment, no metabolites differed from healthy cats, suggesting that amoxicillin/clavulanic acid or doxycycline treatment only temporarily affects the abundance of the serum and fecal metabolome. Abstract The long-term impact of antibiotics on the serum and fecal metabolome of kittens has not yet been investigated. Therefore, the objective of this study was to evaluate the serum and fecal metabolome of kittens with an upper respiratory tract infection (URTI) before, during, and after antibiotic treatment and compare it with that of healthy control cats. Thirty 2-month-old cats with a URTI were randomly assigned to receive either amoxicillin/clavulanic acid for 20 days or doxycycline for 28 days, and 15 cats of similar age were enrolled as controls. Fecal samples were collected on days 0, 20/28, 60, 120, and 300, while serum was collected on days 0, 20/28, and 300. Untargeted and targeted metabolomic analyses were performed on both serum and fecal samples. Seven metabolites differed significantly in antibiotic-treated cats compared to controls on day 20/28, with two differing on day 60, and two on day 120. Alterations in the pattern of serum amino acids, antioxidants, purines, and pyrimidines, as well as fecal bile acids, sterols, and fatty acids, were observed in antibiotic-treated groups that were not observed in control cats. However, the alterations caused by either amoxicillin/clavulanic acid or doxycycline of the fecal and serum metabolome were only temporary and were resolved by 10 months after their withdrawal.
Collapse
|
9
|
Effect of Nutrition on Age-Related Metabolic Markers and the Gut Microbiota in Cats. Microorganisms 2021; 9:microorganisms9122430. [PMID: 34946032 PMCID: PMC8706506 DOI: 10.3390/microorganisms9122430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related changes in the gut microbiota and metabolites are associated with the increased risk of detrimental conditions also seen with age. This study evaluated whether a test food with potential anti-aging benefits results in favorable changes in plasma and fecal metabolites and the fecal microbiota in senior cats. Forty healthy domestic cats aged 8.3–13.5 years were fed a washout food for 30 days, then control or test food for 30 days. After another 30-day washout, cats were switched to the other study food for 30 days. Assessment of plasma and fecal metabolites showed lower levels of metabolites associated with detrimental processes (e.g., uremic toxins) and higher levels of metabolites associated with beneficial processes (e.g., tocopherols) after cats consumed the test food compared with the control food. A shift toward proteolysis with the control food is supported by higher levels of amino acid metabolites and lower levels of carbohydrate metabolites. Operational taxonomic units of greater abundance with the test food positively correlated with carbohydrate and nicotinic acid metabolites, and negatively correlated with uremic toxins, amino acid metabolism, secondary bile salts, and branched-chain fatty acids. Taken together, the test food appears to result in greater levels of metabolites and microbiota associated with a healthier state.
Collapse
|
10
|
Effect of Added Dietary Betaine and Soluble Fiber on Metabolites and Fecal Microbiome in Dogs with Early Renal Disease. Metabolites 2020; 10:metabo10090370. [PMID: 32942543 PMCID: PMC7570292 DOI: 10.3390/metabo10090370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022] Open
Abstract
Renal diets are recommended for dogs with chronic kidney disease (CKD). This study examined the effects of foods with added betaine and fiber on the plasma and fecal metabolome and fecal microbiome in dogs with early stage CKD. At baseline, several metabolites differed between healthy dogs and those with CKD. Dogs with CKD (n = 28) received a control food, low soluble fiber plus betaine food (0.5% betaine, 0.39% oat beta-glucan, and 0.27% short-chain fructooligosaccharides (scFOS)), or high soluble fiber plus betaine food (0.5% betaine, 0.59% oat beta-glucan, and 0.41% scFOS) each for 10 weeks in different sequences. Consumption of test foods led to several favorable, significant changes in the plasma metabolome, including decreases of several uremic toxins and other deleterious metabolites, and increases in favorable metabolites compared with the control food. Only 7 fecal metabolites significantly changed with consumption of the test foods compared with the control food, largely increases in polyphenols and lignans. Few changes were seen in the fecal microbiome, though some taxa that significantly changed in response to the test foods have beneficial effects on health, with some negatively correlating with uremic toxins. Overall, foods with added betaine and soluble fiber showed positive effects on the plasma and fecal metabolomes.
Collapse
|